
Binary Exploitation 2a
Return Oriented Programming & ASLR

Milan Patnaik

Indian Institute of Technology Madras

Where Are We ?

2

Where Are We ?

• Executable, No Canaries and No ASLR.
• Overwrite return address.
• Shellcode in stack.

3

Where Are We ?

• Executable, No Canaries and No ASLR.
• Overwrite return address.
• Shellcode in stack.

• Non Executable, No Canaries and No ASLR.
• Overwrite the return address.
• Return to libc restricted by system().

4

Where Are We ?

• Executable, No Canaries and No ASLR.
• Overwrite return address.
• Shellcode in stack.

• Non Executable, No Canaries and No ASLR.
• Overwrite the return address.
• Return to libc restricted by system().

• Non Executable, No Canaries and No ASLR.
• Overwrite return address.
• Return Oriented Programming.
• Execute arbitrary code.

5

Return Oriented Programming
(ROP)

6

Return Oriented Programming

7

Return Oriented Programming Attacks

• Discovered by Hovav Shacham of Stanford University
• Subverts execution.

– As with the regular ret-2-libc, can be used with non executable stacks since the
instructions can be legally executed.

– Unlike ret-2-libc does not require to execute functions in libc (can execute any
arbitrary code).

8

The Geometry of Innocent Flesh on the Bone: Return-into-libc without
Function Calls on the x86

Stack : Function Call

EBP

Parameters
for function

return Address

Locals of function

prev frame pointer

push $3
push $2
push $1

Stack

push %ebp
movl %esp, %ebp
sub $20, %esp

%ebp : Frame Pointer

In main In function

ESP

ESP

ESP

ESP

ESP

ESP

%esp : Stack Pointer

9

Call instruction has 2 steps:
 Push the contents pointed to by EIP.
 Decrease ESP by 4 (32bit machine)

Stack : Function Return

EBP

Parameters
for function

return Address

Locals of function

prev frame pointer

Stack

%ebp : Frame Pointer

ESP

ESP

ESP

ESP

ESP

ESP

%esp : Stack Pointer

10

Ret instruction has 2 steps:
 Pops the contents pointed to by
 ESP into EIP
 Increment ESP by 4 (32bit machine)

movl %ebp, %esp
In function

push $3
push $2
push $1

In main

Action by leave instruction

Target Payload

Lets say this is the payload needed to be executed by an attacker.

Suppose there is a function in libc, which has exactly this sequence of
instructions … then we are done.. we just need to subvert execution
to the function

11

Target Payload

Lets say this is the payload needed to be executed by an attacker.

Suppose there is a function in libc, which has exactly this sequence of
instructions … then we are done.. we just need to subvert execution
to the function

What if such a function does not exist?
If you can’t find it then build it

12

Step 1: Find Gadgets

• Find gadgets.
• A gadget is a short sequence of instructions followed by a return.

• Useful instructions : should not transfer control outside the gadget.

• This is a pre-processing step by statically analysing the libc library.

useful instruction(s)
ret

13

Step 2: Stitching

• Stitch gadgets so that the payload is built

Program Binary

movl %esi, 0x8(%esi)
ret

G1

movb $0x0, 0x7(%esi)
ret G2

movb $0x0, 0xc(%esi)
ret G3

movl $0xb, %eax
ret

G4

14

Step 3: Construct the Stack

15

xxx

xxx

xxx

AG1

AG2

AG3

AG4

xxx

buffer
xxx

Return Address

Program Binary

movl %esi, 0x8(%esi)
ret

G1

movb $0x0, 0x7(%esi)
ret G2

movb $0x0, 0xc(%esi)
ret G3

movl $0xb, %eax
ret

G4

Program Stack
AGi: Address of
Gadget i

Finding Gadgets

• Static analysis of libc
• To find

1. A set of instructions that end in a ret (0xc3).
 The instructions can be intended (put in by the compiler) or
unintended.

