
CONFIDENTIAL Designator

1

CONFIDENTIAL Designator

2

Project Lifecycle & Dependency Management

Open Source
Development Course

Marek Čermák <cermakm@redhat.com>

O
pen Source Developm

ent Course 2019

3

Project release

lifecycle
Releases indicate the development status and

record the development progress

In order for users and

contributors to navigate in

the project lifecycle and

development status and

also for the developers to

be able to manage the

project, versioning and

releases are one of the

most important things to do

when developing a

software.

CONFIDENTIAL Designator

Different people have different needs

PROJECT LIFECYCLE

4

As a contributor to a project that is new
to me, I always struggle to navigate in
the contribution guidelines.
Should/Can I even contribute? How do I
contribute — is there a specific
procedure? When is the right time?

A contributor

“” When choosing a project I want to
depend on, I usually look at its
development status and decide based on
the maturity of the project. Concise
documentation is a +.

A developer

“” A project becomes harder to maintain as
it grows. The key to success is having a
well-prepared continuous delivery and
integration pipelines. As a benefit, it
protects you and your team from an
absolute chaos.

A developer & maintainer

“”

CONFIDENTIAL Designator

5

PROJECT LIFECYCLE

Source:
https://www.python.org/dev/peps/pep-0440/

The following definition applies to a Python project, but can be easily translated to other languages:

"Projects" are software components that are made available for integration. Projects include Python libraries, frameworks,

scripts, plugins, applications, collections of data or other resources, and various combinations thereof. Public Python projects

are typically registered on the Python Package Index.

What is a “project”?

https://www.python.org/dev/peps/pep-0440/
https://pypi.python.org/

CONFIDENTIAL Designator

Semantic versioning

PROJECT LIFECYCLE

6

The version scheme is used both to describe the distribution version provided by a particular distribution archive, as well as

to place constraints on the version of dependencies needed in order to build or run the software.

The canonical public version identifiers MUST comply with the following scheme:

Source:
https://www.python.org/dev/peps/pep-0440/

major minor pre-release post
release

development
release

https://www.python.org/dev/peps/pep-0440/

CONFIDENTIAL Designator

Development status
(Software release lifecycle)

PROJECT LIFECYCLE

7

Planning

Ideation phase and defining
objectives.

-

Alpha / Beta

These pre-releases are to
support software testing among
a limited set of users.

0.X.YaN

Production/Stable

Stable release used for public
consumption. Also called “Final
releases”.

0.X.Y

Pre-Alpha

These are often used in projects
that release “early and often”

are not meant for public
consumption.

0.X.Y.devN

Release Candidate

Candidate for a stable (final)
release which is meant for early

adopters.

0.X.YrcN

Mature

Usually more than one release
or at least one major release.

X.Y

0.X.YbN

CONFIDENTIAL Designator

Planning

PROJECT LIFECYCLE

8

You gotta know WHAT the project is for and WHO the project is for.
The objectives should we well defined and understandable.

Define objectives and the target audience

Do NOT reinvent the wheel!
If there is an existing project which is similar, see if you can use that
one or contribute.

Do the research

These can be publication tools, installation tools and other
automation tools used for the development and delivery.

[if not defined] Determine the tools and delivery
strategy

Come up with a POC
Prove the concept. This accounts for a feasibility study as well.

CONFIDENTIAL Designator

Pre-alpha refers to all activities
performed during the software
project before formal testing

PRE-ALPHA

9

These activities can include requirements analysis,

software design, software development, and unit

testing.

Software design
From a concept, through the architecture and implementation
details.

Software development
Includes programming, feature implementation, feature
enhancements, bug fixes or maintenance (i.e. updates and
migrations, etc…)

Unit & Integration testing
Check whether the individual units of source codes function as
expected based on a set of determined rules and whether they fit
together and function together.

Source:
https://en.wikipedia.org/wiki/Software_release_life_cycle

https://en.wikipedia.org/wiki/Software_release_life_cycle

CONFIDENTIAL Designator

Pre-releases refer to a set of
version identifiers which denote a
preparation for the final release
and are meant for early adopters

ALPHA / BETA / RC

10

Among the pre-releases we include the alpha/beta

releases and release candidates

Alpha
The first phase of software testing before releasing it to customers
/ users. In proprietary software, it is not common for a package in
alpha release to be generally available. Alpha usually ends with a
feature freeze.

Beta
The software is expected to have bugs which do not directly affect
its functionality. The main purpose is to reduce impact on
customers / users or to demonstrate and preview a product.
A commercial betaware is usually available to limited set of users
outside of the organization (closed beta) or publicly (open beta).

Release Candidates
A beta version with the potential to become the final product
ready to be released. Minor fixes to fix certain defects are
expected but NO new features or API changes should be made.

Source:
https://en.wikipedia.org/wiki/Software_release_life_cycle

https://en.wikipedia.org/wiki/Software_release_life_cycle

CONFIDENTIAL Designator

Release (stable, or final release)
indicates that the software is
stable, tested and ready to be
used

RELEASE

11

Good to go.

General Availability (GA)
Used mostly for commercial products, but occasionally can be
seen in the Open Source world as well. The GA means that the
software is available for purchase.

Support
A release should be supported for a certain period of time and in
further releases, there should be guarantee of certain backwards
compatibility (this is not a rule, but is greatly appreciated).

Source:
https://en.wikipedia.org/wiki/Software_release_life_cycle

https://en.wikipedia.org/wiki/Software_release_life_cycle

CONFIDENTIAL Designator

So, when to contribute and when to file an issue?
When should I NOT use the project yet?

12

If a project is well-maintained, it is easy to spot the development status at the first glance.

Source:
https://github.com/kubernetes/kubernetes

PROJECT LIFECYCLE

https://github.com/kubernetes/kubernetes

CONFIDENTIAL Designator

So, when to contribute and when to file an issue?
When should I NOT use the project yet?

PROJECT LIFECYCLE

13

If a project is well-maintained, it is easy to spot the development status at the first glance.

Source:
https://github.com/kubernetes/kubernetes

https://github.com/kubernetes/kubernetes

CONFIDENTIAL Designator

So, when to contribute and when to file an issue?
When should I NOT use the project yet?

PROJECT LIFECYCLE

14

If a project is well-maintained, it is easy to spot the development status at the first glance.

15

CONTRIBUTION: GUIDELINES

Contribution Guidelines
Guidelines communicate how people should

contribute to you project.

Contribution guidelines are

a set of recommended

practices, or sometimes

even required ones,

established by a maintainer

for the contributors to be

followed.

CONFIDENTIAL Designator

Before contributing to an
open source project, make
sure to check its contribution
guidelines!

CONTRIBUTION: GUIDELINES

16

Usually, they can be found in a file called

CONTRIBUTION.md[0] or, in case of GitHub,

they might be integrated to PRs and Issues

directly[1]

Verification for both contributors and developers
For both contributors and developers, the guidelines help them

verify that they're submitting well-formed pull requests and

opening useful issues.

Getting started for contributors
Contributors might struggle to navigate in the project or they may

not know where to start contributing, what should the PR or issue

look like.

Prevent confusion and save time
For both owners and contributors, contribution guidelines save

time and hassle caused by improperly created pull requests or

issues that have to be rejected and re-submitted.

Source:
[0]: https://github.com/atom/atom/blob/master/CONTRIBUTING.md
[1]: https://help.github.com/en/articles/setting-guidelines-for-repository-contributors

https://github.com/atom/atom/blob/master/CONTRIBUTING.md
https://help.github.com/en/articles/setting-guidelines-for-repository-contributors
https://github.com/atom/atom/blob/master/CONTRIBUTING.md
https://help.github.com/en/articles/setting-guidelines-for-repository-contributors

CONFIDENTIAL DesignatorCONTRIBUTION: GUIDELINES

17

Source:
https://help.github.com/assets/images/help/pull_requests/contributing-guidelines.png

https://help.github.com/assets/images/help/pull_requests/contributing-guidelines.png

CONFIDENTIAL Designator

As for the WHAT to contribute …
It doesn’t have to be code

CONTRIBUTION: GUIDELINES

18

Most people don’t know that I

actually don’t do any real work on

the CocoaPods tool itself. My time

on the project is mostly spent doing

things like documentation and

working on branding.

@orta

“” I first reached out to the Python development team (aka python-dev) when I

emailed the mailing list on June 17, 2002 about accepting my patch. I

quickly caught the open source bug, and decided to start curating email

digests for the group. They gave me a great excuse to ask for clarifications

about a topic, but more critically I was able to notice when someone pointed

out something that needed fixing.

