{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from sklearn import datasets\n", "iris = datasets.load_iris()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "sklearn.utils.Bunch" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what type the data set is?\n", "type(iris)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'data': array([[5.1, 3.5, 1.4, 0.2],\n", " [4.9, 3. , 1.4, 0.2],\n", " [4.7, 3.2, 1.3, 0.2],\n", " [4.6, 3.1, 1.5, 0.2],\n", " [5. , 3.6, 1.4, 0.2],\n", " [5.4, 3.9, 1.7, 0.4],\n", " [4.6, 3.4, 1.4, 0.3],\n", " [5. , 3.4, 1.5, 0.2],\n", " [4.4, 2.9, 1.4, 0.2],\n", " [4.9, 3.1, 1.5, 0.1],\n", " [5.4, 3.7, 1.5, 0.2],\n", " [4.8, 3.4, 1.6, 0.2],\n", " [4.8, 3. , 1.4, 0.1],\n", " [4.3, 3. , 1.1, 0.1],\n", " [5.8, 4. , 1.2, 0.2],\n", " [5.7, 4.4, 1.5, 0.4],\n", " [5.4, 3.9, 1.3, 0.4],\n", " [5.1, 3.5, 1.4, 0.3],\n", " [5.7, 3.8, 1.7, 0.3],\n", " [5.1, 3.8, 1.5, 0.3],\n", " [5.4, 3.4, 1.7, 0.2],\n", " [5.1, 3.7, 1.5, 0.4],\n", " [4.6, 3.6, 1. , 0.2],\n", " [5.1, 3.3, 1.7, 0.5],\n", " [4.8, 3.4, 1.9, 0.2],\n", " [5. , 3. , 1.6, 0.2],\n", " [5. , 3.4, 1.6, 0.4],\n", " [5.2, 3.5, 1.5, 0.2],\n", " [5.2, 3.4, 1.4, 0.2],\n", " [4.7, 3.2, 1.6, 0.2],\n", " [4.8, 3.1, 1.6, 0.2],\n", " [5.4, 3.4, 1.5, 0.4],\n", " [5.2, 4.1, 1.5, 0.1],\n", " [5.5, 4.2, 1.4, 0.2],\n", " [4.9, 3.1, 1.5, 0.1],\n", " [5. , 3.2, 1.2, 0.2],\n", " [5.5, 3.5, 1.3, 0.2],\n", " [4.9, 3.1, 1.5, 0.1],\n", " [4.4, 3. , 1.3, 0.2],\n", " [5.1, 3.4, 1.5, 0.2],\n", " [5. , 3.5, 1.3, 0.3],\n", " [4.5, 2.3, 1.3, 0.3],\n", " [4.4, 3.2, 1.3, 0.2],\n", " [5. , 3.5, 1.6, 0.6],\n", " [5.1, 3.8, 1.9, 0.4],\n", " [4.8, 3. , 1.4, 0.3],\n", " [5.1, 3.8, 1.6, 0.2],\n", " [4.6, 3.2, 1.4, 0.2],\n", " [5.3, 3.7, 1.5, 0.2],\n", " [5. , 3.3, 1.4, 0.2],\n", " [7. , 3.2, 4.7, 1.4],\n", " [6.4, 3.2, 4.5, 1.5],\n", " [6.9, 3.1, 4.9, 1.5],\n", " [5.5, 2.3, 4. , 1.3],\n", " [6.5, 2.8, 4.6, 1.5],\n", " [5.7, 2.8, 4.5, 1.3],\n", " [6.3, 3.3, 4.7, 1.6],\n", " [4.9, 2.4, 3.3, 1. ],\n", " [6.6, 