2. Besides ret, none of the instructions transfer control
out of the gadget.

16

Intended vs Unintended Instructions

• Intended : machine code intentionally put in by the
compiler

• Unintended : interpret machine code differently in order
to build new instructions

17

F7 C7 07 00 00 00 0F 95 45 C3 Machine Code :

What the compiler intended..

What was not intended

Highly likely to find many diverse instructions of this form in x86.
Not so likely to have such diverse instructions in RISC processors.

Geometry

• Given an arbitrary string of machine code, what is
the probability that the code can be interpreted
as useful instructions.
– x86 code is highly dense.
– RISC processors like (SPARC, ARM, etc.) have low

geometry.

• Thus finding gadgets in x86 code is considerably
more easier than that of ARM or SPARC.

• Fixed length instruction set reduces geometry.

18

Finding Gadgets

• Static analysis of libc.
• Find any memory location with 0xc3 (RET instruction).
• Build a trie data structure with 0xc3 as a root.
• Every path from leaf to the root is a possible gadget.

19

C
3
C
3

0
0
0
0

2
4
2
4

3
7
3
7

2
4
2
4

4
6
4
6

4
3
4
3

1
6
1
6

8
9
8
9

9
4
9
4

child of

Finding Gadgets

• Scan libc from the beginning toward the end
• If 0xc3 is found

– Start scanning backward
– With each byte, ask the question if the subsequence

forms a valid instruction
– If yes, add as child
– If no, go backwards until we reach the maximum

instruction length (20 bytes)
– Repeat this till (a predefined) length W, which is the max

instructions in the gadget

20

33 b2 23 12 a0 31 a5 67 22 ab ba 4a 3c c3 ff ee ab 31 11 09

Gadgets : Constant into
Register

Loading a constant into a register (edx = deadbeef)

21

deadbeefdeadbeef
GadgetAddGadgetAdd

stack

pop %edx
ret
pop %edx
ret

esp
• A previous return will pop the gadget address into

%eip
• %esp will also be incremented to point to

deadbeef
 (4 bytes on 32 bit platform)

• The pop %edx will pop deadbeef from the stack
and increment %esp to point to the next 4 bytes
on the stack

Gadgets : Arbitrary Data into eax

22

pop %edx
ret
pop %edx
ret

G1

mov 64(%edx), %eax
ret
mov 64(%edx), %eax
ret

G2
G2G2

addraddr
G1G1

stack

esp

deadbeefdeadbeef

+64

Load arbitrary data into %eax register using
Gadgets G1 and G2

Gadgets: Store Constants

• Store the contents of a register to a memory
location in the stack

23

GadgetAddr 2GadgetAddr 2

00
GadgetAddr 1GadgetAddr 1

stack

pop %edx
ret
pop %edx
ret

esp

mov %eax, 24(%edx)
ret
mov %eax, 24(%edx)
ret

24

Gadget: Addition

24

addl (%edx), %eax
push %edi
ret

addl (%edx), %eax
push %edi
ret

Add the memory pointed
to by %edx to %eax.
The result is stored in %eax

pushes %edi.. onto the stack
why is this present?
…. This is unnecessary, but
this is best gadget that we can
find for addition
But can create problems!!

We need work arounds!

GadgetAddr2GadgetAddr2

GadgetAddrGadgetAddr

stack

esp

Some gadgetSome gadget

Gadget: Addition

25

addl (%edx), %eax
push %edi
ret

addl (%edx), %eax
push %edi
ret

Add the memory pointed
to by %edx to %eax.
The result is stored in %eax

pushes %edi.. onto the stack
why is this present?
…. This is unnecessary, but
this is best gadget that we can
find for addition
But can create problems!!

We need work arounds!

GadgetAddrGadgetAddr

stack

esp
ModifiedModified

Some gadgetSome gadget

Gadgets: Addition with NOP

26

addl (%edx), %eax
push %edi
ret

addl (%edx), %eax
push %edi
ret

1. First put gadget ptr for 0xC3 into
%edi

2. 0xC3 corresponds to NOP in
ROP

3. push %edi in gadget 2 just pushes
0xc3 back into the stack
Therefore not disturbing the stack
contents

4. Gadget 3 executes as planned

GadgetAddr3GadgetAddr3

Gadget_RETGadget_RET

GadgetAddr2GadgetAddr2

Gadget_RETGadget_RET

GadgetAddr1GadgetAddr1

stack

esp 0xc30xc3

0xc3 is ret in ROP and ret is equivalent to NOP instruction

pop %edi
ret
pop %edi
ret

Unconditional Branches

• Changing the %esp

27

GAGA

stack

esp

pop %esp
ret

Conditional Branches

28

In x86 instructions conditional branches have 2 parts.

1. An instruction which modifies a condition flag (eg CF, OF, ZF).
 eg. CMP %eax, %ebx (will set ZF if %eax = %ebx)

2. A branch instruction (eg. JZ, JCC, JNZ, etc).
 which internally checks the conditional flag and
 changes the EIP accordingly.

In ROP conditional branches have 3 parts.

1. An ROP which modifies a condition flag (eg CF, OF, ZF).
 eg. CMP %eax, %ebx (will set ZF if %eax = %ebx)

2. Transfer flags to a register or memory.
3. Perturb %esp based on flags stored in memory.

In ROP, we need flags to modify %esp register instead of EIP
Needs to be explicitly handled

Step 1 : Set the flags

Find suitable ROPs that set appropriate flags

29

CMP %eax,
%ebx
RET

subtraction
Affects flags CF, OF, SF, ZF,
AF, PF

NEG %eax
RET

2s complement negation
Affects flags CF

Step 2: Transfer flags to
memory or register

• Using lahf instruction
 stores 5 flags (ZF, SF, AF, PF, CF) in the %ah register

• Using pushf instruction
pushes the eflags into the stack

ROPs for these two not easily found.
A third way – perform an operation whose result depends on
the flag contents.

30

where would
one use this
instruction?

Step 2: Indirect way to transfer flags
to memory

Several instructions operate using the contents of
the flags

31

ADC %eax, %ebx : add with carry that performs eax <- eax + ebx + CF.

(if eax and ebx are 0 initially, then the result will be either 1 or 0 depending on the CF)

RCL : rotate left with carry.

RCL %eax, 1
(if eax = 0. then the result is either 0 or 1 depending on CF)

Gadgets: Transfer Flags to
Memory

32

%edx will have value A
%ecx will contain 0x0

A

Step 3: Perturb %esp depending
on flag

33

If (CF is set){
 perturb %esp
}else{
 leave %esp as it is
}

What we hope to achieve

* CF stored in a memory
location (say X).
* Current %esp.
* Delta, how much to perturb
%esp.

What we have

negate X
offset = Delta & X
%esp = %esp+offset

One way of achieving …

1. Negate X (eg. Using instruction negl)
 finds the 2’s complement of X
 if (X = 1) 2’s complement is 111111111…

 if (X = 0) 2’s complement is 000000000...
2. offset = Delta if X = 1
 offset = 0 if X = 0
3. %esp = %esp + offset if X = 1
 %esp = %esp if X = 0

Turing Complete

• Gadgets can do much more…
invoke libc functions,
invoke system calls, ...

• For x86, gadgets are said to be turning complete.
– Can program just about anything with gadgets.

• For RISC processors, more difficult to find gadgets.
– Instructions are fixed width.
– Therefore can’t find unintentional instructions.

• Tools available to find gadgets automatically.
Eg. ROPGadget (https
://github.com/JonathanSalwan/ROPgadget)
 Ropper (https://github.com/sashs/Ropper)

34

https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget
https://github.com/sashs/Ropper

Address Space Layout Randomization
(ASLR)

35

Address Space Randomization

• Address space layout
randomization (ASLR)
randomizes the address space
layout of the process.