@brettcannon

“”

Source:
https://opensource.guide/how-to-contribute/

https://github.com/orta
https://github.com/brettcannon
https://opensource.guide/how-to-contribute/

CONFIDENTIAL DesignatorCONTRIBUTION: BEST PRACTICES

19

Okay, I read the contribution guidelines.
What now?
How do I proceed?
What are the best practices?

“”
Ready-to-contribute pessimist Jerry

CONFIDENTIAL Designator

20

FORK the repository

A fork is a copy of a repository.
Forking a repository allows you
to freely experiment with
changes without affecting the
original project.

Create a branch for the specific
purpose
`git checkout -b
fix-readme-typo`

Iterate on the issue

Not all fixes are so simple that
they can fit into one commit.

`git clone`

Clone the repository to your
local machine.

Commit your changes

`git commit -a --sign` Push to the remote and you’re
ready to create a PR against the

upstream.

It all starts with a FORK ...

CONTRIBUTION: BEST PRACTICES

Pull
Request

`git push`

CONFIDENTIAL Designator

21

FORK the repository

A fork is a copy of a repository.
Forking a repository allows you
to freely experiment with
changes without affecting the
original project.

Create a branch for the specific
purpose
`git checkout -b
fix-readme-typo`

Iterate on the issue

Not all fixes are so simple that
they can fit into one commit.

`git clone`

Clone the repository to your
local machine.

Commit your changes

`git commit -a --sign` Push to the remote and you’re
ready to create a PR against the

upstream.

Can you spot an ISSUE?

CONTRIBUTION: BEST PRACTICES

Pull
Request

`git push`

CONFIDENTIAL Designator

22

FORK the repository

A fork is a copy of a repository.
Forking a repository allows you
to freely experiment with
changes without affecting the
original project.

Create a branch for the specific
purpose
`git checkout -b
fix-readme-typo`

Iterate on the issue

Not all fixes are so simple that
they can fit into one commit.

`git clone`

Clone the repository to your
local machine.

Commit your changes

`git commit -a --sign` Push to the remote and you’re
ready to create a PR against the

upstream.

Can you spot an ISSUE?

CONTRIBUTION: BEST PRACTICES

Pull
Request

`git push`

Potentially lots of
commits!

CONFIDENTIAL Designator

23

FORK the repository

A fork is a copy of a repository.
Forking a repository allows you
to freely experiment with
changes without affecting the
original project.

Create a branch for the specific
purpose
`git checkout -b
fix-readme-typo`

Iterate on the issue

Not all fixes are so simple that
they can fit into one commit.

`git clone`

Clone the repository to your
local machine.

Commit your changes

`git commit -a --sign`
Squash unnecessary commits,
like minor fixes and typos and

push them to the remote.

Let’s squash it!

CONTRIBUTION: BEST PRACTICES

Pull
Request

`git rebase -i <initial commit>`
`git push`

CONFIDENTIAL Designator

24

FORK the repository

A fork is a copy of a repository.
Forking a repository allows you
to freely experiment with
changes without affecting the
original project.

Create a branch for the specific
purpose
`git checkout -b
fix-readme-typo`

Iterate on the issue

Not all fixes are so simple that
they can fit into one commit.

`git clone`

Clone the repository to your
local machine.

Commit your changes

`git commit -a --sign`
Squash unnecessary commits,
like minor fixes and typos and

push them to the remote.

Can you spot an ISSUE?

CONTRIBUTION: BEST PRACTICES

Pull
Request

`git rebase -i <initial commit>`
`git push`

CONFIDENTIAL Designator

25

FORK the repository

A fork is a copy of a repository.
Forking a repository allows you
to freely experiment with
changes without affecting the
original project.

Create a branch for the specific
purpose
`git checkout -b
fix-readme-typo`

Iterate on the issue

Not all fixes are so simple that
they can fit into one commit.

`git clone`

Clone the repository to your
local machine.

Commit your changes

`git commit -a --sign`

Rebase to the upstream branch
to make sure there are no merge

conflicts, squash unnecessary
commits and push to the

remote.

Pull, squash and push … sounds weird, but does wonders!