2.9, 4.6, 1.3],\n", " [5.2, 2.7, 3.9, 1.4],\n", " [5. , 2. , 3.5, 1. ],\n", " [5.9, 3. , 4.2, 1.5],\n", " [6. , 2.2, 4. , 1. ],\n", " [6.1, 2.9, 4.7, 1.4],\n", " [5.6, 2.9, 3.6, 1.3],\n", " [6.7, 3.1, 4.4, 1.4],\n", " [5.6, 3. , 4.5, 1.5],\n", " [5.8, 2.7, 4.1, 1. ],\n", " [6.2, 2.2, 4.5, 1.5],\n", " [5.6, 2.5, 3.9, 1.1],\n", " [5.9, 3.2, 4.8, 1.8],\n", " [6.1, 2.8, 4. , 1.3],\n", " [6.3, 2.5, 4.9, 1.5],\n", " [6.1, 2.8, 4.7, 1.2],\n", " [6.4, 2.9, 4.3, 1.3],\n", " [6.6, 3. , 4.4, 1.4],\n", " [6.8, 2.8, 4.8, 1.4],\n", " [6.7, 3. , 5. , 1.7],\n", " [6. , 2.9, 4.5, 1.5],\n", " [5.7, 2.6, 3.5, 1. ],\n", " [5.5, 2.4, 3.8, 1.1],\n", " [5.5, 2.4, 3.7, 1. ],\n", " [5.8, 2.7, 3.9, 1.2],\n", " [6. , 2.7, 5.1, 1.6],\n", " [5.4, 3. , 4.5, 1.5],\n", " [6. , 3.4, 4.5, 1.6],\n", " [6.7, 3.1, 4.7, 1.5],\n", " [6.3, 2.3, 4.4, 1.3],\n", " [5.6, 3. , 4.1, 1.3],\n", " [5.5, 2.5, 4. , 1.3],\n", " [5.5, 2.6, 4.4, 1.2],\n", " [6.1, 3. , 4.6, 1.4],\n", " [5.8, 2.6, 4. , 1.2],\n", " [5. , 2.3, 3.3, 1. ],\n", " [5.6, 2.7, 4.2, 1.3],\n", " [5.7, 3. , 4.2, 1.2],\n", " [5.7, 2.9, 4.2, 1.3],\n", " [6.2, 2.9, 4.3, 1.3],\n", " [5.1, 2.5, 3. , 1.1],\n", " [5.7, 2.8, 4.1, 1.3],\n", " [6.3, 3.3, 6. , 2.5],\n", " [5.8, 2.7, 5.1, 1.9],\n", " [7.1, 3. , 5.9, 2.1],\n", " [6.3, 2.9, 5.6, 1.8],\n", " [6.5, 3. , 5.8, 2.2],\n", " [7.6, 3. , 6.6, 2.1],\n", " [4.9, 2.5, 4.5, 1.7],\n", " [7.3, 2.9, 6.3, 1.8],\n", " [6.7, 2.5, 5.8, 1.8],\n", " [7.2, 3.6, 6.1, 2.5],\n", " [6.5, 3.2, 5.1, 2. ],\n", " [6.4, 2.7, 5.3, 1.9],\n", " [6.8, 3. , 5.5, 2.1],\n", " [5.7, 2.5, 5. , 2. ],\n", " [5.8, 2.8, 5.1, 2.4],\n", " [6.4, 3.2, 5.3, 2.3],\n", " [6.5, 3. , 5.5, 1.8],\n", " [7.7, 3.8, 6.7, 2.2],\n", " [7.7, 2.6, 6.9, 2.3],\n", " [6. , 2.2, 5. , 1.5],\n", " [6.9, 3.2, 5.7, 2.3],\n", " [5.6, 2.8, 4.9, 2. ],\n", " [7.7, 2.8, 6.7, 2. ],\n", " [6.3, 2.7, 4.9, 1.8],\n", " [6.7, 3.3, 5.7, 2.1],\n", " [7.2, 3.2, 6. , 1.8],\n", " [6.2, 2.8, 4.8, 1.8],\n", " [6.1, 3. , 4.9, 1.8],\n", " [6.4, 2.8, 5.6, 