
December 9, 2019

Access Control

Petr Ročkai



Access Control 2/67 December 9, 2019

Lecture Overview
1. Multi-User Systems
2. File Systems
3. Sub-user Granularity



Access Control 3/67 December 9, 2019

Part 1: Multi-User Systems



Access Control 4/67 December 9, 2019

Users
• originally a proxy for people
• currently a more general abstraction
• user is the unit of ownership
• many permissions are user-centered



Access Control 5/67 December 9, 2019

Computer Sharing
• computer is a (often costly) resource
• efficiency of use is a concern

∘ a single user rarely exploits a computer fully
• data sharing makes access control a necessity



Access Control 6/67 December 9, 2019

Ownership
• various objects in an OS can be owned

∘ primarily files and processes
• the owner is typically whoever created the object

∘ ownership can be transferred
∘ usually at the impetus of the original owner



Access Control 7/67 December 9, 2019

Process Ownership
• each process belongs to some user
• the process acts on behalf of the user

∘ the process gets the same privilege as its owner
∘ this both constrains and empowers the process

• processes are active participants



Access Control 8/67 December 9, 2019

File Ownership
• each file also belongs to some user
• this gives rights to the user (or rather their processes)

∘ they can read and write the file
∘ they can change permissions or ownership

• files are passive participants



Access Control 9/67 December 9, 2019

Access Control Models
• owners usually decide who can access their objects

∘ this is known as discretionary access control
• in high-security environments, this is not allowed

∘ known as mandatory access control
∘ a central authority decides the policy



Access Control 10/67 December 9, 2019

(Virtual) System Users
• users are an useful ownership abstraction
• various system services get their own “fake” users
• this allows them to own files and processes
• and also limit their access to the rest of the OS



Access Control 11/67 December 9, 2019

Principle of Least Privilege
• entities should have minimum privilege required

∘ applies to software components
∘ but also to human users of the system

• this limits the scope of mistakes
∘ and also of security compromises



Access Control 12/67 December 9, 2019

Privilege Separation
• different parts of a system need different privilege
• least privilege dictates splitting the system

∘ components are isolated from each other
∘ they are given only the rights they need

• components communicate using simple IPC



Access Control 13/67 December 9, 2019

Process Separation
• recall that each process runs in its own address space

∘ but shared memory can be requested
• each user has a view of the filesystem

∘ a lot more is shared by default in the filesystem
∘ especially the namespace (directory hierarchy)



Access Control 14/67 December 9, 2019

Access Control Policy
• there are 3 pieces of information

∘ the subject (user)
∘ the verb (what is to be done)
∘ the object (the file or other resource)

• there are many ways to encode this information



Access Control 15/67 December 9, 2019

Access Rights Subjects
• in a typical OS those are (possibly virtual) users

∘ sub-user units are possible (e.g. programs)
∘ roles and groups could also be subjects

• the subject must be named (names, identifiers)
∘ easy on a single system, hard in a network



Access Control 16/67 December 9, 2019

Access Rights Verbs
• the available “verbs” (actions) depend on object type
• a typical object would be a file

∘ files can be read, written, executed
∘ directories can be searched or listed or changed

• network connections can be established &c.



Access Control 17/67 December 9, 2019

Access Rights Objects
• anything that can be manipulated by programs

∘ although not everything is subject to access control
• could be files, directories, sockets, shared memory, ...
• object names depend on their type

∘ file paths, i-node numbers, IP addresses, ...