CONTRIBUTION: BEST PRACTICES

Pull
Request

`git pull upstream master
--rebase`

`git rebase -i <initial commit>`
`git push`

CONFIDENTIAL Designator

There are other useful
practices to follow when
contributing to the upstream

26

Document WHAT and WHY
Documenting why the changes have been made and what lead to

the decisions you’d made will save the reviewer’s time and will

increase the chances of your PR being merged. Use provided doc

generators, if possible.

Follow the code style
When contributing code, it is good practice to adapt to the project

code style (especially for languages with fluid code styles, like

JS). Use provided formatters, if possible.

Run tests before submitting the PR and write new ones
when introducing new features.

CONTRIBUTION: BEST PRACTICES

Be extremely careful if changing project dependencies
(see further)

27

PROJECT DEPENDENCIES

Software
dependencies
Dependencies are the hell for maintainers, a
blessing for developers and the heaven for
attackers.

A dependency is additional

code that you want to call

from your program. Adding

a dependency avoids

repeating work already

done: designing, writing,

testing, debugging, and

maintaining a specific unit

of code

Source:

https://research.swtch.com/deps

https://research.swtch.com/deps

CONFIDENTIAL Designator

Kinds of dependencies

28

Direct dependencies

Libraries that your code depends
upon. These require some effort to

control but comparing to the others
they are sort of manageable.

Transitive dependencies

Dependencies of the dependencies.
Usually quite hard to control.

Third party dependencies

A special kind. These are the
dependencies that you don’t own

and that are not part of your
organization. Especially hard to

control.

PROJECT DEPENDENCIES

CONFIDENTIAL DesignatorPROJECT DEPENDENCIES

29

Transitive dependencies

Source:
https://cermakm.shinyapps.io/Tensorflow_Transitive_Dependencies/

https://cermakm.shinyapps.io/Tensorflow_Transitive_Dependencies/

CONFIDENTIAL Designator

What could go wrong?

PROJECT DEPENDENCIES

30

A package is code you download from the internet. Adding a package as a dependency outsources the work of developing that

code—designing, writing, testing, debugging, and maintaining—to someone else on the internet, someone you often don’t know.

By using that code, you are exposing your own program to all the failures and flaws in the dependency.

Your program’s execution now literally depends on code downloaded from this stranger on the internet.

Source:
https://research.swtch.com/deps

https://research.swtch.com/deps

CONFIDENTIAL Designator

What could go wrong? You name it ...

PROJECT DEPENDENCIES

31

Security
vulnerability (CVE) Version conflict

API Changes License conflict

Missing/Removed
dependency

Broken third-party
dependency

CONFIDENTIAL Designator

 It sounds unsafe ...

PROJECT DEPENDENCIES

32

And it is… but it is also necessary to keep the wheel of Open Source spinning!

CONFIDENTIAL Designator

A note about the security vulnerabilities

PROJECT DEPENDENCIES

33

What is a "Vulnerability?"

An information security "vulnerability" is a mistake in software that can be directly used by a hacker to gain access to a system or network.

What is an "Exposure?"

An information security exposure is a mistake in software that allows access to information or capabilities that can be used by a hacker as a stepping-stone into
a system or network.

What is CVE?

CVE is a list of information security vulnerabilities and exposures that aims to provide common names for publicly known problems. The goal of CVE is to make it
easier to share data across separate vulnerability capabilities (tools, repositories, and services) with this "common enumeration." Please visit
http://cve.mitre.org/about/faqs.html for more information

Source:
https://www.cvedetails.com/cve-help.php

https://cve.mitre.org/about/faqs.html
https://www.cvedetails.com/cve-help.php

CONFIDENTIAL Designator

Common vulnerabilities according to the NVD

PROJECT DEPENDENCIES

34

Source:
https://www.cvedetails.com/vulnerabilities-by-types.php

https://nvd.nist.gov
https://www.cvedetails.com/vulnerabilities-by-types.php

CONFIDENTIAL Designator

Beware the “dependency hell”

PROJECT DEPENDENCIES

35

Especially when working with complex systems which have a lot of dependencies, it might be incredibly difficult to find the

“right” combination of versions which are actually compatible together.