• Each execution would have a
different memory map, thus
making it difficult for the attacker
to run exploits.

• Initiated by Linux PaX project in
2001.

• Now a default in many operating
systems.

36

Memory layout across boots for a Windows box

Non Executable Stack Attack Prevention

ASLR in the Linux Kernel

• Locations of the base, libraries, heap, and stack can be
randomized in a process’ address space.

• Built into the Linux kernel and controlled by
/proc/sys/kernel/randomize_va_space

• randomize_va_space can take 3 values:
0 : disable ASLR.
1 : positions of stack, VDSO, shared memory regions are
 randomized the data segment is immediately after the
 executable code.

 2 : (default setting) setting 1 as well as the data segment
 location is randomized.

37

Non Executable Stack Attack Prevention

ASLR in Action

38

First Run

Another Run

Non Executable Stack Attack prevention

ASLR in the Linux Kernel

• Permanent changes can be made by editing the
/etc/sysctl.conf file.

Two requirements:-

 - Make the code relocatable.

 - Generate random address.

39

/etc/sysctl.conf, for example:
kernel.randomize_va_space = value
sysctl -p

Non Executable Stack Attack Prevention

Internals : Making code
relocatable

• Load time relocatable.
– where the loader modifies a program executable so

that all addresses are adjusted properly.
– Relocatable code.

• Slow load time since executable code needs to be modified.
• Requires a writeable code segment, which could pose

problems.

• PIE : position independent executable.
– a.k.a PIC (position independent code).
– code that executes properly irrespective of its absolute address.
– Used extensively in shared libraries.

• Easy to find a location where to load them without overlapping with other
modules.

40

Non Executable Stack Attack Prevention

Load Time Relocatable

41

11

Non Executable Stack Attack Prevention

Load Time Relocatable

42

note the 0x0 here…
the actual address of mylib_int is not filled in

22

Non Executable Stack Attack Prevention

Load Time Relocatable

43

Relocatable table present in the executable
that contains all references of mylib_int33

Offset in memory where the fix needs to be made
Store binary value in the symbol memory location

Non Executable Stack Attack Prevention

Load Time Relocatable

44

The loader fills in the actual address of mylib_int
at run time.

44

Non Executable Stack Attack Prevention

Load Time Relocatable

45

Limitations

 Slow load time since executable code needs to be
modified.

 Requires a writeable code segment, which could pose
problems.

 Since executable code of each program needs to be
customized, it would prevent sharing of code sections.

Non Executable Stack Attack Prevention

Position Independent
Executable

• An additional level of indirection for all global
data and function references.

• Uses a lot of relative addressing schemes and a
global offset table (GOT).

• For relative addressing,
– data loads and stores should not be at absolute

addresses but must be relative.

46
http://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-
shared-libraries/

Non Executable Stack Attack Prevention

Global Offset Table (GOT)
• Table at a fixed (known) location in

memory space and known to the linker.
• Has the location of the absolute address

of variables and functions.

47

Without GOT

With GOT

Non Executable Stack Attack Prevention

Enforcing Relative Addressing
(example)

48

 With load time relocatable

With PIC

Non Executable Stack Attack Prevention

Enforcing Relative Addressing
(example)

49

With load time relocatable

With PIC

Get address of next instruction
to achieve relativeness

Index into GOT and get the
actual address of mylib_int into
eax

Now work with the actual
address.

Non Executable Stack Attack Prevention

Advantage of the GOT

• With load time relocatable code, every variable reference
would need to be changed.
– Requires writeable code segments.
– Huge overheads during load time.
– Code pages cannot be shared.

• With GOT, the GOT table needs to be constructed just once
during the execution.
– GOT is in the data segment, which is writeable.
– Data pages are not shared anyway.
– Drawback : runtime overheads due to multiple loads.

