
Advanced Git

Irina Gulina

October 23, 2019

Agenda

● [recap] What is Git?
● [recap] Git Basics
● Branching
● Collaborating
● Handy Git tools and commands
● Local and public troubles
● Git Etiquette

http://bit.ly/devconf19-gtw
2

What is Git?
Distributed version control system for managing source code, i.e. it’s a system to

● record and save each file change
● restore a previous version of your code at any time

3

4

What problem does it solve?

● Keep track of code history
● Collaborate on code as a team
● See who made which changes

5

Basic Git workflow

● Modifying files in the working tree
● Staging changes in index
● Committing files to a repository

6

What Git commands do you know?

7

Do you know how to ...

● Create a new repository locally?
● Clone an existing remote repository?
● Check status of your changes?
● Record changes locally?
● Commit changes to a remote repository?
● Find info about Git commands?

8

Git Basic Commands

● help

● init
● clone

● config

9

● add
● status
● diff
● commit
● reset
● mv
● rm

● branch
● checkout
● merge
● log
● stash

● fetch
● pull
● push
● remote

Git help

Documentation www.git-scm.com/docs

$ git help
$ git help <command>

10

http://www.git-scm.com/docs

Git Branching

11

Branching

12

● Default branch
● Create a new branch
● Switch branches
● Work in parallel on different branches
● Merge branches
● Delete a branch
● Rename a branch
● *Stash changes

● Resolve merge conflicts
● Rebase a branch

Branching
$ git branch
$ git branch -v

13

Create a branch
$ git branch testing
$ git branch
$ git branch -a

14

Switch a branch
$ git checkout testing
$ git branch

15

Create and switch
$ git checkout -b testing

16

Work in parallel
$ touch file.txt
$ git commit -a -m “add file.txt”

17

Work in parallel
$ git checkout master

18

Work in parallel
$ touch file2.txt
$ git commit -a -m “add file2.txt”

19

Merge branches
$ git checkout master
$ git merge hotfix

20

Merge branches
$ git checkout master
$ git merge hotfix

21

Merge branches
$ git branch -d hostfix
$ git checkout iss53
$ vi index.html
$ git commit a -m “fix link [issue 53]”

22

Merge branches
$ git checkout master
$ git merge iss53

23

Merge strategies
$ git merge -s recursive branch1 branch2
$ git merge -s resolve branch1 branch2
$ git merge -s octopus branch1 branch2 branch3 branchN
$ git merge -s ours branch1 branch2 branchN
$ git merge -s subtree branchA branchB

24

Merge conflicts
● Git fails to start the merge

error: Entry '' not uptodate. Cannot merge. (Changes in
working directory)

● Git fails during the merge
error: Entry '' would be overwritten by merge. Cannot
merge. (Changes in staging area)

25

Create a merge conflict
● Create a Git repo
● Add some text into a file
● Commit the change

● Create a new branch
● Overwrite text in that file and commit it

● Updata the same file again on master, commi it

● Try to merge those two branches

26

Resolve a merge conflict
● Identify the conflict
● Inspect it
● Make changes
● Stage those changes

$ git status $ git checkout $ git merge --abort
$ git log --merge $ git reset --mixed $ git reset
$ git diff

$ git mergetool

27

Delete a branch
● You can’t remove a branch you checked out at
● You can remove a merged branch
● You can remove a branch with unstaged changes
● Sometimes you need to apply force

$ git branch -d branch_name
$ git branch -D branch_name

28

Stash changes
● Stashing your changes
● Re-applying your stashed changes

● Stashing untracked and ignored files

● Multi stashing

● Viewing stash diff

● Create a branch from stash

● Cleaning up your stash

29

$ git stash
$ git stash pop
$ git stash apply
$ git stash -u
$ git stash -a
$ git stash list
$ git stash pop stash@{2}
$ git stash show
$ git stash show -p

$ git stash drop stash@{1}
$ git stash clear

Collaborating

30

Collaborating

31

● Add remote repositories

● Download remote content

● Upload local content to a remote repository

$ git remote add origin <url>

$ git fetch origin
$ git fetch --all
$ git fetch --dry-run
$ git fetch branch_name
$ git merge origin/master

$ git pull
$ git pull --verbose

$ git push
$ git push --all
$ git push --force

How to find things

32

Revision selectors
1. 1c002dd4b536e7479fe34593e72e6c6c1819e53b

2.

1c002dd changed the version number
085bb3b removed unnecessary test code
a11bef0 first commit

33

$ git log --oneline

Revision selectors
3. $ git reflog

34

734713b HEAD@{0}: commit: fixed refs handling, added gc
d921970 HEAD@{1}: merge phedders/rdocs: Merge made by the
'recursive' strategy.
1c002dd HEAD@{2}: commit: added some blame stuff
1c36188 HEAD@{3}: rebase -i (squash): updating HEAD
95df984 HEAD@{4}: commit: # This is a combination of two

Revision selectors
4. $ git show master@{yesterday}

$ git show master@{2.months.ago}

35

5. Ancestry references (^ ~)
● ca82a6d^
● ca82a6d^^
● HEAD
● HEAD^
● HEAD^2 (is it the same as ca82a6d^^ ?)
● HEAD~ (is it the same as HEAD^ ?)
● HEAD~2 (is it the same as HEAD^2 ?)
● HEAD~3^2 (is it valid?)