Sometimes, we might actually reach sort of a “deadlock” state if one dependency requires a version of another which is in fact

not compatible with the rest of the project, i.e.:

A requires Da && Da requires X == 1.13

 A requires Db && Db requires X == 1.13.5

Will it break, or not?

CONFIDENTIAL DesignatorPROJECT DEPENDENCIES

36

It might become tedious ...

Source:
https://cermakm.shinyapps.io/Tensorflow_Transitive_Dependencies/

https://cermakm.shinyapps.io/Tensorflow_Transitive_Dependencies/

CONFIDENTIAL DesignatorPROJECT DEPENDENCIES

37

Can you guess the issue?

Source:
https://cermakm.shinyapps.io/Tensorflow_Transitive_Dependencies/

HINT: centrality, weights

https://cermakm.shinyapps.io/Tensorflow_Transitive_Dependencies/

CONFIDENTIAL DesignatorPROJECT DEPENDENCIES

38

Can you guess the issue?

Source:
https://cermakm.shinyapps.io/Tensorflow_Transitive_Dependencies/

A dependency can actually have a greater
centrality and thus be “more important”!

https://cermakm.shinyapps.io/Tensorflow_Transitive_Dependencies/

CONFIDENTIAL Designator

 So… what can we do?

PROJECT DEPENDENCIES

39

CONFIDENTIAL Designator

40

Source: https://miro.medium.com/max/3000/1*41XiwBL9NXDfGtIXbc3UsQ.jpeg

https://miro.medium.com/max/3000/1*41XiwBL9NXDfGtIXbc3UsQ.jpeg

CONFIDENTIAL Designator

Good practices when managing dependencies

PROJECT DEPENDENCIES

41

Choose a compatible and secure versionConsider the value of adding the dependency
If introducing the dependency means a few lines of

code that you’re spared of, do NOT introduce the

dependency at all. It is not worth it.

Keep your dependencies up to date
Update the dependencies and keep the code you

own up to date with them. Do not rely on the pinned

down version.

Regularly watch for CVEs and consult the
NVD
Do NOT expose your application. GitHub and

specialized software exist to inform you about

potential security risks of your application.

Consider the impact of the dependency
Consider how important the dependency is to your

application and treat the dependency accordingly.

Unit TESTS & integration TESTS!
Write unit tests and integration tests especially for

functions using a code that you don’t own!

Take the time and investigate. Choose a version

which is CVE free and is compatible with the rest of

the application.

CONFIDENTIAL Designator

And don’t ever forget ...

PROJECT DEPENDENCIES

42

TO MAKE SURE THAT THE LICENSES ARE
COMPATIBLE!

CONFIDENTIAL Designator

The compatibility is sometimes tricky ...

PROJECT DEPENDENCIES

43

Source:
https://www.slideshare.net/SamsungOSG/guide-to-open-source-compliance

https://www.slideshare.net/SamsungOSG/guide-to-open-source-compliance

44

CI/CD

Continuous {
Integration,
Delivery,
Deployment

}
Introduction to CI/CD

CI/CD are the acronyms that

are often mentioned when

people talk about modern

development practices.[0]

Source:

[0] https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment

https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment

CONFIDENTIAL Designator

CI/CD is a set of practices
which have a significant impact
to the way new releases are
delivered and maintained.

CI/CD

45

These are the three main practices

to be familiar with.

Continuous Integration
Change validation by creating a build and running automated tests
against the build. By doing so, you avoid the integration hell that
usually happens when people wait for release day to merge their
changes into the release branch.

Continuous Delivery
An extension of continuous integration to make sure that you can
release new changes to your customers quickly in a sustainable
way. This means that on top of having automated your testing, you
also have automated your release process

Continuous Deployment
Continuous deployment goes one step further than continuous
delivery. With this practice, every change that passes all stages of
your production pipeline is released to your customers. There's no
human intervention, and only a failed test will prevent a new
change to be deployed to production

Source:
[0] https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment

https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment

CONFIDENTIAL Designator

46

Q&A

O
pen Source Developm

ent Course 2019

CONFIDENTIAL Designator

https://github.com/CermakM

https://www.linkedin.com/in/ai
-mcermak/

https://twitter.com/Marc_Cer
mak

https://www.facebook.com/mace
rmak

THANK YOU

FINALLY OVER..

https://github.com/CermakM
https://www.linkedin.com/in/ai-mcermak/
https://www.linkedin.com/in/ai-mcermak/

CONFIDENTIAL Designator

CONFIDENTIAL Designator

49

CI/CD Pipelines

Open Source
Development Course

Presenter’s Name
Vojtěch Trefný <vtrefny@redhat.com>

O
pen Source Developm

ent Course 2019

CONFIDENTIAL Designator

CI/CD Pipeline

CI/CD PIPELINE

50

- Steps that need to be performed to test and deliver new

version of the software.

