
Lecture 1

SOFTWARE DEVELOPMENT

PB007 Software Engineering I
Faculty of Informatics, Masaryk University

Fall 2019

1© Barbora Bühnová



Outline

 Course organization

 Software development

 UML in software development

 UML Use Case diagram

2



Course Organization

Lecture 1/Part 1

3



About the lecturer: Barbora Bühnová

 Industrial experience

▪ Association of Industrial Partners (SPP)

 Research

▪ Lab of Software Architecture and Information Systems (LaSArIS), FI MU

▪ CERIT Scientific Cloud, ICS MU

 Teaching

▪ Courses on UML, software quality, architecture design, programming, 

algorithm design, and others

 Collaboration with students

▪ Bachelor/Master theses (Honeywell, Kiwi.com, IBM)

▪ Seminar tutoring

4



About the course:

PB007 Software Engineering I

 Lectures

1. Software development, UML Use Case diagram.

2. Requirements specification, UML Activity diagram.

3. System analysis and design, structured vs. object-oriented A&D.

4. Object oriented analysis, UML Class, Object and State diagram.

5. Structured analysis, data modelling, ERD.

6. High-level design, UML Class diagram in design.

7. Low-level design and implementation, UML Interaction diagrams

8. Architecture design, UML Package, Component and Deployment diagram.

9. Testing, verification and validation.

10. Operation, maintenance and system evolution.

11. Software development management.

12. Advanced software engineering techniques.

5



About the course:

PB007 Software Engineering I

 Seminars

1. Visual Paradigm introduction, project assignment.

2. Project start, initial Use Case diagram.

3. Detailed Use Case diagram, textual specification of UC

4. Specification of use cases, Activity diagram.

5. Analytical Class diagram, Object diagram.

6. Analytical Class diagram, update of UC diagram, interaction of objects.

7. Data modelling, Entity Relationship diagram.

8. Design-level Class diagram, interfaces, implementation details.

9. State diagram.

10. Refinement of use cases with Interaction diagrams.

11. Finalization of Interaction diagrams, Class diagram update.

12. Packages, Component diagram, Deployment diagram.

6



About the course:

PB007 Software Engineering I

 Prerequisites

▪ Basic knowledge of object oriented programming

 Lectures

▪ 12 teaching weeks + 1 free week

 Seminars

▪ 12 teaching weeks + 1 final-consultation (or backup) week

▪ Team project on UML modeling, teams of 3 students

▪ Obligatory attendance (one absence ok) and weekly task delivery

▪ Simple test at the beginning of each seminar (starting in Seminar 03)

▪ Penalty for extra absence (-5 points) and late task delivery (-5 points)

 Evaluation

▪ Seminar = project YES/NO, tests (20 points) and penalty recorded in IS notebook

▪ Exam = test (35 points) + on-site modelling (35 points)

▪ Grades: F<50, 50<=E<58, 58<=D<66, 66<=C<74, 74<=B<82, 82<=A
7



Literature

 Software Engineering, 9/E

▪ Author:  Ian Sommerville

▪ Publisher:  Addison-Wesley

 UML 2 and the Unified Process, 2/E

▪ Author:  Jim Arlow and Ila Neustadt

▪ Publisher:  Addison-Wesley

8



Software Development

Lecture 1/Part 2

Chapter 2 Software Processes 9



Outline

 Software engineering

 Software process activities

 Software process models

Chapter 2 Software Processes 10



Software and system engineering

 The economies and human lives of ALL developed 

nations are dependent on software.

 Software engineering is concerned with theories, 

methods and tools for professional software 

development.

 Software engineering is concerned with cost-effective

development of high-quality software systems.

 System engineering is concerned with all aspects of 

computer-based systems development including 

hardware, software and process engineering. 

Chapter 1  Introduction



Software products

 Generic products

▪ Stand-alone systems that are marketed and sold to any customer who 

wishes to buy them.

▪ Examples – PC software such as graphics programs, project 

management tools, CAD software.

 Customized products

▪ Software that is commissioned by a specific customer to meet their 

own needs. 

▪ Examples – embedded control systems, traffic monitoring systems.

 Online services

▪ Multi-device applications and online services.

▪ Examples – Google services, social networks.

Chapter 1  Introduction 12



Application types

 Stand-alone desktop applications 

 Interactive web-based applications

 Embedded control systems 

 Batch processing systems 

 Computer games

 Mobile apps

 Data collection and monitoring systems 

 IoT systems

Chapter 1  Introduction 13



Application types

 Stand-alone desktop applications 

 Interactive web-based applications

 Embedded control systems 

 Batch processing systems 

 Computer games

 Mobile apps

 Data collection and monitoring systems 

 IoT systems

Chapter 1  Introduction 14

?
Do you have experience with any of these?

