Biometrics 2 Face recognition

PV181 Laboratory of security and applied cryptography Seminar 27. 11. 2019

Agáta Kružíková, 409782@mail.muni.cz Martin Ukrop, mukrop@mail.muni.cz

Centre for Research on Cryptography and Security

Lecture structure

Seminar 1

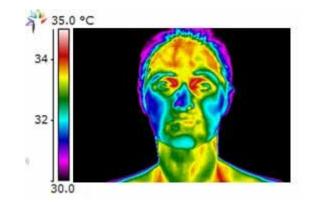
- 1. Introduction
- 2. Fingerprints
- 3. Seminar activity
 - Fake fingerprints
- 4. Homework
 - Report on selected biometric system

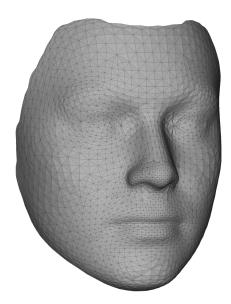
Seminar 2

- 1. Face recognition
- 2. Seminar activity
 - Face biometric
 SWOT analysis
- 3. Homework
 - Age estimation

Real-life example

@ 2009 Geek Culture

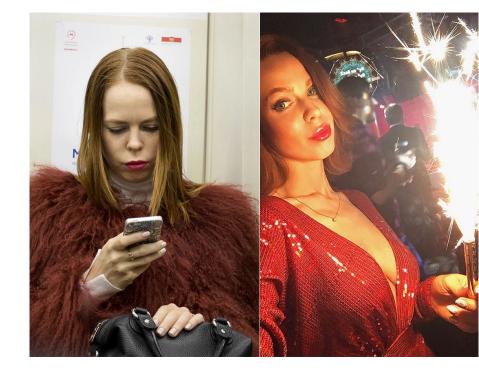

joyoftech.com


CROCS

Face recognition – Input

- Single picture
- Video sequence
- 3D image
- Facial thermograms

Face recognition: The manual way


Face recognition: The automatic way

- Statistical
 - Eigenface, PCA, LDA, ...
- Neural networks
 - Microsoft: Face API
 - Facebook: DeepFace
 - VK: FindFace ("best results" in MegaFace comp.)
 - Google: FaceNet

FindFace – example

Subway photo (left), social network photo (right)

Challenges in face recognition

- Illumination
- Pose
- Environment
 - Noisy background
- Aging
- Feature occlusion
 - Hats, glasses, hair, ...
- Image quality
 - colour, resolution, ...

Testing sets (databases)

• Many databases:

http://www.face-rec.org/databases/

- Covering:
 - Aging
 - Ilumination
 - Pose
 - Expression

OpenBR: Face recognition overview

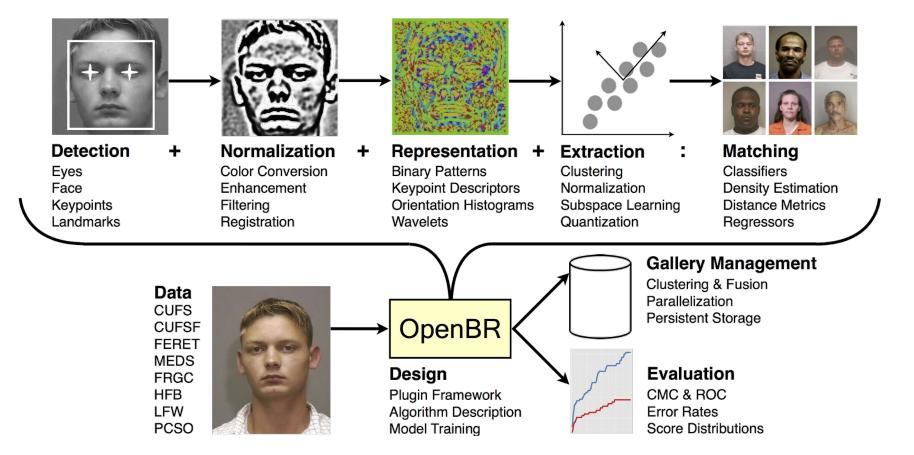
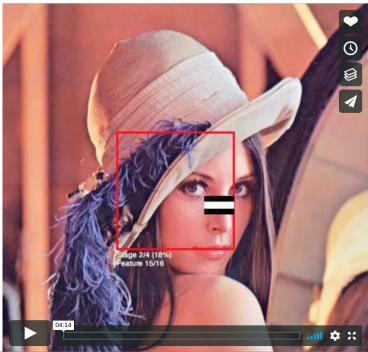
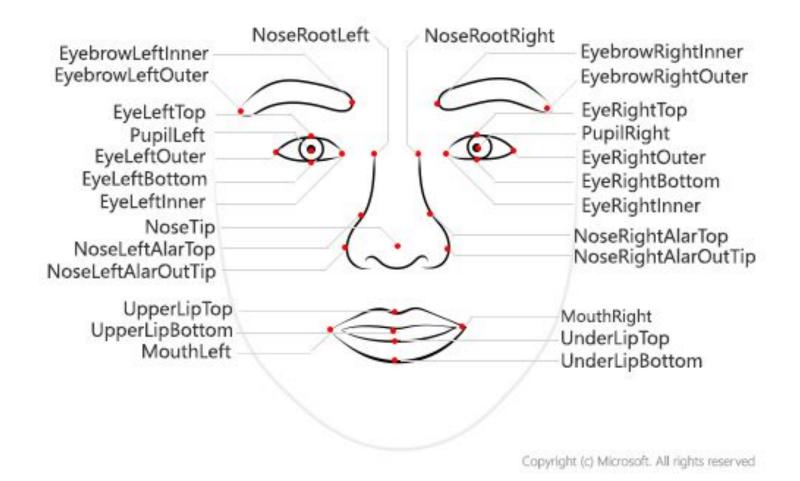



