
PA193 Secure coding
principles and practices

Seminar 4: Usability and usable security
for cryptographic APIs
10. 10. 2019

Martin Ukrop, mukrop@mail.muni.cz
Ph.D. research cooperation
CRoCS, Faculty of Informatics, Masaryk University

mailto:mukrop@mail.muni.cz

Seminar overview

• Usable security for end users

• Usable security for developers

• Examples of unusable APIs

• Designing unusable APIs

• Current usable security research at CRoCS

• Homework assignment

2

Usable security: How it all began
• “Why Johny can’t encrypt” (A. Whitten and J. D. Tygar, 1999)

– A usability study of PGP 5.0 (exchange secure email)
– 4/12 success, 7/12 their keys, exposed private, ...

3

Users are not the enemy

4

• M. A. Sasse and A. Adams, 1999
– Study of password authentication

• Consensus at the time:
– Users are careless and unmotivated (security-wise)
– Users lack security knowledge

• Promoting “user-centered approach”

Usable security research since then

• Email encryption (“The Johnny series”)

• SSL browser warnings (testing adherence)

• Authentication (passwords, tokens, ...)

• Security advice (passwords, ...)

• Android permissions

• Privacy issues in software

• ...

5

However… (The impact pyramid)

6

OS developers

Library developers

Software developers

Administrators/IT support

IT professionals

End users

I
M
P
A
C
T

A
M
O
U
N
T

SSH: Authenticity can’t be established

7

SSH: Key changed

8

(Un)usability of HTTPS deployment

• Empirical test of HTTPS deployment usability
– 28 knowledgeable university students
– Asked to deploy TLS on Apache to pass security audit
– Security measured by Qualys SSL test

9

(Un)usability of HTTPS deployment

• Empirical test of HTTPS deployment usability
– 28 knowledgeable university students
– Asked to deploy TLS on Apache to pass security audit
– Security measured by Qualys SSL test

• Only 4 deployed A-grade TLS
– Challenges: Find the right information, generate CSR,

choose appropriate cipher-suites, strict HTTPS,
multiple config files, security/compatibility ballance

Research from “I Have No Idea What I’m Doing” – On the Usability of Deploying HTTPS, by K.
Krombholz, W. Mayer, M. Schmiedecker and E. Weippl, 2017.

10

Authenticated encryption

• To get confidentiality + integrity
– Encryption for confidentiality
– MAC for integrity

11

Authenticated encryption

• To get confidentiality + integrity
– Encryption for confidentiality
– MAC for integrity

• Standard: In what order to combine them?
– 4 possibilities
– 1 almost always right, 1 depends, 2 always wrong

12

Authenticated encryption

• To get confidentiality + integrity
– Encryption for confidentiality
– MAC for integrity

• Standard: In what order to combine them?
– 4 possibilities
– 1 almost always secure, 1 depends, 2 always insecure

• NaCl/libsodium: crypto_box API
– c = crypto_box(m, n, pk, sk);
– m = crypto_box_open(c, n, pk, sk);
– Usable API is not a silver bullet!

13

“Developer-resistant
cryptography!”

K. Cairns and G. Steel, 2014

14

Example 1: CURL (2012)

• Libcurl
– the multiprotocol file

transfer library

• Two main directives for SSL validation

– CURL_SSL_VERIFYPEER (checking certificate)

– CURL_SSL_VERIFYHOST (checking hostname)

15

Example 1: CURL (2012)

16

• PayPal SDK:
curl_setopt($ch, CURL_SSL_VERIFYPEER, FALSE)
curl_setopt($ch, CURL_SSL_VERIFYHOST, FALSE)

Example 1: CURL (2012)

• PayPal SDK: version from 27th April 2012

curl_setopt($ch, CURL_SSL_VERIFYPEER, TRUE)
curl_setopt($ch, CURL_SSL_VERIFYHOST, TRUE)

17

Example 1: CURL (2012)

• PayPal SDK: version from 27th April 2012

curl_setopt($ch, CURL_SSL_VERIFYPEER, TRUE)
curl_setopt($ch, CURL_SSL_VERIFYHOST, TRUE)

• Bool CURL_SSL_VERIFYPEER
• Int CURL_SSL_VERIFYHOST

– 0: no host verification
– 1: debug (nearly no verification)
– 2: verify hostname

CURL example from The Most DangerousCode in the World:
Validating SSL Certificates in Non-Browser Software, 2012.