- Defines what needs to be done : when, how and in what order.

- Steps can vary for every project.

- Multiple pipelines or steps can run in parallel.

CONFIDENTIAL Designator

CI/CD Pipeline

CI/CD PIPELINE

51

Testing environment
Preparation of the environment
to run the tests -- deploying a
container, starting a VM...

Codestyle
Checking for violations of the

language or project style guides.

Tests
Running project test suite or
test suites.

Static Analysis
Finding defects by analyzing the

code without running it.

Build
Building the project from source.

Packaging and
Deployment

Building source archives,
packages or container images.

CONFIDENTIAL Designator

Testing Environment

ENVIRONMENT

52

1. Preparation of VMs/containers to run the tests
We might want to run tests in different environments
on multiple different distributions or architectures.

2. Installation of the test dependencies
Test dependencies are usually not covered by the
project dependencies.

3. Getting the code
Clone the PR or get the latest code from the master
branch.

CONFIDENTIAL Designator

Static Analysis

STATIC ANALYSIS

53 Source:
[1] https://scan.coverity.com
[2] http://cppcheck.sourceforge.net/
[3] https://www.pylint.org

- Tools that can identify potential bugs by analyzing the

code without running it.

- Can detect problems not covered by the test suite --

corner cases, error paths etc.
- Coverity (C/C++, Java, Python, Go…) [1]

- Cppcheck (C/C++) [2]

- Pylint (Python) [3]

CONFIDENTIAL DesignatorSTATIC ANALYSIS

54

Error: USE_AFTER_FREE (CWE-825):

libblockdev-2.13/src/plugins/lvm-dbus.c:1163: freed_arg: "g_free" frees "output".

libblockdev-2.13/src/plugins/lvm-dbus.c:1165: pass_freed_arg: Passing freed

pointer "output" as an argument to "g_set_error".

1163| g_free (output);

1164| if (ret == 0) {

1165|-> g_set_error (error, BD_LVM_ERROR, BD_LVM_ERROR_PARSE,

1166| "Failed to parse number from output: '%s'",

1167| output);

CONFIDENTIAL Designator

Code style and style guides

CODESTYLE

55 Source:
[1] https://www.python.org/dev/peps/pep-0008/
[2] https://www.kernel.org/doc/html/v5.3/process/coding-style.html
[3] https://developer.gnome.org/programming-guidelines/stable/c-coding-style.html.en

- Coding conventions -- naming, code lay-out, comment

style…

- Language specific (PEP 8[1]), project specific (Linux

kernel coding style[2]) or library/toolkit specific (GTK

coding style[3]).

- Automatic checks using specific tools (pycodestyle) or

(partially) by the static analysis tools.

CONFIDENTIAL DesignatorCODESTYLE

56

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Readability counts.

“”
Tim Peters
The Zen of Python

CONFIDENTIAL Designator

Linux kernel coding style

CODESTYLE

57

https://www.kernel.org/doc/html/v4.10/process/coding-style.html

https://www.kernel.org/doc/html/v4.10/process/coding-style.html

CONFIDENTIAL Designator

Python and PEP8

CODESTYLE

58

https://gist.github.com/vojtechtrefny/435737417be003873a7f94aa7d53c4d2

https://gist.github.com/vojtechtrefny/435737417be003873a7f94aa7d53c4d2

CONFIDENTIAL Designator

Python and PEP8

CODESTYLE

59

CONFIDENTIAL Designator

Documentation style

CODESTYLE

60 Source:
[1] https://www.python.org/dev/peps/pep-0257/
[2] http://www.pydocstyle.org

- Documentation might be checked in the same way code is.

- Similar style documents and tools for checking

documentations exist (for example PEP 257[1] and

pydocstyle[2] for Python).

- In some cases wrong or missing documentation (docstrings

in the code) can lead to a broken build or missing features.