Photo © 2016 openbiometrics.org

OpenBR face recognition – visualization

- Haar-cascade Detection
- Machine learning based approach where a cascade function is trained from a lot of positive and negative images.
- See video:
 OpenCV Face
 Detection: Visualized
 https://vimeo.com/12774628

CV Dazzle: Anti face-detection



CV Dazzle: Anti face-detection

Photo © 2010-2016 Adam Harvey, CV Dazzle

Microsoft: Face API

Automatic passport control

Biometric passports

- "Smart card", contain NFC chip
- Two security levels:
 - BAC: Reading your photo+personal information (Try Android app Passport reader)
 - EAC: Reading your biometrics
 - Fingerprint, Face and Iris support

Face impersonation

Photo © 2016 Carnegie Mellon University, Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition

Face impersonation

- Fooling deep-neural-networks-based face recognition systems (e.g. Face++)
 - Over 90% success rate
 - The principle is more general
- "physically realizable and inconspicuous"

Sharif, Mahmood, et al. "Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition." Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016. CROCS

KFC AliPay

- Introduced 2015
- Only one KFC in China



 See AliPay promo video at <u>https://www.theverge.com/2017/9/4/16251304/kfc</u> <u>-china-alipay-ant-financial-smile-to-pay</u>

Apple FaceID hacked

- Liveness detection feature
- In 2019 by researchers
- Hacked by usage of pair of modified glasses
- A victim has to sleep :-)

Source: https://threatpost.com/researchersbypass-apple-faceid-using-biometrics-achilles-heel/ 147109/

Detecting sexual orientation from faces

Composite heterosexual faces

Composite gay faces

Average facial landmarks

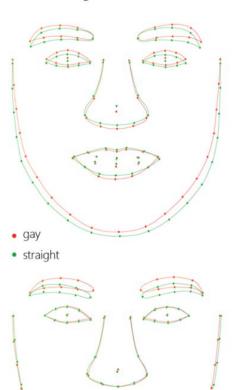


Photo © 2017 Deep neural networks are more accurate than humans at detecting sexual orientation from facial images. Journal of Personality and Social Psychology

Male

Detecting sexual orientation from faces

- Classifying sexual orientation (straight vs. gay) on men/women photos
 - Human success: 61% / 54%
 - Neural networks: 81% / 71%
 - Neural networks (5 images): 91% / 83%
- May be a privacy issue!

Wang, Y., & Kosinski, M. (in press). Deep neural networks are more accurate than humans at detecting sexual orientation from facial images. Journal of Personality and Social Psychology, 2017. CROCS

Mugshots

BUDDSJD 10

CAUGHMANMD 3

CLYMANNS_1

DELAROSAJ_2

CHEWEYSR_22

CLARKJ_6

DELOACHAM_1

GILLEYNK_1

Face recognition ban

- San Francisco
- "Threat to civil liberties"
- Ban for government agencies (city police and sheriff)
- Federal agencies not affected
- Reason: privacy issue
 - Less accurate at people of colour
- For the supplier: step back
- www.banfacialrecognition.com

Gregory Barber, San Francisco Bans Agency Use of Facial-Recognition Tech. 2019, Wired.