18

Example 2: OpenSSL Random API (2014)

OpenSSL functions for random bytes

int RAND_bytes(unsigned char *buf, int num);

int RAND_pseudo_bytes(unsigned char *buf, int num);

• Working as providers
– I.e. multiple implementations
– I.e. multiple callers

19

Example 2: OpenSSL Random API (2014)

Documentation: Description
• RAND_bytes(buf, num) puts num cryptographically strong

pseudo-random bytes into buf. An error occurs if the PRNG has not
been seeded with enough randomness to ensure an unpredictable
byte sequence.

• RAND_pseudo_bytes(buf, num) puts num pseudo-random bytes
into buf. Pseudo-random byte sequences generated by
RAND_pseudo_bytes() will be unique if they are of sufficient length,
but are not necessarily unpredictable. They can be used for
non-cryptographic purposes and for certain purposes in
cryptographic protocols, but usually not for key generation etc.

20

Example 2: OpenSSL Random API (2014)

Documentation: Return values
• RAND_bytes() returns 1 on success, 0 otherwise. The error code

can be obtained by ERR_get_error(3).

• RAND_pseudo_bytes() returns 1 if the bytes generated are
cryptographically strong, 0 otherwise.

• Both functions return -1 if they are not supported by the current
RAND method.

21

Example 2: OpenSSL Random API (2014)

Implementations

• engines/e_aep.c:
– RAND_bytes() same function as RAND_pseudo_bytes().
– Returns 0 on error, and adds an error.
– Can fail without altering buffer.

• 20 similar other implementations in OpenSSL,
Bind 9 and Heimdal
– Always implemented by the same back-end function
– Only a single implementation with semi-compliant error

codes

22

Example 2: OpenSSL Random API (2014)

Callers

• Standard C error scheme incorrect:
if (!RAND_bytes(...)) /* handle error ... */

– Debian code search: OpenSSL, Ruby, net-snmp, ZNC,
DACS, dnsval/dnssec-tools, ...

– GitHub code search: 1 456 results

RAND example by Joseph Birr-Pixton (http://jbp.io)

23

API issues

• Usability issues
– E.g. counterintuitive structure/names/arguments

• Performance issues
– E.g. making copy of structures in arguments

• Security issues

24

API issues

• Usability issues
– E.g. counterintuitive structure/names/arguments

• Performance issues
– E.g. making copy of structures in arguments

• Security issues
– Due to bad technical design

• E.g. possible compromise by unexpected call order

– Due to bad usability
• E.g. prone to accidentally disable cert. verification

25

Task: Intentional bad design

Design a C (or C-like) API for encryption/decryption
routines with security issues due to bad usability.

• Work in groups of 2-3 people

• Get inspiration from existing API structure
– OpenSSL AES header, OpenSSL enc/dec Wiki
– GnuTLS encryption, API reference
– NaCl encryption
– mbedTLS encryption module

26

https://github.com/openssl/openssl/blob/master/include/openssl/aes.h
https://wiki.openssl.org/index.php/EVP_Symmetric_Encryption_and_Decryption
https://www.gnutls.org/manual/html_node/Cryptographic-API.html
https://gnutls.org/reference/gnutls-crypto.html
https://nacl.cr.yp.to/stream.html
https://tls.mbed.org/api/group__encdec__module.html

Usable security research in CRoCS

• Towards end users
– Authentication (QR codes, tokens, ...)
– PUA behavior in antivirus installation

• Towards IT professionals
– Using CLI tools (OpenSSL, GnuTLS, NSS)
– Understanding error messages
– Comparing cryptographic APIs

27

Homework assignment
Experiencing different APIs, usability assessment

28

Homework overview
• Implement a simple TLS client in C connecting to

a server, checking its certificate and performing
a “HTTPS GET” for www.example.com.

• Do this for 3 different SSL libraries
– OpenSSL, GnuTLS, mbedTLS (formerly PolarSSL)
– Code skeletons provided for easy start in IS

• Compare relevant API parts of these libraries
using the provided questions

29

TLS and terminology recap
• Transport Layer Security

– Based on SSL 3.0 (prohibited in 2015)
– Versions: 1.0 (1999), 1.1 (2006), 1.2 (2008), 1.3 (2018)
– Different cipher suites available

• Certificate checking
– Complicated, often not done (root, hostname!)

• Certificate revocation
– Certificate Revocation Lists (CRL)
– Online Certificate Status Protocol (OCSP)

30

Precise task
• Initiate a TLS handshake with www.example.com
• Validate the server certificate

– Check at least expiration, server hostname, validity of
the chain and the revocation status (CRL or OCSP)

– Use the default OS trust store
– Tip1: Use badssl.com for debugging
– Tip2: For revoked use revoked.grc.com

• Force the minimal version of TLS 1.2.
• Perform a HTTPS GET on the root website.
• Correctly close the connection.

31

Homework technicalities
• Library version specifics

– OpenSSL >= 1.1.1 (!)
– GnuTLS ~ 3.6.5
– mbed TLS ~ 2.16.0

• Feel free to use your own machines
– FI machines (aisa, nymfeXX, ...) are not suitable
– Pre-set Ubuntu 19.04 virtual machine is available in IS

(login: ‘vagrant’, password: ‘vagrant’)

• HW submission used also for research purposes
at CRoCS (anonymous, opt-out possible)

32

Homework hand-in
• Deadline: 2019-10-17 23:59 CET

• Start from skeleton in IS
– Stubs for all 3 libraries + Makefile for compilation

• Hand in 1 zip file containing
– 3x source code (use skeleton skeleton structure)
– reflection.pdf (at least 1 page, 5-10 specific points

comparing the APIs)
(Tip: Get inspiration from the following questions.)

• Partial points definitely possible!

33

• Do you find the API abstraction level appropriate to the task?
• Did you have to learn about the underlying architecture of the API and other

conceptual information before starting to do anything useful related to your task?
• What are the information you had to maintain while completing the tasks?
• Does the amount of code required for this scenario seem just about right, too much,

or too little? Why?
• How easy is it to stop in the middle of the scenario and check the progress of work

so far?
• When you are working with the API, can you work on your programming task in any

order you like, or does the system force you to think ahead and make certain
decisions first?

• What are the places where you had to understand the intricate working details of the
API while you work on your programming task?

• Did you have to extend types exposed by the API by providing their own
implementation of custom behavior to accomplish task? What are the types you had
to extend? Explain why you needed to extend the original type provided by the API in
each case.

34

• When you need to make changes to previous work, how easy is it to make the
change? Why?

• Were there different parts of the API that mean similar things, is the similarity clear
from the way they appear? Please give examples.

• When reading code that uses the API, is it easy to tell what each section of code
does? Why?

• Did the types of the API map directly onto the types and concepts you expected? If
not, please mention the types you expected and how it was supported in the API.

• Have you came up with incidents where you incorrectly used the API and then
identified the correct way of doing that? Did API give any help to identify that you
used the API incorrectly? If there any similar incidents, please explain.

• Do you think the security of the end user of the application you developed, depends
on how you completed the task? Or does it depend only on the security API you
used?

• Did the API provide any guidance on how to test your application?

Selected from A Generic Cognitive Dimensions Questionnaire to Evaluate the Usability of
Security APIs by Chamila Wijayarathna, Nalin A.G. Arachchilage and Jill Slay.

35