2.1],\n", " [7.2, 3. , 5.8, 1.6],\n", " [7.4, 2.8, 6.1, 1.9],\n", " [7.9, 3.8, 6.4, 2. ],\n", " [6.4, 2.8, 5.6, 2.2],\n", " [6.3, 2.8, 5.1, 1.5],\n", " [6.1, 2.6, 5.6, 1.4],\n", " [7.7, 3. , 6.1, 2.3],\n", " [6.3, 3.4, 5.6, 2.4],\n", " [6.4, 3.1, 5.5, 1.8],\n", " [6. , 3. , 4.8, 1.8],\n", " [6.9, 3.1, 5.4, 2.1],\n", " [6.7, 3.1, 5.6, 2.4],\n", " [6.9, 3.1, 5.1, 2.3],\n", " [5.8, 2.7, 5.1, 1.9],\n", " [6.8, 3.2, 5.9, 2.3],\n", " [6.7, 3.3, 5.7, 2.5],\n", " [6.7, 3. , 5.2, 2.3],\n", " [6.3, 2.5, 5. , 1.9],\n", " [6.5, 3. , 5.2, 2. ],\n", " [6.2, 3.4, 5.4, 2.3],\n", " [5.9, 3. , 5.1, 1.8]]), 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n", " 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n", " 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), 'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "_ = pl.hist(iris.data[:,0])" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAADeZJREFUeJzt3XuMpfVdx/H3p6xNi90W7E5JA4xTDaANaUMdtS3GUrC6sFhqQgxYFJA4MVGKTWNZorGN/kO9omlLs1IEhUIqhRS5FYJFqlx0lyK3hZaUlW5Bl0prlcbQpV//OIc4me7OmTnPs2fO/ni/ks2cy2/n98lcPvvb3znP86SqkCTt/1621gEkSf2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmNWDfJyTZs2FBzc3OTnFKS9nvbtm37elXNjBo30UKfm5tj69atk5xSkvZ7Sf5tJePccpGkRljoktQIC12SGmGhS1IjLHRJasTIQk9yaZJdSR5a9NgfJXk0yQNJrkty0L6NKUkaZSUr9MuAjUseuw04uqreBHwJuKDnXJKkVRpZ6FV1J/Dsksdurardw7v3AIftg2ySpFXoYw/9V4Gbe/g8kqQOOh0pmuR3gN3AlcuMWQAWAGZnZ7tMp5eAuc03rsm8Oy7ctCbzSn0ae4We5EzgZOC9VVV7G1dVW6pqvqrmZ2ZGnopAkjSmsVboSTYC5wPvqKpv9xtJkjSOlbxt8SrgbuCoJDuTnAN8FFgP3Jbk/iSf2Mc5JUkjjFyhV9Xpe3j4k/sgiySpA48UlaRGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1IiRhZ7k0iS7kjy06LEfSHJbki8PPx68b2NKkkZZyQr9MmDjksc2A7dX1RHA7cP7kqQ1NLLQq+pO4NklD58CXD68fTnwnp5zSZJWadw99EOq6mmA4cfX7W1gkoUkW5NsfeaZZ8acTpI0yj5/UbSqtlTVfFXNz8zM7OvpJOkla9xC/48krwcYftzVXyRJ0jjGLfTrgTOHt88EPttPHEnSuFbytsWrgLuBo5LsTHIOcCHwriRfBt41vC9JWkPrRg2oqtP38tQJPWeRJHXgkaKS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1IhOhZ7k/UkeTvJQkquSvKKvYJKk1Rm70JMcCrwPmK+qo4EDgNP6CiZJWp2uWy7rgFcmWQccCDzVPZIkaRxjF3pVfQ34Y+BJ4Gngv6rq1r6CSZJWZ924fzHJwcApwBuAbwJ/m+SMqrpiybgFYAFgdna2Q1Rp35nbfOOazb3jwk1rNrfa0mXL5WeAJ6rqmar6DnAt8Palg6pqS1XNV9X8zMxMh+kkScvpUuhPAm9NcmCSACcA2/uJJUlarS576PcC1wD3AQ8OP9eWnnJJklZp7D10gKr6EPChnrJIkjrwSFFJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmN6FToSQ5Kck2SR5NsT/K2voJJklZnXce//+fALVV1apKXAwf2kEmSNIaxCz3Jq4GfBs4CqKrngef7iSVJWq0uK/QfAp4B/irJm4FtwHlV9dziQUkWgAWA2dnZDtO99MxtvnFN5t1x4aY1mVdSN1320NcBbwEurqpjgOeAzUsHVdWWqpqvqvmZmZkO00mSltOl0HcCO6vq3uH9axgUvCRpDYxd6FX178BXkxw1fOgE4JFeUkmSVq3ru1zOBa4cvsPlK8DZ3SNJksbRqdCr6n5gvqcskqQOPFJUkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY3oerZFNWitrpSkyVrL77NXxdo3XKFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqRGdCz3JAUm+mOSGPgJJksbTxwr9PGB7D59HktRBp0JPchiwCbiknziSpHF1XaFfBHwQ+G4PWSRJHYx9gYskJwO7qmpbkuOWGbcALADMzs6OO50n41ezvKCI+tJlhX4s8O4kO4CrgeOTXLF0UFVtqar5qpqfmZnpMJ0kaTljF3pVXVBVh1XVHHAa8PdVdUZvySRJq+L70CWpEb1cJLqq7gDu6ONzSZLG4wpdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY3o5eRckrQ/aP1COa7QJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGjF2oSc5PMnnk2xP8nCS8/oMJklanS6nz90NfKCq7kuyHtiW5LaqeqSnbJKkVRh7hV5VT1fVfcPb/w1sBw7tK5gkaXV6ucBFkjngGODePTy3ACwAzM7O9jGdpP3cWl5oomWdXxRN8irgM8BvVdW3lj5fVVuqar6q5mdmZrpOJ0nai06FnuT7GJT5lVV1bT+RJEnj6PIulwCfBLZX1Z/2F0mSNI4uK/RjgV8Gjk9y//DPST3lkiSt0tgvilbVPwLpMYskqQOPFJWkRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSI3q5YlHrvLqKpP2BK3RJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNaJToSfZmOSxJI8n2dxXKEnS6o1d6EkOAD4GnAi8ETg9yRv7CiZJWp0uK/SfAB6vqq9U1fPA1cAp/cSSJK1Wl0I/FPjqovs7h49JktZAlwtcZA+P1fcMShaAheHd/0nyWIc5+7QB+PpahxjBjN1Nez6Y/ozTng/2g4z5SKeMP7iSQV0KfSdw+KL7hwFPLR1UVVuALR3m2SeSbK2q+bXOsRwzdjft+WD6M057PjDji7psufwLcESSNyR5OXAacH0/sSRJqzX2Cr2qdif5TeBzwAHApVX1cG/JJEmr0uki0VV1E3BTT1kmbeq2gfbAjN1Nez6Y/ozTng/MCECqvud1TEnSfshD/yWpES+JQk9yQJIvJrlhmTGnJqkka/JK+aiMSX4xySNJHk7yqWnKl2Q2yeeHzz+Q5KQ1yLcjyYNJ7k+ydQ/PJ8lfDE9T8UCSt0xhxvcOsz2Q5K4kb56mfIvG/XiSF5KcOsl8w7lHZkxy3PD5