Revision selectors

36

Revision selectors
6. Ranges of commits

How to show commits on experiment branch, which are not on master?
The opposite?
How to show local commits which are not on origin remote?

37

Solution:

$ git log master..experiment
$ git log experiment..master

Revision selectors
7. Multiple points

How to see what commits are in any of several branches,
that aren’t in the branch you’re currently on?

How to see all commits on A and B, which are not on C?

More than two references can be specified.

38

Solution:

$ git log A B ^C
$ git log A B --not C

Revision selectors
8. Scenario:

How to see what commits are in either of two branches, but not on both of
them? i.e. E, F, C, D?

39

Solution:

$ git log master...experiment

Git Log Searching
Problem:

How to find specific commits by the content of their messages or even the
content of the diff they introduce?

40

Solution:
$ git log -S calc --oneline
 61e3ce7 add a new function

$ git log -S x1 --oneline
 18f3671 change params in search
 a5c51ae edit search func
 7a7c4f7 add search func

Git Log Searching
Problem:

How to show the history (all commits) of a function or line of code in a
codebase?

41

Solution:

$ git log -L :add:<file>

Local troubles

42

Git cardinal rule

43

You have a great freedom

to rewrite your history locally

Steps to reproduce:

The cat walked across your keyboard, while you were making coffee. You
have not noticed and saved the changes, then saw them with git diff.

Undoing local changes, not committed

44

Solution:

$ git checkout -- <file>

Changing the last local commit
1. How to modify the last commit message

45

Solution:

$ git commit --amend

Changing the last local commit
2. How to modify the content of the last commit

46

Solution:

Make changes
Stage those changes
$ git commit --amend

or
$ git commit --amend --no-edit

Don’t amend your last commit if you have already pushed it!

Undo the last local commit(s)
Solution:

$ git reset <last good commit>
or

$ git reset --hard <last good commit>

47

Find and restore a deleted file
Scenario:

A file was deleted and this change was committed. More commits were
added. How to find a commit deleting that file and restoring it?

48

Solution:

1) $ git rev-list -n 1 HEAD -- path/to/file
$ git checkout <commit>^ -- path/to/file

Delete and restore all files
Scenario:

$ rm -r *

49

Redo after undo the last local commit(s)

Scenario:

You made some commits, then did a git reset --hard to “undo” them,
and then you want those changes back. There are several possible solutions, it
depends on what you want to accomplish.

50

Solution:

$ git reflog

- $ git reset --hard <commit>
- $ git checkout <commit> -- <filename>
- $ git cherry-pick <commit>

Revert a single file to a specific commit
Scenario:

Some changes on a file were committed multiple times. Then, an author
wants to restore that file to a specific commit

51

Solution:

$ git log
$ git diff <commit>
$ git checkout <commit> -- filename

or if one commit before a specific one:
$ git checkout <commit>~1 filename

Stop tracking a tracked file
Scenario:

A log file was accidently added (by commit) to the repository. Since then Git
reports there are unstaged changes in that file even though there is *.log entry
in .gitignore.

52

Solution (remove a file from a git repo, but not locally)

$ git rm --cached file.log
for a single directory

$ git rm --cached -r logs

Question: How to remove multiple files?

Multiple undo/redo of several local commits
Scenario:

There is a dozen or so commits, but only some of them are needed to be
pushed, others changed or deleted

53

Solution:

$ git rebase -i HEAD~5 don’t include any commit you’ve already
pushed. Notice the order of commits.

- Reordering commits
- Squashing
- Splitting

Fix an earlier local commit
Scenario:

A file was not included in an earlier commit.

54

Solution:

$ git add <file>
$ git commit --fixup <earlier-commit>
$ git rebase -i --autosquash <even-more-earlier-commit>

07

Removing a file from every commit
Scenario:

Remove a file (e.g. with a sensitive info) from the entire history.

55

Solution:

$ git filter-branch --tree-filter ‘rm -f id_rsa’ HEAD

Rewrite 6b9b3cf04e7c5686a9cb838c3f36a8cb6a0fc2bd (21/21)
Ref 'refs/heads/master' was rewritten

Moving local commits between branches
Scenario:

Commits were made on a master branch, but they should be on another
branch instead

56

Solution:
$ git branch feature

What is the difference with git checkout -b feature?
$ git reset --hard origin/master
$ git checkout feature

How to avoid it?

Outdated branch
Scenario:

You commited changes to one feature branch based on master which was
pretty far behind remote master. You wish your feature branch be
up-to-date with the remote master and your commits be on top of that.

57

Solution:

$ git checkout master
$ git pull
$ git checkout feature
$ git rebase master

Restore a deleted branch
Scenario:

You deleted a branch in your Git repository, but want it back.

58

Solution:

Find a SHA of that branch from terminal history or git reflog
$ git checkout -b <branch> <SHA>

Save changes without committing
Scenario:

You made some code changes, but it’s not a good time to commit. You need
to switch branches to fix an urgent bug. How to save your work?