Tell us at https://www.sli.do/ - code #PB007



Software engineering fundamentals

 Some fundamental principles apply to all types of 

software system, irrespective of the type

 The SW process = A structured set of activities required 

to develop a software system. 

 Many different software processes but all involve:

▪ Requirements specification

▪ Analysis and design

▪ Implementation

▪ Validation and verification

▪ Evolution

 Is the analysis and design always involved?

Chapter 2 Software Processes 15

Development



Software process activities

 Requirements specification, where customers and 

engineers define the software and the constraints on its 

operation.

 Analysis and design, where the requirements are refined 

into system design.

 Implementation, where the software is implemented.

 Validation and verification, where the software is 

checked to ensure that it is what the customer requires.

 Evolution, where the software is modified to reflect 

changing customer and market requirements.

16Chapter 2 Software Processes



Software process models

Chapter 2 Software Processes 17

Agile

Early SCRUM

Agile Manifesto

Spiral



UML in Software Development

Lecture 1/Part 3

18Chapter 5 System modeling



System modeling

 System modeling is the process of developing abstract 

models of a system, with each model presenting a 

different view or perspective of that system. 

 System modeling has now come to mean representing a 

system using some kind of graphical notation, which is 

now almost always based on the Unified Modeling 

Language (UML). 

 System modelling helps the analyst to understand the 

functionality of the system and models are used to 

communicate with colleagues and customers.

Chapter 5 System modeling 19



System perspectives

 An external perspective, where you model system 

boundary, the context and/or environment of the system.

 A structural perspective, where you model the 

organization of a system or the structure of the data that 

is processed by the system.

 An interaction perspective, where you model the 

interactions between a system and its environment, or 

between the components of a system.

 A behavioral perspective, where you model the 

dynamic behavior of the system or its individual element 

and how it responds to events. 

Chapter 5 System modeling 20



UML diagram types

 External perspective

▪ Use case diagram

 Structural perspective

▪ Class diagram, Object diagram, Component diagram, Package 

diagram, Deployment diagram, Composite structure diagram

 Interaction perspective

▪ Sequence diagram, Communication diagram, Interaction 

overview diagram, Timing diagram

 Behavioral perspective

▪ Activity diagram, State diagram 

Chapter 5 System modeling 21



Popular UML diagrams

 Use case diagrams, which show the interactions 

between a system and its environment. 

 Class diagrams, which show the object classes in 

the system and the associations between these classes.

 Sequence diagrams, which show interactions between 

actors and the system and between system components.

 Activity diagrams, which show the activities involved in a process 

or in data processing.

Chapter 5 System modeling 22



UML Use Case Diagram

Lecture 1/Part 4

23Chapter 4 Requirements engineering



Outline

 Use Case modelling

▪ System boundary – subject

▪ Use cases

▪ Actors

 Textual Use Case specification

 Advanced Use Case modelling

▪ Actor generalisation

▪ Use case generalisation

▪ «include»

▪ «extend»

24Chapter 4 Requirements engineering



© Clear View Training 2010 v2.6 25

The purpose of Use Case modelling

 Software specification

▪ The process of identifying and 
establishing system 
requirements

▪ Often referred to as 
requirements specification 
or requirements engineering

▪ But focusing on functional 
requirements only

MedicalSystem



Functional and non-functional requirements

 Functional requirements

▪ Statements of services the system provides, how the system 
should react to particular inputs and how the system should 
behave in particular situations.

▪ E.g. A user shall be able to search the appointments lists for all 
clinics.

 Non-functional requirements

▪ Properties and constraints on the services offered by the 
system such as timing, reliability and security constraints, 
constraints on the development process, platform, standards, etc.

▪ E.g. The system shall be available on Mon–Fri, 8 am – 5 pm, 
with downtime not exceeding five seconds in any one day.

26Chapter 4 Requirements engineering



© Clear View Training 2010 v2.6 27

Use Case modelling process

 Use case modelling 
proceeds as follows:

▪ Find the system boundary

▪ Find actors – who or what 
uses the system

▪ Find use cases – what 
functions the system should 
offer

▪ Specify use cases – with 
textual specification or UML 
Activity Diagrams

MedicalSystem



© Clear View Training 2010 v2.6 28

The subject

 We create a Use Case model containing:

▪ Subject – the edge of the system

• also known as the system boundary

▪ Actors – who or what uses the system

▪ Use Cases – things actors do with the 

system;  functions the system should 

offer to its users

▪ Relationships – between actors and 

use cases

SystemName

subject



© Clear View Training 2010 v2.6 29

What are actors?