Access Control 18/67 December 9, 2019

Subjects in POSIX
• there are 2 types of subjects: users and groups
• each user can belong to multiple groups
• users are split into normal users and root

∘ root is also known as the super-user



Access Control 19/67 December 9, 2019

User Management
• the system needs a database of users
• in a network, user identities often need to be shared
• could be as simple as a text file

∘ /etc/passwd and /etc/group on UNIX systems
• or as complex as a distributed database



Access Control 20/67 December 9, 2019

User and Group Identifiers
• users and groups are represented as numbers

∘ this improves efficiency of many operations
∘ the numbers are called uid and gid

• those numbers are valid on a single computer
∘ or at most, a local network



Access Control 21/67 December 9, 2019

Changing Identities
• each process belongs to a particular user
• ownership is inherited across fork()
• super-user processes can use setuid()
• exec() can sometimes change a process owner



Access Control 22/67 December 9, 2019

Login
• a super-user process manages user logins
• the user types their name and provides credentials

∘ upon successful authentication, login calls fork()
∘ the child calls setuid() to the user
∘ and uses exec() to start a shell for the user



Access Control 23/67 December 9, 2019

User Authentication
• the user needs to authenticate themselves
• passwords are the most commonly used method

∘ the system needs to know the right password
∘ user should be able to change their password

• biometric methods are also quite popular



Access Control 24/67 December 9, 2019

Storing Passwords
• passwords are often stored as hashes
• along with salt, to counter rainbow tables
• on UNIX: /etc/shadow (only root can read)
• also: key derivation functions (bcrypt, argon2)



Access Control 25/67 December 9, 2019

Remote Login
• authentication over network is more complicated
• passwords are easiest, but not easy

∘ encryption is needed to safely transmit passwords
∘ along with computer authentication

• 2-factor authentication is a popular improvement



Access Control 26/67 December 9, 2019

Computer Authentication
• how to ensurewe send the password to the right party?

∘ an attacker could impersonate our remote computer
• usually via asymmetric cryptography

∘ a private key can be used to sign messages
∘ the serverwill sign amessage establishing its identity



Access Control 27/67 December 9, 2019

2-factor Authentication
• 2 different types of authentication

∘ harder to spoof both at the same time
• there are a few factors to pick from

∘ something the user knows (password)
∘ something the user has (keys)
∘ what the user is (biometric)



Access Control 28/67 December 9, 2019

Enforcement: Hardware
• all enforcement begins with the hardware

∘ the CPU provides a privileged mode for the kernel
∘ DMAmemory and IO instructions are protected

• the MMU allows the kernel to isolate processes
∘ and protect its own integrity



Access Control 29/67 December 9, 2019

Enforcement: Kernel
• kernel uses hardware facilities to implement security

∘ it stands between resources and processes
∘ access is mediated through system calls

• file systems are part of the kernel
• user and group abstractions are part of the kernel



Access Control 30/67 December 9, 2019

Enforcement: System Calls
• the kernel acts as an arbitrator
• a process is trapped in its own address space
• processes use system calls to access resources

∘ kernel can decide what to allow
∘ based on its access control model and policy



Access Control 31/67 December 9, 2019

Enforcement: Service APIs
• userland processes can enforce access control

∘ usually system services which provide IPC API
• e.g. via the getpeereid() system call

∘ tells the caller which user is connected to a socket
∘ user-level access control is rooted in kernel facilities



Access Control 32/67 December 9, 2019

Part 2: File Systems



Access Control 33/67 December 9, 2019

File Access Rights
• file systems are a case study in access control
• all modern file systems maintain permissions

∘ the only extant exception is FAT (USB sticks)
• different systems adopt different representation



Access Control 34/67 December 9, 2019

Representation
• file systems are usually object-centric

∘ permissions are attached to individual objects
∘ easily answers “who can access this file”?