Code of Ethics (ACM)

- 1. Society and human well-being
- 2. No harm for participants & risk analysis
- 3. Honesty (transparency)
- 4. No plagiarism
- 5. Respect privacy
- 6. Confidentiality
- 7. High quality & standards (competence)
- 8. Professional review
- 9. Inform society

Advancing Computing as a Science & Profession, ACM Code of Ethics and Professional Conduct. Online [2019]: acm.org/code-of-ethics

CROCS

Fun with biometrics

- InterSoB task
 - https://how-old.net/
 - Try to appear
 as old as possible

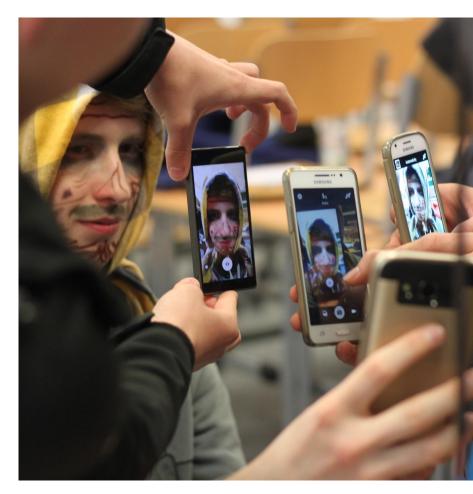


Photo © 2016 Dominika Krejčí, InterSoB

Detour: SWOT analysis

- A.k.a. "SWOT matrix"
- From 1960s
- Strategic planning technique related to business competition or project planning
- Widely applicable

SWOT example: Passwords

Strengths

- Well understood
- Legacy
- Intuitive usage
- Possibility of high entropy

Opportunities

- FIDO 2.0 system
- Integration of SMS/OPT and Push-to-Approve

Weaknesses

- Often low entropy
- Infinite ways to implement
- Policy differences
- Sticky note syndrome
- Threats related to storage

Threats

- Bad attack understanding
- Long tail of replacement
- Usability issues
- The dark web

Example inspired by the RSAC 2018 talk *Passwords and fingerprints and faces – Oh my! Comparing old and new authentication* by Jackson Shaw

Seminar task

- Do a SWOT analysis for a use case on face recognition biometrics, work in groups of three
- Use cases:
 - a. Face authentication on border crossing (passports)
 - b. "Pay by a smile"for Internet card payments
 - c. 3D face authentication for accessing bank vaults
 - d. Thermal face scans securing nuclear power plant

Homework

Exploring automatic age estimation

Homework: Overview

- Investigate what influences age estimation
 - In https://how-old.net/ (neural-networks based)
 - Adjust our pictures again
- Submit to IS MUNI a single ZIP file with
 - Report (PDF),
 - see next slide
 - Used adjusted images
- Deadline:
 - 4. 12. 2018 8:00

Homework: Overview

Step 1: State the hypotheses.

E.g., Wrinkles around the tails of eyes increase the estimated age.

Step 2: Set the criteria for a decision.

Set baseline (no wrinkles) and repeat measurement for different wrinkles around tails of eyes.

Step 3: Compute the test statistic (if you know how).

In our simplistic case, take a look on measurements. This is not necessary, if you don't understand statistics well.

Step 4: Interpret the results.

The hypothesis should not be regarded as true based on these data.

Homework: Good methodology

Measurements: Martin 1 - 27

Martin 1 - 27 Martin 2 - 27 Martin 3 - 27 Martin 4 - 27 Martin 5 - 27

Homework: Report

- Write a summarizing report
 - Your hypotheses and how you tested them
 - Test at least 5 distinct features
- Concentrate on:
 - Having a formulated hypotheses for each feature (e.g. smoother skin decreases estimated age)
 - Having several images supporting/falsifying your idea
- Avoid:
 - Many changes in the face at once
 - Radical changes (deleting half the face)
 - Overgeneralization

CRତCS

Homework: Methodology, scoring

- Up to 10 points awarded
 - Scoring rubric available in the Information system
 - The rubric can help you understand what is important in the task!
- Have a look at old homework submissions with good methodology in the Study Materials.
 - Special thanks to Jan Kvapil and Rao Arvind for providing them.

Homework: Bad methodology (but at least funny)