 An actor is anything that interacts directly
with the system

▪ Actors identify who or what 
uses the system and so indicate 
where the system boundary lies

 Actors are external
to the system

 An Actor specifies a role that some external entity 
adopts when interacting with the system

▪ Can one actor represent two physical persons?

▪ Can one physical person match to two actors?

▪ Can there be two actors with the same name in the model?

Customer

«actor»

Customer



© Clear View Training 2010 v2.6 30

Identifying Actors

 When identifying actors ask:

▪ Who or what uses the system?

▪ What roles do they play in the interaction?

▪ Who installs the system? 

▪ Who starts and shuts down the system?

▪ Who maintains the system?

▪ What other systems use this system?

▪ Who gets and provides information to the system?

▪ Does anything happen at a fixed time?

 What if the actor is not a human? What can it be?

Time



© Clear View Training 2010 v2.6 31

What are use cases?

 A use case is something an actor needs the system to 

do. It is a “case of use” of the system by a specific actor.

 Use cases are always started by an actor

▪ The primary actor triggers the use case

▪ Zero or more secondary actors interact with the use case in 

some way

▪ Does the UC diagram tell me which actor is primary/secondary?

 Use cases are always written from the point of view of 

the actors.

PlaceOrder GetStatusOnOrder



© Clear View Training 2010 v2.6 32

Identifying use cases

 Start with the list of actors that interact with the system

 When identifying use cases ask:

▪ What functions will a specific actor want from the system?

▪ Does the system store and retrieve information? If so, which 
actors trigger this behaviour?

▪ What happens when the system changes state (e.g. system start 
and stop)? Are any actors notified?

▪ Are there any external events that affect the system? What 
notifies the system about those events?

▪ Does the system interact with any external system?

▪ Does the system generate any reports?



© Clear View Training 2010 v2.6 33

The use case diagram

Mail Order System

PlaceOrder

SendCatalogue

CancelOrder

CheckOrderStatusCustomer

ShipProduct

ShippingCompany

Dispatcher

communication 

relationship

actor

subject name

system boundary

Mail Order System use case diagram 

use case

Can there be a direct communication

relationship between actors?



© Clear View Training 2010 v2.6 34

Textual use case specification

Use case: PaySalesTax

Primary actors:

Time

Preconditions:

1. It is the end of the business quarter.

Postconditions:

1. The Tax Authority receives the correct amount of Sales Tax.

Main flow:

The use case starts when it is the end of the business quarter.

The system determines the amount of Sales Tax owed to the Tax 

Authority.

The system sends an electronic payment to the Tax Authority.

1.

2.

3.

use case name

the actors involved in the 

use case 

the system state before 

the use case can begin

the actual steps of the use 

case

the system state when the 

use case has finished

Alternative flows:

None.

alternative flows

ID: 1use case identifier

Brief description:

Pay Sales Tax to the Tax Authority at the end of the business quarter.
brief description

implicit time actor 

Secondary actors:

TaxAuthority



© Clear View Training 2010 v2.6 35

Naming use cases

 Use cases describe something that happens

 They are named using verbs or verb phrases

 Naming standard 1: use cases are named using 

UpperCamelCase e.g. PaySalesTax

1 UML 2 does not specify any naming standards. 

All naming standards here are based on industry best practice.



© Clear View Training 2010 v2.6 36

Pre and postconditions

 Preconditions and postconditions

are constraints.

 Preconditions constrain the state 

of the system before the use case 

can start

 Postconditions constrain the state 

of the system after the use case 

has executed

 What pre/postconditions does a 

delete of a product have? 

 What about if the deletion is not 

successful?

Preconditions:

1. A valid user has logged on to the 

system

Postconditions:

1. The order has been marked 

confirmed and is saved by the system

Use case: PlaceOrder



© Clear View Training 2010 v2.6 37

Main flow

 The flow of events lists the steps in a use case

 It always begins by an actor doing something

▪ A good way to start a flow of events is:
1) The use case starts when an <actor> <function> 

 The flow of events should be a sequence of short steps that are:

▪ Declarative 

▪ Numbered, 

▪ Time ordered

 The main flow is always the happy day scenario

▪ Everything goes as expected, without errors, deviations and interrupts

▪ Alternatives can be shown by branching or by listing under Alternative 
flows (see later)

<number> The <something> <some action>



© Clear View Training 2010 v2.6 38

Branching within a flow: IF

 Use the keyword IF to 

indicate alternatives 

within the flow of events

▪ There must be a 

Boolean expression 

immediately after IF

 Use indentation and 

numbering to indicate 

the conditional part of 

the flow

 Use ELSE to indicate 

what happens if the 

condition is false

Use case: ManageBasket

Primary actors:

Customer

Preconditions:

1. The shopping basket contents are visible.

Postconditions:

None.