• there is a fixed set of verbs
∘ those may be different for files and directories
∘ different systems allow different verbs



Access Control 35/67 December 9, 2019

The UNIX Model
• each file and directory has a single owner
• plus a single owning group

∘ not limited to those the owner belongs to
• ownership and permissions are attached to i-nodes



Access Control 36/67 December 9, 2019

Access vs Ownership
• POSIX ties ownership and access rights
• only 3 subjects can be named on a file

∘ the owner (user)
∘ the owning group
∘ anyone else



Access Control 37/67 December 9, 2019

Access Verbs in POSIX File Systems
• read: read a file, list a directory
• write: write a file, link/unlink i-nodes to a directory
• execute: exec a program, enter the directory
• execute as owner (group): setuid/setgid



Access Control 38/67 December 9, 2019

Permission Bits
• basic UNIX permissions can be encoded in 9 bits
• 3 bits per 3 subject designations

∘ first comes the owner, then group, then others
∘ written as e.g. rwxr-x--- or 0750

• plus two numbers for the owner/group identifiers



Access Control 39/67 December 9, 2019

Changing File Ownership
• the owner and root can change file owners
• chown and chgrp system utilities
• or via the C API

∘ chown(), fchown(), fchownat(), lchown()
∘ same set for chgrp



Access Control 40/67 December 9, 2019

Changing File Permissions
• again available to the owner and to root

• chmod is the user space utility
∘ either numeric argument: chmod 644 file.txt

∘ or symbolic: chmod +x script.sh

• and the corresponding system call (numeric-only)



Access Control 41/67 December 9, 2019

setuid and setgid

• special permissions on executable files
• they allow exec to also change the process owner
• often used for granting extra privileges

∘ e.g. the mount command runs as the super-user



Access Control 42/67 December 9, 2019

Sticky Directories
• file creation and deletion is a directory permission

∘ this is problematic for shared directories
∘ in particular the system /tmp directory

• in a sticky directory, different rules apply
∘ new files can be created as usual
∘ only the owner can unlink a file from the directory



Access Control 43/67 December 9, 2019

Access Control Lists
• ACL is a list of ACE’s (access control elements)

∘ each ACE is a subject + verb pair
∘ it can name an arbitrary user

• ACL is attached to an object (file, directory)
• more flexible than the traditional UNIX system



Access Control 44/67 December 9, 2019

ACLs and POSIX
• part of POSIX.1e (security extensions)
• most POSIX systems implement ACLs

∘ this does not supersede UNIX permission bits
∘ instead, they are interpreted as part of the ACL

• file system support is not universal (but widespread)



Access Control 45/67 December 9, 2019

Device Files
• UNIX represents devices as special i-nodes

∘ this makes them subject to normal access control
• the particular device is described in the i-node

∘ only a super-user can create device nodes
∘ users could otherwise gain access to any device



Access Control 46/67 December 9, 2019

Sockets and Pipes
• named sockets and pipes are just i-nodes

∘ also subject to standard file permissions
• especially useful with sockets

∘ a service sets up a named socket in the file system
∘ file permissions decide who can talk to the service



Access Control 47/67 December 9, 2019

Special Attributes
• flags that allow additional restrictions on file use

∘ e.g. immutable files (cannot be changed by anyone)
∘ append-only files (for logfile integrity protection)
∘ compression, copy-on-write controls

• non-standard (Linux chattr, BSD chflags)



Access Control 48/67 December 9, 2019

Network File System
• NFS 3.0 simply transmits numeric uid and gid

∘ the numbering needs to be synchronised
∘ can be done via a central user database

• NFS 4.0 uses per-user authentication
∘ the user authenticates to the server directly
∘ filesystem uid and gid values are mapped



Access Control 49/67 December 9, 2019

File System Quotas
• storage space is limited, shared by users

∘ files take up storage space
∘ file ownership is also a liability

• quotas set up limits space use by users
∘ exhausted quota can lead to denial of access



Access Control 50/67 December 9, 2019

Removable Media
• access control at file system level makes no sense

∘ other computers may choose to ignore permissions
∘ user names or id’s would not make sense anyway

• option 1: encryption (for denying reads)
• option 2: hardware-level controls

∘ usually read-onlyvs read-write on the entiremedium



Access Control 51/67 December 9, 2019

The chroot System Call
• each process in UNIX has its own root directory

∘ for most, this coincides with the system root
• the root directory can be changed using chroot()
• can be useful to limit file system access