CONFIDENTIAL Designator

Build

BUILD

61

- Building the project, a preparation to run the test suite.

- Depends on language -- mostly no-op for interpreted

languages, more complicated for compiled ones.

- Build in the CI environment can detect issues with

dependencies.

- Builds on different architectures can help detect issues

related to endianness or data types sizes.

CONFIDENTIAL Designator

GNU Autotools

BUILD

62

- Helps creating portable source packages.

- Two steps:

- configure (scans the build environment)

- make (compiles the source)

- Complicated for developers, easy for users.

- Takes care of dependency checking, dynamic linking,

installation destinations etc.

CONFIDENTIAL Designator

GNU Autotools

BUILD

63 Source:
[1] https://twitter.com/timmartin2/status/23365017839599616
Image source: https://developer.gnome.org/anjuta-build-tutorial/stable/create-autotools.html.en

I saw a book entitled "Die GNU Autotools" and I thought "My feelings exactly". Turns out

the book was in German.
“”
Tim Martin[1]

CONFIDENTIAL Designator

Tests

TESTS

64

- Running tests that are part of the project.

- New tests should be part of every change to the

codebase.

- New features require new unit and integration tests.

- Bug fixes should come with a regression test.

- For some project (like libraries) running test suites of

their users might be an option.

CONFIDENTIAL Designator

Coverage

TESTS

65

- Code coverage (or Test coverage) represents how much

of the code is covered by the test suite.

- Usually percentual value that shows how many lines of

the code were “visited” by the test.

- Generally a check that all functions and branches are

covered by the suite.

- Used as a measure of the test suite “quality”.

CONFIDENTIAL Designator

Coverage

TESTS

66

Resulting coverage is 80 %, because 1 of 5 statements is not covered.

$ coverage3 report -m

Name Stmts Miss Cover Missing

div.py 5 1 80% 3

CONFIDENTIAL Designator

Coverage

TESTS

67

- Automated coverage tests might be part of the CI.

- Decrease in coverage can be viewed as a reason to

reject contribution to the project.

CONFIDENTIAL Designator

Packaging and publishing

DEPLOYMENT

68

- Usually after merging the changes, not for the PRs.

- Building packages, container images, ISO images…

- Built packages can be used for further testing (manually

by the Quality Assurance or in another CI infrastructure)

or directly pushed to production or included in

testing/nightly builds of projects.

CONFIDENTIAL DesignatorDEPLOYMENT

69

After a change to a package is made, CI pipeline specific
for this package is started.
Both package-specific and generic tests are part of the CI.

Fedora CI

Nightly composes are created from all packages.
Compose can fail for multiple reasons like broken
dependencies or bugs not covered by the test suite.

Compose

Daily builds are available in form of installation ISO files.
These are separately tested using openQA automated
test suite.

Installation images and repositories

70

CI Tools
Demo

CONFIDENTIAL Designator

Travis CI

CI TOOLS

71

- Probably most popular CI service nowadays.

- Can be integrated in your projects on GitHub.

- Free for opensource projects.

- Configured using .travis.yml file in the project

- https://travis-ci.org

CONFIDENTIAL Designator

Travis CI

CI TOOLS

72

CONFIDENTIAL Designator

Travis CI

CI TOOLS

73

CONFIDENTIAL Designator

Jenkins

CI TOOLS

74

- Automation system, not a “true” CI/CD tool.

- Can automatically run given tasks on a node or set of

nodes.

- Tasks can be started on time basis or triggered by an

external event (like new commit or PR on GitHub).

- https://jenkins.io/

CONFIDENTIAL Designator

Fedora CI

CI TOOLS

75

- Complex CI system with task to deliver an “Always

Ready Operating System”.

- Packages are tested after every change and “gated” if

the CI pipeline fails.

- The goal is to prevent breaking the distribution. CI will

stop the broken package before it can affect the

distribution.

CONFIDENTIAL Designator

Fedora CI

CI TOOLS

76

CONFIDENTIAL Designator

77

Q&A

O
pen Source Developm

ent Course 2019

CONFIDENTIAL Designator

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

78

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning support,

training, and consulting services make Red Hat a trusted

adviser to the Fortune 500.

Thank you

O
pen Source Developm

ent Course 2019