Main flow:

The use case starts when the Customer selects an item in the 

basket.

IF the Customer selects "delete item" 

IF the Customer types in a new quantity

1.

2.

3.

The system removes the item from the basket.2.1

The system updates the quantity of the item in the basket.3.1

ID: 2

Brief description:

The Customer changes the quantity of an item in the basket.

Alternative flows:

None.

Secondary actors:

None.



© Clear View Training 2010 v2.6 39

Repetition within a flow: FOR

 We can use the 
keyword FOR to 
indicate the start of a 
repetition within the 
flow of events

 The iteration 
expression immediately 
after the FOR
statement indicates the 
number of repetitions of 
the indented text 
beneath the FOR
statement.

ID: 3

Actors:

Customer

Preconditions:

None.

Main flow:

1. The use case starts when the Customer selects "find product".

2. The system asks the Customer for search criteria.

3. The Customer enters the requested criteria.

4. The system searches for products that match the Customer's criteria.

5. FOR each product found

5.1. The system displays a thumbnail sketch of the product.

5.2. The system displays a summary of the product details.

5.3. The system displays the product price.

Postconditions:

None.

Alternative flows:

NoProductsFound

Use case: FindProduct

Brief description:

The system finds some products based on Customer search criteria and 

displays them to the Customer.



© Clear View Training 2010 v2.6 40

Repetition within a flow: WHILE

 We can use the 

keyword WHILE to 

indicate that something 

repeats while some 

Boolean condition is 

true

ID: 4

Primary actors:

Customer

Preconditions:

None.

Main flow:

1. The use case starts when the Customer selects "show company details".

2. The system displays a web page showing the company details.

3. WHILE the Customer is browsing the company details

3.1. The system plays some background music.

3.2. The system displays special offers in a banner ad.

Postconditions:

1. The system has displayed the company details.

2. The system has played some background music.

3. The systems has displayed special offers.

Alternative flows:

None.

Use case: ShowCompanyDetails

Brief description:

The system displays the company details to the Customer.

Secondary actors:

None



© Clear View Training 2010 v2.6 41

Branching: Alternative flows

 Alternative flows capture 
errors, branches, and 
interrupts

 They can often be 
triggered at any time 
during the main flow

 Alternative flows never 
return to the main flow

main flow

alternative flows

Use case

Only document enough alternative flows to 

clarify the requirements!



© Clear View Training 2010 v2.6 42

Referencing alternative flows

 List the names of the 
alternative flows at the 
end of the use case

 Find alternative flows 
by examining each 
step in the main flow 
and looking for:

▪ Alternatives

▪ Exceptions

▪ Interrupts

Alternative

flows 

Main flow:

Use case: CreateNewCustomerAccount

Preconditions:

None.

Brief description:

The system creates a new account for the Customer.

Postconditions:

1. A new account has been created for the Customer.

Alternative flows:

InvalidEmailAddress

InvalidPassword

Cancel

The use case begins when the Customer selects "create 

new customer account".

WHILE the Customer details are invalid

The system creates a new account for the Customer.

The system asks the Customer to enter his or her details 

comprising email address, password and password 

again for confirmation.

The system validates the Customer details.

1.

2.

3.

2.1.

2.2

ID: 5

Primary actors:

Customer

Secondary actors:

None.



© Clear View Training 2010 v2.6 43

Advanced Use Case modelling

 We have studied basic use case analysis, but there are 

relationships that we have still to explore:

▪ Actor generalisation

▪ Use case generalisation

▪ «include» – between use cases

▪ «extend» – between use cases



© Clear View Training 2010 v2.6 44

Actor generalization – example

 The Customer and the 
Sales Agent actors are 
very similar

 They both interact with 
List products, Order 
products, Accept 
payment

 They both can play the 
purchaser role.