h5P8wzTlS/KaJH+X5F+H+c7uc/5Oe+j7kfOA7cCr9/RkkvXA+4B7Jxlqib1mTHIEcAFwbFV9I8nrJh2O5b+Gvwt8uqouHp7+4SZgboLZXvTOqtrb+3xPBI4Y/vlJ4OLhx0lbLuMTwDuG3+MTGey5TjrjcvlePOXHRxi8GWKt7DVjkoOAjwMbq+rJNfpdWe5r+BvAI1X180lmgMeSXDk82r6z5lfoSQ4DNgGXLDPsD4A/BP53IqGWWEHGXwM+VlXfAKiqXZPKBivKV/x/0b+GPRyPMAVOAf66Bu4BDkry+rUOtVhV3fXi9xi4h8GxHdPmXOAzwER/Blfhl4Brq+pJmPzvygoUsD5JgFcBzwK7+/rkzRc6cBHwQeC7e3oyyTHA4VW11+2YCVg2I3AkcGSSf0pyT5KNk4sGjM73YeCMJDsZrM7PnVCuxQq4Ncm24dHJS03DqSpGZVzsHODmCWRabNl8SQ4FfgH4xIRzLTbqa3gkcHCSO4ZjfmXK8n0U+FEGi54HgfOqam+/V6vW9JZLkpOBXVW1Lclxe3j+ZcCfAWdNONriDMtmHFrHYKvgOAarti8kObqqvjkl+U4HLquqP0nyNuBvhvl6+0FdgWOr6qnhf7FvS/JoVd256PkVnapiHxuVEYAk72RQ6D81ZfkuAs6vqhcGC8w1MSrjOuDHgBOAVwJ3J7mnqr40Jfl+DrgfOB744eGYL1TVt/qYvPUV+rHAu5PsYHA2yOOTXLHo+fXA0cAdwzFvBa6f8AujozLCYDX52ar6TlU9ATzGoOCnJd85wKcBqupu4BUMzq0xMVX11PDjLuA6BmcDXWxFp6rYl1aQkSRvYrC1dUpV/eeU5ZsHrh7+LJwKfDzJe6Ys407glqp6briPfScwsReXV5DvbAZbQlVVjzN43eRH+gzwkvjDYHV7w4gxdwDz05YR2AhcPry9gcHWwWunKN/NwFnD2y/+dzITzPX9wPpFt+9i8KLY4jGbhjnD4B/uf57w124lGWeBx4G3r8H3dmS+JeMvA06dtozDn7/bGazUDwQeAo6eonwXAx8e3j4E+Bqwoa8MTW+57E2S3we2VtXUnntmScbPAT+b5BHgBeC3a8KrtxH5PgD8ZZL3M9jGOKuGP7ETcghw3XAbYB3wqaq6JcmvA1TVJxjs7Z/EoDC/zWClNEkryfh7wGsZrHwBdtfkTji1knxrbWTGqtqe5BbgAQav+VxSVQ9NSz4Gb8C4LMmDDBYX59cy7ypaLY8UlaRGtL6HLkkvGRa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmN+D9wiW3kARP4KQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "_ = pl.hist(iris.data[iris.target==0,0])" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEjVJREFUeJzt3X+s3XV9x/Hny1LBQrEw2EQE2cLmshmh2lEcEx0QhyZiSLbo5pg6TWPiNnHMsGBCov41TXA//MEayNSFzGlpN0bGXJ0ww1jr2lqKbZXVHxMCG1NBfjQiP9774xz0eri353t7v+eeMz/PR3LSc7/n8/2eV08/fd3v/d7v+Z5UFZKktjxj2gEkScvP8pekBln+ktQgy1+SGmT5S1KDLH9JatDY8k9yVJIvJLk9yd4k7znE2F9PUknW9RtTktSnIzqMeRQ4r6oeTrISuDXJTVW1be6gJKuBPwC2TyCnJKlHY/f8a+Dh4Zcrh7f53hn2PuD9wPf6iydJmoQue/4kWQHsBE4HPlxV20ceXwucUlU3JvmjQ2xnA7ABYAUrXrKKYw87uDQpT645etoRZsYzHnhk2hE04iHu/1ZVnbjU7XQq/6p6AjgzyRpgS5IXVtWXAJI8A/gg8KYO29kIbAQ4NsfX+px/uLmliTl43vppR5gZq7Z4FHfWfLY2/Vcf21nU2T5V9QBwC3DhnMWrgRcCtyT5BnA2cIO/9JWk2dXlbJ8Th3v8JHkWcAHw5acer6rvVtUJVXVaVZ0GbAMuqqodE8osSVqiLnv+JwE3J9kD/AewdXhs/71JLppsPEnSJIw95l9Ve4C18yy/coHxr1h6LEnSJPkOX0lqkOUvSQ2y/CWpQZa/JDXI8pekBln+ktQgy1+SGmT5S1KDLH9JapDlL0kNsvwlqUGWvyQ1yPKXpAZZ/pLUIMtfkhpk+UtSgzp9gLu0XA5ePP0PT/dDy39oFv49YDb+TWbltWDzpl42456/JDXI8pekBln+ktQgy1+SGmT5S1KDxpZ/kqOSfCHJ7Un2JnnPPGP+MMm+JHuS/EuS508mriSpD132/B8FzquqM4AzgQuTnD0y5ovAuqp6EbAJeH+/MSVJfRpb/jXw8PDLlcNbjYy5uaoODr/cBjyv15SSpF51OuafZEWS3cB9wNaqOtQ7Lt4C3LTAdjYk2ZFkx2M8uvi0kqRedCr/qnqiqs5ksEd/VpIXzjcuyW8D64APLLCdjVW1rqrWreTIw80sSVqiRZ3tU1UPALcAF44+luQC4N3ARVXlbr0kzbAuZ/ucmGTN8P6zgAuAL4+MWQv8JYPiv28SQSVJ/elyYbeTgI8nWcHgm8WnqurGJO8FdlTVDQwO8xwDfDoJwDer6qJJhZYkLc3Y8q+qPcDaeZZfOef+BT3nkiRNkO/wlaQGWf6S1CDLX5IaZPlLUoMsf0lqkOUvSQ2y/CWpQV3e5KUJO3jx+mlH4PTL9007AgAH/mTaCWbj3wNg1ZZDXT+xnQwAn7ln97Qj8LK3z8a86It7/pLUIMtfkhpk+UtSgyx/SWqQ5S9JDbL8JalBlr8kNcjyl6QGWf6S1CDLX5IaZPlLUoMsf0lqkOUvSQ2y/CWpQWPLP8lRSb6Q5PYke5O8Z54xRyb52yQHkmxPctokwkqS+tFlz/9R4LyqOgM4E7gwydkjY94C3F9VpwMfBGbgquySpIWMLf8aeHj45crhrUaGvRb4+PD+JuD8JOktpSSpV52O+SdZkWQ3cB+wtapGP97nZOAugKp6HPgu8BPzbGdDkh1JdjzGo0tLLkk6bJ3Kv6qeqKozgecBZyV54ciQ+fbyR386oKo2VtW6qlq3kiMXn1aS1ItFne1TVQ8AtwAXjjx0N3AKQJIjgGcD3+khnyRpAsZ+gHuSE4HHquqBJM8CLuDpv9C9AXgj8O/ArwOfq6qn7flrfrPwIdmfP3f0d/jTcfqWbdOOwIEPzsZr8Vx+vD4wfClm4cPTZ+H/aZ/Glj9wEvDxJCsY/KTwqaq6Mcl7gR1VdQNwLfDXSQ4w2ON//cQSS5KWbGz5V9UeYO08y6+cc/97wG/0G02SNCm+w1eSGmT5S1KDLH9JapDlL0kNsvwlqUGWvyQ1yPKXpAZZ/pLUIMtfkhpk+UtSgyx/SWqQ5S9JDbL8JalBlr8kNcjyl6QGWf6S1CDLX5IaZPlLUoMsf0lqUJcPcP+xdfDi9dOOAMCqLdunHYFzX7p32hEA+PwHz552hJl5Le5550PTjuD/kTlm5bVg86ZeNuOevyQ1yPKXpAaNLf8kpyS5Ocn+JHuTvGOeMc9O8g9Jbh+OefNk4kqS+tDlmP/jwGVVtSvJamBnkq1VtW/OmLcD+6rqNUlOBL6S5Lqq+v4kQkuSlmbsnn9V3VtVu4b3HwL2AyePDgNWJwlwDPAdBt80JEkzaFFn+yQ5DVgLjP7q/UPADcA9wGrgdVX1ZA/5JEkT0PkXvkmOAa4HLq2qB0ce/jVgN/Bc4EzgQ0mOnWcbG5LsSLLjMR5dQmxJ0lJ0Kv8kKxkU/3VVtXmeIW8GNtfAAeDrwM+PDqqqjVW1rqrWreTIpeSWJC1Bl7N9AlwL7K+qqxYY9k3g/OH4nwJeAHytr5CSpH51OeZ/DnAJcEeS3cNlVwCnAlTV1cD