∘ e.g. in privilege separation scenarios



Access Control 52/67 December 9, 2019

Uses of chroot
• chroot alone is not a security mechanism

∘ a super-user process can get out easily
∘ but not easy for a normal user process

• also useful for diagnostic purposes
• and as lightweight alternative to virtualisation



Access Control 53/67 December 9, 2019

Part 3: Sub-User Granularity



Access Control 54/67 December 9, 2019

Users are Not Enough
• users are not always the right abstraction

∘ creating users is relatively expensive
∘ only a super-user can create new users

• you may want to include programs as subjects
∘ or rather, the combination user + program



Access Control 55/67 December 9, 2019

Naming Programs
• users have user names, but how about programs?
• option 1: cryptographic signatures

∘ portable across computers but complex
∘ establishes identity based on the program itself

• option 2: i-node of the executable
∘ simple, local, identity based on location



Access Control 56/67 December 9, 2019

Program as a Subject
• program: passive (file) vs active (processes)

∘ only a process can be a subject
∘ but program identity is attached to the file

• rights of a process depend on its program
∘ exec()will change privileges



Access Control 57/67 December 9, 2019

Mandatory Access Control
• delegates permission control to a central authority
• often coupled with security labels

∘ classifies subjects (users, processes)
∘ and also objects (files, sockets, programs)

• the owner cannot change object permissions



Access Control 58/67 December 9, 2019

The Bell-LaPadula Model
1. simple security property

∘ you can’t read what is beyond your clearance
2. the star property

∘ also called no write down
∘ you cannot write to ‘more public’ files



Access Control 59/67 December 9, 2019

Capabilities
• not all verbs (actions) need to take objects
• e.g. shutting down the computer (there is only one)
• mounting file systems (they can’t be always named)
• listening on ports with number less than 1024



Access Control 60/67 December 9, 2019

Dismantling the root User
• the traditional root user is all-powerful

∘ “all or nothing” is often unsatisfactory
∘ violates the principle of least privilege

• many special properties of root are capabilities
∘ root then becomes the user with all capabilities
∘ other users can get selective privileges



Access Control 61/67 December 9, 2019

Security and Execution
• security hinges on what is allowed to execute
• arbitrary code execution are the worst exploits

∘ this allows unauthorized execution of code
∘ same effect as impersonating the user
∘ almost as bad as stolen credentials



Access Control 62/67 December 9, 2019

Untrusted Input
• programs often process data from dubious sources

∘ think image viewers, audio & video players
∘ archive extraction, font rendering, ...

• bugs in programs can be exploited
∘ the program can be tricked into executing data



Access Control 63/67 December 9, 2019

Process as a Subject
• some privileges can be tied to a particular process

∘ those only apply during the lifetime of the process
∘ often restrictions rather than privileges
∘ this is how privilege dropping is done

• processes are identified using their numeric pid
∘ restrictions are inherited across fork()



Access Control 64/67 December 9, 2019

Sandboxing
• tries to limit damage from code execution exploits
• the program drops all privileges it can

∘ this is done before it touches any of the input
∘ the attacker is stuck with the reduced privileges
∘ this can often prevent a successful attack



Access Control 65/67 December 9, 2019

Untrusted Code
• traditionally, you would only execute trusted code

∘ usually based on reputation or other external factors
∘ this does not scale to a large number of vendors

• it is common to execute untrusted, even dubious code
∘ this can be okay with sufficient sandboxing



Access Control 66/67 December 9, 2019

API-Level Access Control
• capability system for user-level resources

∘ things like contact lists, calendars, bookmarks
∘ objects not provided directly by the kernel

• enforcement e.g. via a virtual machine
∘ not applicable to execution of native code
∘ alternative: an IPC-based API



Access Control 67/67 December 9, 2019

Android/iOS Permissions
• applications from a store are semi-trusted
• typically single-user computers/devices
• permissions are attached to apps instead of users
• partially virtual users, partially API-level