59

Solution:

$ git stash

Find the commit, that introduced a bug
Scenario:

You created several commits, but from some certain point the application gets
broken. It’s unclear what it caused and which commit introduced the bug.

60

Solution:

$ git bisect

Public troubles

61

Undo a commit, pushed
Steps to reproduce:

$ touch file.txt
$ git add file.txt
$ git commit -m “Something terribly wrong”
$ git push origin master

62

Undo a commit, pushed
Solution:

Find SHA hash of that commit.
$ git revert <commit>
$ git push

It’s the safest scenario, it doesn’t alter history!

63

How to restore orphaned or deleted commits
Steps to reproduce:

$ git reset --hard HEAD~1

$ git push --force

64

How to restore orphaned or deleted commits
Solution:

● Find SHA hash of that commit.

● Create a new branch with that commit as the head of the branch
$ git branch my-new-branch <commit>

● Ensure all changes are on that branch

● Merge changes to master

65

Edit the message of older or multiple commit(s), pushed

Solution:

1) $ git commit --amend
$ git push --force

2) $ git rebase -i HEAD~5 # Display last 5 commits
or git rebase -i <commit>

Replace pick with reword in opened editor
Edit the commit messages
Save and close the file
$ git push --force

66

Avoid repeated merge conflicts
Scenario:

67

Solution:

$ git rerere

Rename a branch
Scenario:

You made a spelling mistake in a branch name. Instead of bugfix-15631
you named it idontknow. Maybe you were hungry that moment. Now you want to
rename it.

68

Solution:

$ git branch -m <old-branch> <new-branch>

$ git push origin :<old-branch>
$ git push origin --set-upstream <new-branch>

Git Etiquette

69

70

Poor quality code can be refactored.
A terrible commit message lasts forever.

What is a commit message

71

● Title/Subject line
● Body

Commit message example

72

commit <commit_id>

Author: <author_name> <author_email>

Date: Mon Apr 2 15:10:03 2018 -0400

Change how workers are represented

* Don't serialize the 'gracefully_shutdown' field

* Create a new 'missing' property and serialize it

* In the status API, list both online and missing workers

Requires PR: https://github.com/<project>/pull/921

 closes #3544

https://<project>.plan.io/issues/3544

Commit Title or Subject line

Commit Body

Usage of a commit title

73

● git log --pretty=oneline
● git rebase --interactive
● merge.summary
● git shortlog
● git format-patch, git send-email, …
● reflogs
● Gitk
● GitHub user interface

Commit history

74

$ git log --oneline

cf2***e some updates

7ae***f some structure changes

10e***d todo

1b4***1 improved

hj3***b docs

47a***m some updates

871***a little bit reworked and added specific part for docker
type

What constitutes a good commit title?

75

● git commit -m "Fix login bug"
● git commit or git commit --verbose

Redirect user to the requested page after login

https://link/to/issue/tracker

What constitutes a good commit title?

76

● Capital letter, 50/72, no punctuation in the end

$ git commit

A brief summary of the commit

A paragraph describing what changed and its

impact."

What constitutes a good commit title?

77

● compare to the linux kernel contributors

$ git shortlog |\

 grep -e '^ ' |\

 sed 's/[[:space:]]\+\(.*\)$/\1/' |\

 awk '{lens[length($0)]++;} END {for (len in lens)

print len, lens[len] }' |\

 sort -n

What constitutes a good commit title?

78

What constitutes a good commit title?

79

● Present Tense and Imperative Mood

“If accepted, this commit will <your commit message goes here>.”

cf****e Adds unit tests

7a****f Fixed unit tests

10****d Update unit tests

1b****1 Removing unit test

What constitutes a good commit title?

80

● Reference to an issue

Redirect user to the requested page after login

https://link/to/issue/tracker

What constitutes a good commit title?

81

● Clear Title - What is commit about?
● Present Tense and Imperative Mood
● Clear Body - Why is it needed?
● 50/72
● Reference to an issue

Git push

82

83

IF YOU DO FORCE PUSH….
May the force stay with you.

Submitting a PR

84

Why do we use PR workflow

85

● Share changes
● Get review and feedback
● Encourage quality

What constitutes a good PR?

86

● Complete piece of work
● Adds value in some way
● Solid title and body
● Clear commit history
● Small

Contributors

87

● Follow the repo’s conventions
● Double check your code (and ToDos)
● Add docs
● Keep changes small
● Separate branch
● Be clear and specific
● Check your ego and be polite

Before submitting a PR

Contributors

88

After submitting a PR

● Check your ego and be polite
● Ensure your branch merge and tests pass
● Use --amend, --fixup or rebase -i
● Don’t merge your own PR

WIP PR?

89

● Don’t overuse WIP label
● Remove WIP label when ready
● “This is ready for review, please.”

Reviewing a PR

90

Reviewers

91

● Be kind and polite
● Check commit history
● Don’t fix issues
● Ensure the branch can be merged
● CI Tests pass
● Don’t merge WIPs
● Squash
● Delete branch

Thank you!

igulina@redhat.com