50

Non Executable Stack Attack Prevention

An Example of working with
GOT

51

$gcc –m32 –shared –fpic –S got.c

Besides a.out, this compilation also generates got.s
The assembly code for the program.

52

Data section

Text section

Fills %ecx with the eip of the next
instruction.
Why do we need this indirect way of doing
this?
In this case what will %ecx contain?

The macro for the GOT is known by the linker.
%ecx will now contain the offset to GOT

Load the absolute address of myglob from the
GOT into %eax

Non Executable Stack Attack Prevention

More

53

offset of myglob
in GOT

GOT it!

Non Executable Stack Attack Prevention

Internals: Randomizing the
data section

54

loading the executable

Check if
randomize_va_space
is > 1 (it can be 1 or 2)

Compute the end of the
data segment (m->brk
+ 0x20)

Finally Randomize

Non Executable Stack Attack Prevention

Deep Within the Kernel
(randomizing the data section)

55

Non Executable Stack Attack Prevention

Deep Within the Kernel
(randomizing the data section)

56

• The address of the first element of the ‘hash[0]’
array.

• The currently executing process ID for the
processor that handles this.

• The system’s jiffies value.
• CPU cycles number.

Non Executable Stack Attack Prevention

Function Calls in PIC

• Theoretically could be done similar with the data.
– call instruction gets location from GOT entry that is filled

in during load time (this process is called binding).
– In practice, this is time consuming. Much more functions

than global variables. Most functions in libraries are
unused.

• Lazy binding scheme.
– Delay binding till invocation of the function.
– Uses a double indirection – PLT – procedure linkage table

in addition to GOT.

57

Non Executable Stack Attack Prevention

The PLT

58

11

• Instead of directly calling func, invoke an
offset in the PLT instead.

• PLT is part of the executable text section,
and consists of one entry for each external
function the shared library calls.

• Each PLT entry has
 A jump location to a specific GOT entry

• Preparation of arguments for a ‘resolver’
• Call to resolver function

Non Executable Stack Attack Prevention

First Invocation of Func

First Invocation of func

59

11

22

(steps 2 and 3)
On first invocation of func, PLT[n]
jumps to GOT[n], which simply jumps
back to PLT[n].

33

Non Executable Stack Attack Prevention

First Invocation of Func

60

11

22

(step 4)
Invoke resolver, which resolves
the actual of func, places this
actual address into GOT and then
invokes func.

The arguments passed to resolver,
that helps to do symbol resolution.

Note that the contents of GOT is
now changed to point to the actual
address of func.

33

44

Non Executable Stack Attack Prevention

Example of PLT

61

Compiler converts the call to set_mylib_int
into set_mylib_int@plt

Non Executable Stack Attack Prevention

Example of PLT

62

ebx points to the GOT
table
ebx + 0x10 is the
offset corresponding
to set_mylib_int

Offset of set_mylib_int in
the GOT (+0x10).
It contains the address of
the next instruction (ie.
0x3c2)

Non Executable Stack Attack Prevention

Example of PLT

63

Push arguments for
the resolver.

Jump to the first entry of
the PLT
Ie. PLT[0]

Jump to the resolver,
which resolves the
actual address of
set_mylib_int and fills
it into the GOT

Non Executable Stack Attack Prevention

Subsequent invocations of
Func

64

11

22

33

Non Executable Stack Attack Prevention

Advantages

• Functions are relocatable, therefore good
for ASLR.

• Functions resolved only on need, therefore
saves time during the load phase.

65

Non Executable Stack Attack Prevention

Bypassing ASLR

• Brute force.
• Return-to-PLT.
• Overwriting the GOT.
• Timing Attacks.

66

Bypassing ASLR

• Brute force.

67

Bypassing ASLR

• Brute force.

68

That’s for the classes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