Sales system

ListProducts

OrderProducts

AcceptPayment

CalculateCommission

Customer

SalesAgent



© Clear View Training 2010 v2.6 45

Actor generalisation

 If two actors share the same 
sub-role, which makes them 
communicate with the same 
set of use cases

 The descendent actors inherit 
the roles and relationships 
to use cases held by the 
ancestor actor

 We can substitute a 
descendent actor anywhere 
the ancestor actor is expected. 
This is the substitutability 
principle

 Is it always a good idea to 
generalize two actors sharing 
some use cases?

Sales system

ListProducts

OrderProducts

AcceptPayment

CalculateCommission

Purchaser

SalesAgentCustomer

ancestor 

or parent

descendents or children

generalisation

abstract actor

Use actor generalization when it simplifies 

the model



© Clear View Training 2010 v2.6 46

Use case generalisation

 The ancestor use case 
must be a more general 
case of one or more 
descendant use cases

 Child use cases are more 
specific forms of their 
parent

 They can inherit, add and 
override features of their 
parent

Sales system

FindProduct

FindBook FindCD

Customer



© Clear View Training 2010 v2.6 47

«include»

 When use cases share 

common behaviour we 

can factor this out into 

a separate inclusion use 

case and «include» it in 

base use cases

 Base use cases are 

not complete without 

the included use 

cases

 Inclusion use cases may 

be complete use cases, 

or they may just specify a 

fragment of behaviour 

for inclusion elsewhere

Personnel System

FindEmployeeDetails

ChangeEmployeeDetails

DeleteEmployeeDetails

Manager

ViewEmployeeDetails

«include»

«include»

«include»

base use case

inclusion

use case
include 

relationship

BA
«include»



© Clear View Training 2010 v2.6 48

«include» example

Use case: ChangeEmployeeDetails

Primary actors:

Manager

Preconditions:

1. The Manager is logged on to the system.

Postconditions:

1. The employee details have been changed.

Main flow:

include( FindEmployeeDetails ).

The system displays the employee details.

The Manager changes the employee 

details.

1.

2.

3.

ID: 1

Brief description:

The Manager changes the employee details.

Alternative flows:

None.

Use case: FindEmployeeDetails

Primary actors:

Manager

Preconditions:

1. The Manager is logged on to the system.

Postconditions:

1. The system has found the employee details.

Main flow:

The Manager enters the employee's ID.

The system finds the employee details.

1.

2.

ID: 4

Brief description:

The Manager finds the employee details.

Alternative flows:

None.

Seconday actors:

None

Seconday actors:

None



© Clear View Training 2010 v2.6 49

«extend»

 The extension use case 

inserts behaviour into the 

base use case. 

 The base use case provides

extension points, but does 

not know about the 

extensions.

 The base use case is 

complete already without the 

extensions.

 There may be multiple 

extension points and multiple 

extending use cases.

Library system

IssueFineBorrowBook

FindBook

Librarian

ReturnBook

«extend»

base use case

extend 

relationship extension 

use case

BA
«extend»

BA
«include»



© Clear View Training 2010 v2.6 50

<<extend>> example

 Extension points are not numbered, 

as they are not part of the flow

Use case: ReturnBook

Secondary actors:

None.

Preconditions:

1. The Librarian is logged on to the system.

Postconditions:

1. The book has been returned.

Main flow:

The Librarian enters the borrower's ID number.

The system displays the borrower's details including the list of 

borrowed books.

The Librarian finds the book to be returned in the list of books.

The Librarian returns the book.

…

1.

2.

3.

4. 

ID: 9

Brief description:

The Librarian returns a borrowed book.

Alternative flows:

None.

ReturnBook 

extension points

overdueBook 

IssueFine

«extend»

(overdueBook)

extension point: overdueBook

extension

point

base use case

extension use case

extension

point name

Primary actors:

Librarian



© Clear View Training 2010 v2.6 51

Requirements tracing

There is a many-to-many relationship between 
requirements and use cases:

▪ One use case may cover many individual 
functional requirements

▪ One functional requirement may be realised by 
many use cases

 Requirements Traceability Matrix can help us 
to trace if all requirements are covered by our 
use case model

R1

R2

R3

R4

R5

U1 U2 U3 U4

Use cases

R
e
q
u
ire

m
e
n
ts

Requirements

Traceability

Matrix 



© Clear View Training 2010 v2.6 52

Key points

 Use cases describe system behaviour from the point of 

view of actors. They have highest value when:

▪ The system is dominated by functional requirements

▪ The system has many types of user to which it delivers different 

functionality

▪ The system has many interfaces

 We have discussed:

▪ Actors, use cases and their textual specification

▪ Actor and use case generalization

▪ Advanced relationships between use cases (include, extend)

 Use advanced features only where they simplify the model!