7gI8luQMIcHlVfWsCeSVJPRhb/lV1K4NCP9SYe4BX9hVKkjRZvsNXkhpk+UtSgyx/SWqQ5S9JDbL8JalBlr8kNcjyl6QGWf6S1CDLX5IaZPlLUoNSVVN54mNzfK3P+VN57llz8OL1046gOVZtGf24Cml2fLY27ayqdUvdjnv+ktQgy1+SGmT5S1KDLH9JapDlL0kNsvwlqUGWvyQ1yPKXpAZZ/pLUIMtfkhpk+UtSg8aWf5JTktycZH+SvUnescC4VyTZPRzzr/1HlST15YgOYx4HLquqXUlWAzuTbK2qfU8NSLIG+AhwYVV9M8lPTiivJKkHY/f8q+reqto1vP8QsB84eWTYbwGbq+qbw3H39R1UktSfRR3zT3IasBYYvebtzwHHJbklyc4kv9NPPEnSJHQ57ANAkmOA64FLq+rBebbzEuB84FnAvyfZVlV3jmxjA7AB4ChWLSW3JGkJOpV/kpUMiv+6qto8z5C7gW9V1SPAI0k+D5wB/Ej5V9VGYCMMPsxlKcElSYevy9k+Aa4F9lfVVQsM+3vgZUmOSLIKWM/gdwOSpBnUZc//HOAS4I4ku4fLrgBOBaiqq6tqf5J/AvYATwLXVNWXJhFYkrR0Y8u/qm4F0mHcB4AP9BFKkjRZvsNXkhrU+Wyfvj255mgOnrd+Wk8PwKoto2esatr8N/mhgxdP9/8H+O/x48w9f0lqkOUvSQ2y/CWpQZa/JDXI8pekBln+ktQgy1+SGmT5S1KDLH9JapDlL0kNsvwlqUGWvyQ1yPKXpAZZ/pLUIMtfkhpk+UtSgyx/SWqQ5S9JDbL8JalBlr8kNcjyl6QGHTFuQJJTgE8AzwGeBDZW1Z8tMPaXgG3A66pq06G2+9hquOfcLD5xj07fMtWn/4HTL9837Qjcc/ZD044gaRmNLX/gceCyqtqVZDWwM8nWqvqRxkqyAvgT4DMTyClJ6tHYwz5VdW9V7RrefwjYD5w8z9DfB64H7us1oSSpd4s65p/kNGAtsH1k+cnAxcDVY9bfkGRHkh1PPPzI4pJKknrTufyTHMNgz/7Sqnpw5OE/BS6vqicOtY2q2lhV66pq3Ypjjl58WklSL7oc8yfJSgbFf11VbZ5nyDrgk0kATgBeneTxqvq73pJKknrT5WyfANcC+6vqqvnGVNVPzxn/MeBGi1+SZleXPf9zgEuAO5LsHi67AjgVoKoOeZxfkjR7xpZ/Vd0KdD4hv6retJRAkqTJ8x2+ktQgy1+SGmT5S1KDLH9JapDlL0kNsvwlqUGWvyQ1yPKXpAZZ/pLUIMtfkhpk+UtSgyx/SWpQp+v5T8KRdz3C6e/cNq2nnyl+ePpsOXjx+mlHkCbOPX9JapDlL0kNsvwlqUGWvyQ1yPKXpAZZ/pLUIMtfkhpk+UtSgyx/SWrQ2PJPckqSm5PsT7I3yTvmGfOGJHuGt9uSnDGZuJKkPnS5vMPjwGVVtSvJamBnkq1VtW/OmK8DL6+q+5O8CtgI+B55SZpRY8u/qu4F7h3efyjJfuBkYN+cMbfNWWUb8Lyec0qSerSoC7slOQ1YC2w/xLC3ADctsP4GYAPAUaxazFNLknrUufyTHANcD1xaVQ8uMOZXGZT/r8z3eFVtZHBIiGNzfC06rSSpF53KP8lKBsV/XVVtXmDMi4BrgFdV1bf7iyhJ6luXs30CXAvsr6qrFhhzKrAZuKSq7uw3oiSpb132/M8BLgHuSLJ7uOwK4FSAqroauBL4CeAjg+8VPF5V6/qPK0nqQ5ezfW4FMmbMW4G39hVKkjRZvsNXkhpk+UtSgyx/SWrQot7k1acn1xzNwfOmewWIVVsO9V41tcp5oRa45y9JDbL8JalBlr8kNcjyl6QGWf6S1CDLX5IaZPlLUoMsf0lqkOUvSQ2y/CWpQZa/JDXI8pekBln+ktQgy1+SGmT5S1KDLH9JapDlL0kNsvwlqUFjyz/JKUluTrI/yd4k75hnTJL8eZIDSfYkefFk4kqS+tDlM3wfBy6rql1JVgM7k2ytqn1zxrwK+NnhbT3w0eGfkqQZNHbPv6rurapdw/sPAfuBk0eGvRb4RA1sA9YkOan3tJKkXnTZ8/+BJKcBa4HtIw+dDNw15+u7h8vuHVl/A7Bh+OXDt21+11cW8/wjTgC+tYT1J818S2O+wzfL2cB8S/WCPjbSufyTHANcD1xaVQ+OPjzPKvW0BVUbgY2LSrhwnh1Vta6PbU2C+ZbGfIdvlrOB+ZYqyY4+ttPpbJ8kKxkU/3VVtXmeIXcDp8z5+nnAPUuPJ0mahC5n+wS4FthfVVctMOwG4HeGZ/2cDXy3qu5dYKwkacq6HPY5B7gEuCPJ7uGyK4BTAarqauAfgVcDB4CDwJv7j/o0vRw+miDzLY35Dt8sZwPzLVU/h86rnnZoXpL0Y853+EpSgyx/SWrQTJZ/km8kuSPJ7vlOazrU5SSSvDHJfw5vb5xSvjcMc+1JcluSM7quu0z5XpHku8PHdye5cs5jFyb5yvC1/eMpZHvXnFxfSvJEkuO7rNtTvjVJNiX58vCSJi8deXzac29cvmnPvXH5pjb3Ouab2vxL8oI5z707yYNJLh0Z09/8q6qZuwHfAE44xOOvBm5i8P6Cs4Htw+XHA18b/nnc8P5xU8j3y089L4NLX2zvuu4y5XsFcOM8y1cAXwV+BngmcDvwC8uZbWTsa4DPLfNr93HgrcP7zwTWzNjcG5dv2nNvXL6pzb0u+aY9/0Zej/8Gnj+p+TeTe/4dLHQ5iV8DtlbVd6rqfmArcOFyh6uq24bPD7CNwfse/j84CzhQVV+rqu8Dn2TwWk/LbwJ/s1xPluRY4FwGpzZTVd+vqgdGhk1t7nXJN8251/H1W8jE595h5FvW+TfifOCrVfVfI8t7m3+zWv4F/HOSnRlcEmLUQpeTWGj5cueb6y0MvlMfzrqTzPfSJLcnuSnJLw6XLcfr1+nvn2QVg8l7/WLXXYKfAf4X+KskX0xyTZKjR8ZMc+51yTfXcs+9rvmmNfc6v35Tmn9zvZ75v/H0Nv9mtfzPqaoXM/ix9e1Jzh15fKHLSXS6zEQPxuUDIMmvMvgPePli151wvl0Mfpw8A/gL4O+eijzPtvp+/br+/V8D/FtVfecw1j1cRwAvBj5aVWuBR4DRY8/TnHtd8gFTm3td8k1z7nV+/ZjO/AMgyTOBi4BPz/fwPMsOa/7NZPlX1T3DP+8DtjD4kXCuhS4nsSyXmeiQjyQvAq4BXltV317MupPOV1UPVtXDw/v/CKxMcgLL8Pot4u//tD2fZXjt7gburqqnLly4iUFZjI6Z1tzrkm+ac29svmnOvS755pjG/HvKq4BdVfU/8zzW2/ybufJPcnQGnxvA8EeyVwJfGhm20OUkPgO8MslxSY4brvuZ5c6X5FRgM3BJVd25yL/bcuR7TpIM75/FYB58G/gP4GeT/PRw7+P1DF7rZcs2fOzZwMuBv1/suktRVf8N3JXkqasmng/sGxk2tbnXJd80517HfFOZe13zDXNNZf7NcajfNfQ3/yb12+rDvTE4Lnf78LYXePdw+duAtw3vB/gwg7MD7gDWzVn/dxlcZuIA8OYp5bsGuB/YPbztONS6U8j3e8PHbmfwS8FfnrP+q4E7h69tr/m6ZBt+/Sbgk13WncDrdyawA9jD4JDEcbMy9zrmm9rc65hvKnOva74ZmH+rGHwzfPacZROZf17eQZIaNHOHfSRJk2f5S1KDLH9JapDlL0kNsvwlqUGWvyQ1yPKXpAb9HzW5ySLUC9xHAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# 2 variable:\n", "_ = pl.hist2d(iris.data[iris.target==1,0], iris.data[iris.target==1,1])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }