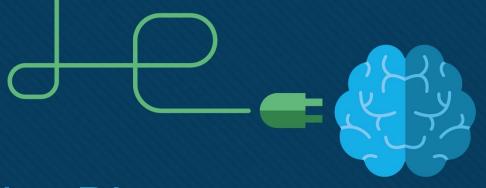


Chapter 10: Device Discovery, Management, and Maintenance

Instructor Materials

CCNA Routing and Switching


Routing and Switching Essentials v6.0

Chapter 10: Device Discovery, Management, and Maintenance

Routing and Switching Essentials 6.0 Planning Guide

Chapter 10: Device Discovery, Management, and Maintenance

CCNA Routing and Switching

Routing and Switching Essentials v6.0

Chapter 10 - Sections & Objectives

- 10.1 Device Discovery
 - Use discovery protocols to map a network topology.
 - Use CDP to map a network topology.
 - Use LLDP to map a network topology.
- 10.2 Device Management
 - Configure NTP and Syslog in a small to medium-sized business network.
 - Implement NTP between a NTP client and NTP server.
 - Explain syslog operation.
 - Configure syslog servers and clients.

Chapter 10 - Sections & Objectives (Cont.)

- 10.3 Device Maintenance
 - Maintain router and switch configuration and IOS files.
 - Use commands to back up and restore an IOS configuration file.
 - Explain the IOS image naming conventions implemented by Cisco.
 - Upgrade an IOS system image.
 - Explain the licensing process for Cisco IOS software in a small- to medium-sized business network.
 - Configure a router to install an IOS software image license.

10.1 Device Discovery

CDP Overview

- Cisco Discovery Protocol (CDP)
 - Cisco proprietary Layer 2 protocol used to gather information about Cisco devices sharing a link
 - Periodic CDP advertisements sent to connected devices
 - Share type of device discovered, name of devices, and number and type of interfaces
 - Determine information about neighboring devices to build a logical topology when documentation is missing

Configure and Verify CDP

```
Router# show cdp
Global CDP information:
Sending CDP packets every 60 seconds
sending a holdtime value of 180 seconds
Sending CDPv2 advertisements is enabled
```

Verify status and display information

```
Switch(config) # interface gigabitethernet 0/1
Switch(config-if) # cdp enable
```

Enables CDP on interface (**no CDP enable** disables)

```
Router(config) # no cdp run
Router(config) # exit
Router# show cdp
% CDP is not enabled
Router# conf t
Router(config) # cdp run
```

no cdp run globally disables (cdp run enables)

```
Router# show cdp neighbors

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone,
D - Remote, C - CVTA, M - Two-port Mac Relay

Device ID Local Intrice Holdtme Capability Platform Port ID

Total cdp entries displayed: 0
```

No neighbors detected

```
Router# show cdp interface
Embedded-Service-Engine0/0 is administratively down, line protocol is down
 Encapsulation ARPA
  Sending CDP packets every 60 seconds
  Holdtime is 180 seconds
GigabitEthernet0/0 is administratively down, line protocol is down
  Encapsulation ARPA
  Sending CDP packets every 60 seconds
  Holdtime is 180 seconds
 sigabitEthernet0/1 is up, line protocol is up
  Encapsulation ARPA
  Sending CDP packets every 60 seconds
  Holdtime is 180 seconds
Serial0/0/0 is administratively down, line protocol is down
  Encapsulation HDLC
  Sending CDP packets every 60 seconds
 Holdtime is 180 seconds
Serial0/0/1 is administratively down, line protocol is down
  Encapsulation HDLC
  Sending CDP packets every 60 seconds
  Holdtime is 180 seconds
```

Indicates the interfaces with CDP enabled

Discover Devices Using CDP


```
R1# show cdp neighbors

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone,
D - Remote, C - CVTA, M - Two-port Mac Relay

Device ID Local Intrice Holdtme Capability Platform Port ID
S1 Gig 0/1 122 S I WS-C2960- Fas 0/5
```

show cdp neighbors discovers:

- S1 (Device ID)
- Gig 0/1 (local port identifier)
- Fas 0/5 (remote port identified)
- S for switch (R for router)
- WS-C2960 (hardware platform)

```
illiilli
CISCO
```

```
R1# show cdp neighbors detail
Device ID: S1
Entry address(es):
  IP address: 192.168.1.2
Platform: cisco WS-C2960-24TT-L, Capabilities: Switch IGMP
Interface: GigabitEthernet0/1, Port ID (outgoing port): FastEthernet0/5
Holdtime : 136 sec
Version :
Cisco IOS Software, C2960 Software (C2960-LANBASEK9-M), Version 15.0(2) SE7,
RELEASE SOFTWARE (fc1)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2014 by Cisco Systems, Inc.
Compiled Thu 23-Oct-14 14:49 by prod rel team
advertisement version: 2
Protocol Hello: OUI=0x00000C, Protocol ID=0x0112; payload len=27,
value=00000000FFFFFFFF010221FF00000000000002291210380FF0000
VTP Management Domain: ''
Native VLAN: 1
Duplex: full
Management address(es):
  TP address: 192.168.1.2
Total cdp entries displayed: 1
```

show cdp neighbors detail command provides additional information:

- IPv4 address
- IOS version

Discover Devices Using CDP (Cont.)


```
S1# show cdp neighbors

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone,
D - Remote, C - CVTA, M - Two-port Mac Relay

Device ID Local Intrfce Holdtme Capability Platform Fort ID
S2 Fas 0/4 158 S I WS-C2960- Fas 0/4
R1 Fas 0/5 136 R B S I CISCO1941 Gig 0/1
```

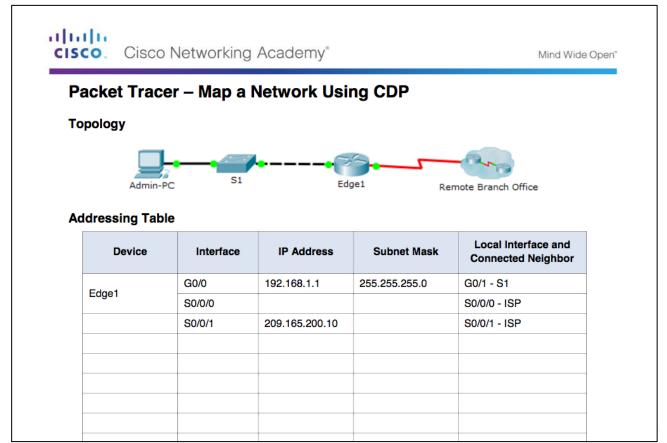
- Other devices connected to S1 can be determined
- S2 is revealed in the output!

```
F0/5 F0/4 S2
```

```
S2# show cdp neighbors

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge

S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone,


D - Remote, C - CVTA, M - Two-port Mac Relay

Device ID Local Intrfce Holdtme Capability Platform Port ID

S1 Fas 0/4 173 S I WS-C2960- Fas 0/4
```

No more devices to discover!

Packet Tracer – Map a Network Using CDP

LLDP Overview

- Link Layer Discovery Protocol
 - Vendor-neutral neighbor discovery similar to CDP
 - Works with routers, switches, and wireless LAN access points
 - Advertises its identity and capabilities to other devices and information from a connected Layer 2 device

IEEE 802.1AB and IEEE 802.3-2012 section 6 clause 79, i RFC

Network Working Group Request for Comments: 4957 Category: Informational S. Krishnan, Ed.
Ericsson Research
N. Montavont
GET ENST Bretagne
E. Njedjou
France Telecom
S. Veerepalli
Qualcomm
A. Yegin, Ed.
Samsung
August 2007

Link-Layer Event Notifications for Detecting Network Attachments

Status of This Memo

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

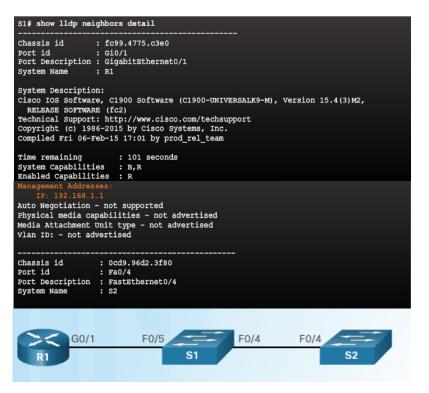
Copyright Notice

Copyright (C) The IETF Trust (2007).

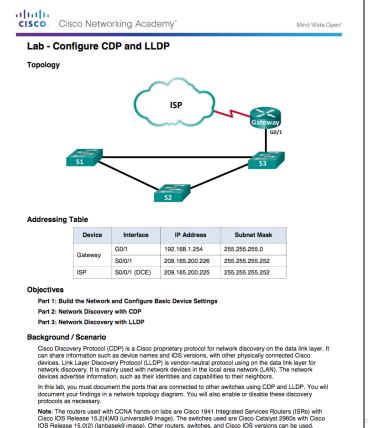
Abstract

Certain network access technologies are capable of providing various types of link-layer status information to IP. Link-layer event notifications can help IP expeditiously detect configuration changes. This document provides a non-exhaustive catalogue of information available from well-known access technologies.


Configure and Verify LLDP


```
Switch# conf t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# lldp run
Switch(config)# interface gigabitethernet 0/1
Switch(config-if)# lldp transmit
Switch(config-if)# lldp receive
Switch# show lldp

Global LLDP Information:
Status: ACTIVE
LLDP advertisements are sent every 30 seconds
LLDP hold time advertised is 120 seconds
LLDP interface reinitialisation delay is 2 seconds
```


- IIdp run enables globally
- LLDP can be configured on separate interfaces, configured separately to transmit and receive
- To disable LLDP globally no lldp run

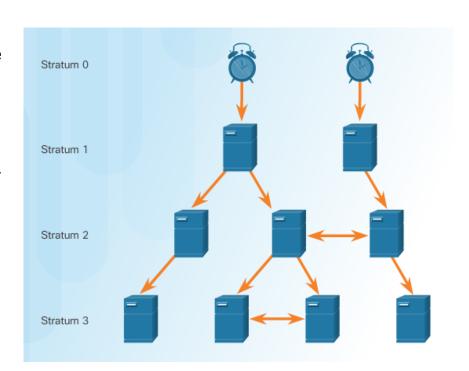
Discover Devices Using LLDP

Lab – Configure CDP and LLDP

10.2 Device Management

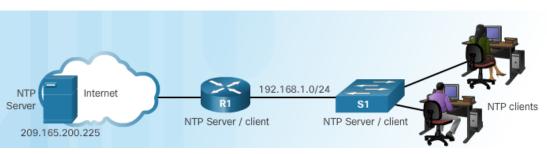
Setting the System Clock

```
R1# clock set 20:36:00 dec 11 2015
R1#
*Dec 11 20:36:00.000: %SYS-6-CLOCKUPDATE: System clock has been updated from 21:32:31
UTC Fri Dec 11 2015 to 20:36:00 UTC Fri Dec 11 2015, configured from console by console.
```


Managing, securing, troubleshooting, and planning networks requires accurate timestamping Date and time settings on a router or switch can be set using one of two methods:

- Manually configure the date and time, as shown in the figure
- Configure the Network Time Protocol (NTP)
 - NTP uses UDP port 123
 - NTP clients obtain time and date from a single source

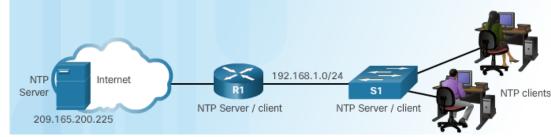
NTP Operation


- Stratum 0 top level of hierarchical system, authoritative time sources, assumed to be accurate
- Stratum 1 directly connected to authoritative sources and act as primary network time standard
- Stratum 2 and Lower connected to stratum 1 devices via network connections, act as servers for stratum 3 devices
- Smaller stratum numbers closer to authoritative time source
- Larger the stratum number, the lower the stratum level (max hop is 15)
- Stratum 16, lowest stratum level, indicates device is unsynchronized

Configure and Verify NTP

Configure Stratum 2 NTP Server

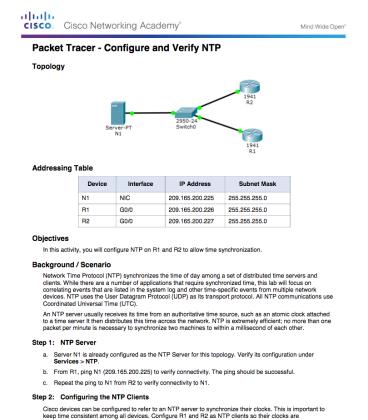
```
R1# show clock detail
20:55:10.207 UTC Fri Dec 11 2015
Time source is user configuration
R1(config)# ntp server 209.165.200.225
R1(config)# end
R1# show clock detail
21:01:34.563 UTC Fri Dec 11 2015
Time source is NTP
```



Verify NTP Server Configuration

```
R1# show ntp associations
  address
                  ref clock
                                             poll reach delay offset
*~209.165.200.225 .GPS.
                                               64 377 0.481 7.480 4.261
 * sys.peer, # selected, + candidate, - outlyer, x falseticker, ~ configured
R1# show ntp status
Clock is synchronized, stratum 2, reference is 209.165.200.225
nominal freq is 250.0000 Hz, actual freq is 249.9995 Hz, precision is 2**19
ntp uptime is 589900 (1/100 of seconds), resolution is 4016
reference time is DA088DD3.C4E659D3 (13:21:23.769 PST Tue Dec 1 2015)
clock offset is 7.0883 msec, root delay is 99.77 msec
root dispersion is 13.43 msec, peer dispersion is 2.48 msec
loopfilter state is 'CTRL' (Normal Controlled Loop), drift is 0.000001803 s/s
system poll interval is 64, last update was 169 sec ago.
```

 R1 is synchronized with a stratum 1 NTP server at 209.165.200.225 which is synchronized with a GPS clock

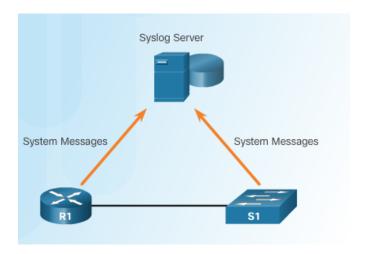
Configure and Verify NTP (Cont.)


Configure Stratum 3 NTP Server


```
S1 (config) # ntp server 192.168.1.1
S1 (config) # end
S1# show ntp associations
  address
                  ref clock
                                       when
                                              poll reach delay offset
*~192.168.1.1
                  209.165.200.225 2
                                         12
                                                     377 1.066 13.616 3.840
 * sys.peer, # selected, + candidate, - outlyer, x falseticker, ~ configured
S1# show ntp status
Clock is synchronized, stratum 3, reference is 192.168.1.1
nominal freq is 119.2092 Hz, actual freq is 119.2088 Hz, precision is 2**17
reference time is DA08904B.3269C655 (13:31:55.196 PST Tue Dec 1 2015)
clock offset is 18.7764 msec, root delay is 102.42 msec
root dispersion is 38.03 msec, peer dispersion is 3.74 msec
loopfilter state is 'CTRL' (Normal Controlled Loop), drift is 0.000003925 s/s
system poll interval is 128, last update was 178 sec ago.
```

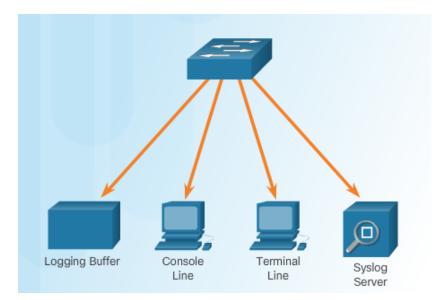
- R1 is a stratum 2 device and NTP server to S1
- S1 is a stratum 3 device that can provide NTP service to end devices

Packet Tracer - Configure and Verify NTP



Introduction to Syslog

Syslog


- Describes a standard and protocol
- Uses UDP port 514
- Send event notification messages across IP networks to event message collectors
- Routers, switches, servers, firewalls support syslog

- Syslog logging service provides three primary functions:
 - Ability to gather logging information for monitoring and troubleshooting
 - Ability to select the type of logging information that is captured
 - Ability to specify the destinations of captured syslog messages

Syslog Operation

- Syslog protocol starts by sending system messages and **debug** output to a local logging process internal to the device.
- How the logging process manages these messages and outputs is based on device configurations.
- Syslog messages may be sent across the network to an external syslog server. Can be pulled into various reports.
- Syslog messages may be sent to an internal buffer. Only viewable through the CLI of the device.

- Destinations for syslog messages include:
 - Logging buffer (RAM inside a router or switch)
 - Console line
 - Terminal line
 - Syslog server

Syslog Message Format

- Cisco devices produce syslog messages as a result of network events
- Every syslog message contains a severity level and a facility.
 - Smaller are more critical

Severity Level	Explanation					
Level 0	System Unusable					
Level 1	Immediate Action Needed					
Level 2	Critical Condition					
Level 3	Error Condition					
Level 4	Warning Condition					
Level 5	Normal, but Significant Condition					
Level 6	Informational Message					
Level 7	Debugging Message					
	Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6					

Syslog Message Format (Cont.)

- Each syslog level has its own meaning:
 - Warning Level 4 Emergency Level 0: Error messages about software or hardware malfunctions; functionality of the device is affected.
 - **Notification Level 5**: The notifications level is for normal events. Interface up or down transitions, and system restart messages are displayed at the notifications level.
 - Informational Level 6: A normal information message that does not affect device functionality.
 For example, when a Cisco device is booting, you might see the following informational
 message: %LICENSE-6-EULA_ACCEPT_ALL: The Right to Use End User License Agreement
 is accepted.
 - Debugging Level 7: This level indicates that the messages are output generated from issuing various debug commands.

Field

seg no

facility

severity

MNFMONIC

description

timestamp

Syslog Message Format (Cont.)

By default, the format of syslog messages on the Cisco IOS Software is:

- seq no: timestamp: %facility-severity-MNEMONIC: description
- Sample output on a Cisco switch for an EtherChannel link changing state to up is:
- 00:00:46: %LINK-3-UPDOWN: Interface Port-

channell, changed state to up

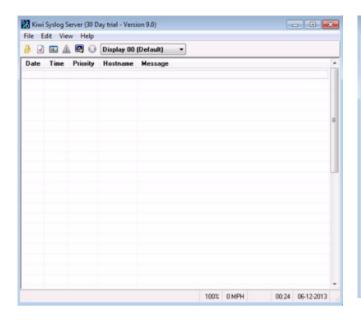
Text string containing detailed information about the event being reported.

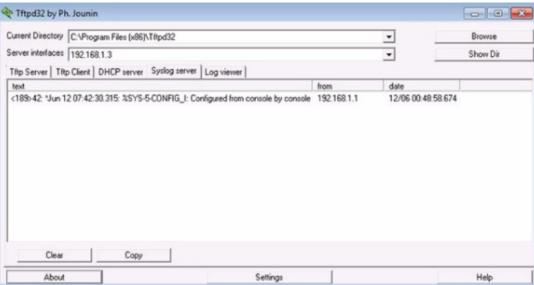
Facility is LINK and the severity level is 3, with a MNFMONIC of UPDOWN.

Text string that uniquely describes the message.

Explanation
Stamps log messages with a sequence number only if the service sequence- numbers global configuration command is configured.
Date and time of the message or event, which appears only if the service timestamps global configuration command is configured.
The facility to which the message refers.
Single-digit code from 0 to 7 that is the severity of the message.

Service Timestamp


- By default, log messages are not timestamped
- Log messages should be timestamped so when sent to destination (syslog server) there is a record of when the message was generated
- Notice date below once timestamp is activated


```
Rl# conf t
Rl(config)# interface g0/0
Rl(config-if)# shutdown
%LINK-5-CHANGED: Interface GigabitEthernet0/0, changed state to administratively down
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed state to dow
Rl(config-if)# exit
Rl(config)# service timestamps log datetime
Rl(config)# interface g0/0
Rl(config-if)# no shutdown
*Mar 1 11:52:42: %LINK-3-UPDOWN: Interface GigabitEthernet0/0, changed state to down
*Mar 1 11:52:45: %LINK-3-UPDOWN: Interface GigabitEthernet0/0, changed state to up
*Mar 1 11:52:46: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed state to up
Rl(config-if)#
```

Syslog Configuration

Syslog Server

To view syslog messages, a syslog server must be installed on a networked PC

Syslog Configuration Default Logging

```
R1# show logging
Syslog logging: enabled (0 messages dropped, 2 messages rate-limited, 0 flushes, 0
overruns, xml disabled, filtering disabled)
No Active Message Discriminator.
No Inactive Message Discriminator.
        Console logging: level debugging, 32 messages logged, xml disabled,
                         filtering disabled
        Monitor logging: level debugging, 0 messages logged, xml disabled,
                         filtering disabled
        Buffer logging: level debugging, 32 messages logged, xml disabled,
                         filtering disabled
        Exception Logging: size (4096 bytes)
        Count and timestamp logging messages: disabled
        Persistent logging: disabled
No active filter modules.
    Trap logging: level informational, 34 message lines logged
        Logging Source-Interface:
Log Buffer (8192 bytes):
*Jan 2 00:00:02.527: %LICENSE-6-EULA ACCEPT ALL: The Right to Use End User License
*Jan 2 00:00:02.631: %IOS LICENSE IMAGE APPLICATION-6-LICENSE LEVEL: Module name =
c1900 Next reboot level = ipbasek9 and License = ipbasek9
*Jan 2 00:00:02.851: %IOS LICENSE IMAGE APPLICATION-6-LICENSE LEVEL: Module name =
c1900 Next reboot level = securityk9 and License = securityk9
*Jun 12 17:46:01.619: %IFMGR-7-NO IFINDEX FILE: Unable to open nvram:/ifIndex-table No
such file or directory
<output omitted>
```

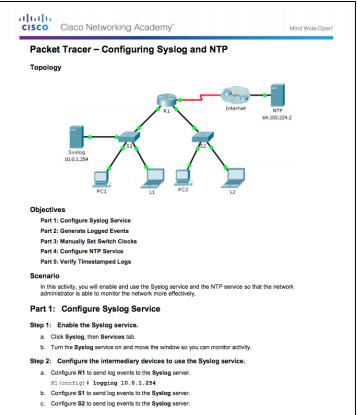
- By default, log messages sent to the console.
- Some IOS versions buffer log messages by default too.
- First highlighted line states that this router logs to the console and includes debug messages.
 - all debug level messages, as well as any lower level messages are logged to the console
- Second highlighted line states that this router logs to an internal buffer.
- System messages that have been logged are at the end of the output.

Syslog Configuration

Router and Switch Commands for Syslog Clients

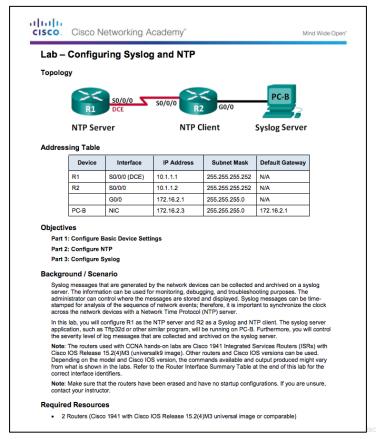
```
R1(config)# logging 192.168.1.3
R1(config)# logging trap 4
R1(config)# logging source-interface g0/0
R1(config)# interface loopback 0
R1(config-if)#
*Jun 12 22:06:02.902: %LINK-3-UPDOWN: Interface Loopback0, changed state to up
*Jun 12 22:06:03.902: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0,
changed state to up
*Jun 12 22:06:03.902: %SYS-6-LOGGINGHOST STARTSTOP: Logging to host 192.168.1.3
port 514 started - CLI initiated
R1(config-if)# shutdown
R1(config-if)#
*Jun 12 22:06:49.642: %LINK-5-CHANGED: Interface Loopback0, changed state to
administratively down
*Jun 12 22:06:50.642: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0,
changed state to down
R1(config-if)# no shutdown
R1(config-if)#
*Jun 12 22:09:18.210: %LINK-3-UPDOWN: Interface Loopback0, changed state to up
*Jun 12 22:09:19.210: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0,
changed state to up
R1(config-if)#
```

- R1 is configured to send log messages of levels 4 and lower to the syslog server at 192.168.1.3
- Source interface is set as the G0/0 interface
- Loopback interface is created, then shut down, and then brought back up
- Console output reflects these actions


Syslog Configuration Verifying Syslog

```
R1# show logging | include changed state to up
*Jun 12 17:46:26.143: %LINK-3-UPDOWN: Interface
GigabitEthernet0/1, changed state to up
*Jun 12 17:46:26.143: %LINK-3-UPDOWN: Interface Serial0/0/1,
changed state to up
*Jun 12 17:46:27.263: %LINEPROTO-5-UPDOWN: Line protocol on
Interface GigabitEthernetO/1, changed state to up
*Jun 12 17:46:27.263: %LINEPROTO-5-UPDOWN: Line protocol on
Interface Serial0/0/1, changed state to up
*Jun 12 20:28:43.427: %LINK-3-UPDOWN: Interface
GigabitEthernet0/0, changed state to up
*Jun 12 20:28:44.427: %LINEPROTO-5-UPDOWN: Line protocol on
Interface GigabitEthernetO/O, changed state to up
*Jun 12 22:04:11.862: %LINEPROTO-5-UPDOWN: Line protocol on
Interface LoopbackO, changed state to up
*Jun 12 22:06:02.902: %LINK-3-UPDOWN: Interface Loopback0,
changed state to up
*Jun 12 22:06:03.902: %LINEPROTO-5-UPDOWN: Line protocol on
Interface LoopbackO, changed state to up
*Jun 12 22:09:18.210: %LINK-3-UPDOWN: Interface LoopbackO,
changed state to up
*Jun 12 22:09:19.210: %LINEPROTO-5-UPDOWN: Line protocol on
Interface LoopbackO, changed state to up
*Jun 12 22:35:55.926: %LINK-3-UPDOWN: Interface Loopback0,
changed state to up
*Jun 12 22:35:56.926: %LINEPROTO-5-UPDOWN: Line protocol on
Interface LoopbackO, changed state to up
```

```
*Jun 12 22:35:46.206: %LINK-5-CHANGED: Interface LoopbackO, changed state to administratively down
*Jun 12 22:35:47.206: %LINEPROTO-5-UPDOWN: Line protocol on
Interface LoopbackO, changed state to down
*Jun 12 22:35:55.926: %LINK-3-UPDOWN: Interface LoopbackO, changed state to up
*Jun 12 22:35:56.926: %LINEPROTO-5-UPDOWN: Line protocol on
Interface LoopbackO, changed state to up
*Jun 12 22:49:52.122: %SYS-5-CONFIG_I: Configured from console by console
*Jun 12 23:15:48.418: %SYS-5-CONFIG_I: Configured from console by console
R1#
```


Syslog Configuration

Packet Tracer – Configuring Syslog and NTP

Syslog Configuration

Lab – Configuring Syslog and NTP

10.3 Device Maintenance

Router and Switch File Maintenance

Router File Systems

Router# show fi File Systems:	le systems			
Size(b)	Free(b)	Туре	Flags	Prefixes
_	_	opaque	rw	archive:
-	_	opaque	rw	system:
_	_	opaque	rw	tmpsys:
-	_	opaque	rw	null:
-	-	network	rw	tftp:
* 256487424	183234560	disk	rw	flash0: flash:#
_	_	disk	rw	flash1:
262136	254779	nvram	rw	nvram:
-	-	opaque	WO	syslog:
-	-	opaque	rw	xmodem:
-	-	opaque	rw	ymodem:
-	-	network	rw	rcp:
-	-	network	rw	http:
-	-	network	rw	ftp:
-	-	network	rw	scp:
-	-	opaque	ro	tar:
-	-	network	rw	https:
-	-	opaque	ro	cns:

- show file systems lists all the available file systems
- Provides information such as memory, type of file system, and permissions (read only (ro), read and write (rw))
- Interested in tftp, flash, and nvram file systems
- Bootable IOS is located in flash so has a *

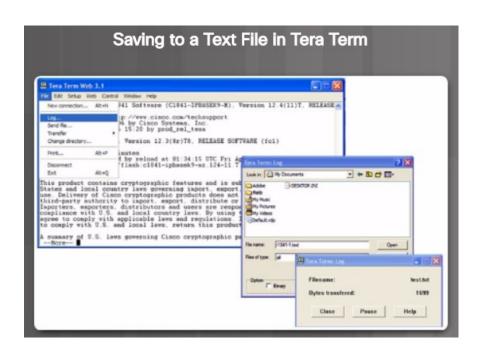
Router and Switch File Maintenance Router File Systems (Cont.)

```
Router# dir
Directory of flash0:/
 1 -rw-
            2903 Sep 7 2012 06:58:26 +00:00
                                            cpconfig-
                                             19xx.cfg
2 -rw- 3000320 Sep 7 2012 06:58:40 +00:00 cpexpress.tar
            1038 Sep 7 2012 06:58:52 +00:00
                                            home.shtml
         122880 Sep 7 2012 06:59:02 +00:00
                                            home.tar
        1697952 Sep 7 2012 06:59:20 +00:00
                                            securedesktop-
                                             ios-3.1.1.45-k9.pkg
         415956 Sep 7 2012 06:59:34 +00:00 sslclient-win-
                                             1.1.4.176.pkg
 7 -rw- 67998028 Sep 26 2012 17:32:14 +00:00 c1900-
                                             universalk9-
                                             mz.SPA.152-4.M1.bin
256487424 bytes total (183234560 bytes free)
```

- dir lists the contents of flash
- Last listing is the name of the current Cisco IOS file that is running in RAM

```
Router# cd nvram:
Router#pwd
nvram:/
Router#dir
Directory of nvram:/
                   1156
                             <no date>
                                        startup-config
  253
                                        private-config
                             <no date>
                                        underlying-config
                   1156
                             <no date>
                                        cwmp inventory
                   2945
                             <no date>
       -rw-
                             <no date>
                                        persistent-data
                                        ecfm ieee mib
                             <no date>
                                        IOS-Self-Sig#1.cer
                    559
                             <no date>
262136 bytes total (254779 bytes free)
```

- To view the contents of NVRAM, change the current default file system using the cd (change directory) command
- pwd (present working directory) command verifies that we are viewing the NVRAM directory
- dir lists the contents of NVRAM, included is the startup-configuration file


Switch File Systems

Switch# show file systems File Systems:								
	Size(b)	Free(b)	Туре	Flags	Prefixes			
*	32514048	20887552	flash	rw	flash:			
	-	-	opaque	rw	vb:			
	-	-	opaque	ro	bs:			
	-	-	opaque	rw	system:			
	-	-	opaque	rw	tmpsys:			
	65536	48897	nvram	rw	nvram:			
	-	-	opaque	ro	xmodem:			
	-	-	opaque	ro	ymodem:			
	-	-	opaque	rw	null:			
	-	-	opaque	ro	tar:			
	-	-	network	rw	tftp:			
	-	-	network	rw	rcp:			
	-	-	network	rw	http:			
	-	-	network	rw	ftp:			
	-	-	network	rw	scp:			
	-	-	network	rw	https:			
	-	-	opaque	ro	cns:			

Command is same as with the router!

Backing up and Restoring using Text Files

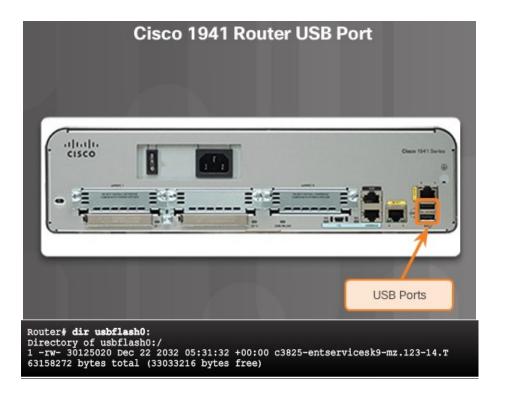
- On the File menu, click Log.
- 2. Choose the location to save the file. Tera Term will begin capturing text.
- 3. After capture has been started, execute the show running-config or show startup-config command at the privileged EXEC prompt. Text displayed in the terminal window will be directed to the chosen file.
- 4. When the capture is complete, select Close in the Tera Term Log window.
- 5. View the file to verify that it was not corrupted.

Backing up and Restoring using Text Files (Cont.)

Restoring Text Configurations

- A configuration can be copied from a file to a device.
- When copied from a text file and pasted into a terminal window, the IOS executes each line of the configuration text as a command.
- At the CLI, the device must be set at the global configuration mode to receive the commands from the text file being pasted into the terminal window.

When using Tera Term, the steps are:


- Step 1. On the File menu, click Send file.
- Step 2. Locate the file to be copied into the device and click Open.
- Step 3. Tera Term will paste the file into the device.
- Note: The text in the file will be applied as commands in the CLI and become the running configuration on the device.

Backing up and Restoring using TFTP

- Configuration files should be backed up and included in network documentation
- Commands copy running-config tftp (see figure) or copy startup-config tftp
- To restore the running configuration or the startup configuration from a TFTP server, use copy tftp running-config or copy tftp startup-config command

```
R1# copy running-config tftp
Remote host []? 192.168.10.254
Name of the configuration file to write[R1-config]? R1-Jan-2016
Write file R1-Jan-2016 to 192.168.10.254? [confirm]
Writing R1-Jan-2016 !!!!!! [OK]
```

Using USB Ports on a Cisco Router

- Certain models of Cisco routers support USB flash drives.
- USB can be used for storage and booting.
- USB flash can hold multiple copies of the Cisco IOS and multiple router configurations.
- Use the dir command to view the contents of the USB flash drive.

Backing up and Restoring Using USB

```
R1# show file systems
File Systems:
       Size(b)
                                   Type Flags
                                                 Prefixes
                     Free (b)
                                                  archive:
                                 opaque
                                             rw
                                 opaque
                                                  system:
                                 opaque
                                                  tmpsys:
                                                  null:
                                 opaque
                                network
                                                  tftp:
                                                  flash0: flash:#
     256487424
                   184819712
                                   disk
                                   disk
                                                  flash1:
        262136
                       249270
                                                  nvram:
                                  nvram
                                                  syslog:
                                 opaque
                                                  xmodem:
                                 opaque
                                                  ymodem:
                                 opaque
                                network
                                                  rcp:
                                                  http:
                                network
                                             rw
                                                  ftp:
                                network
                                network
                                                  scp:
                                             rw
                                 opaque
                                                  tar:
                                             ro
                                network
                                                  https:
                                 opaque
                                                  cns:
                              usbflash
                                                  usbflash0:
    4050042880
                  3774152704
                                   Shows the USB port and name: "usbflash0:"
```

show file systems verifies
 USB drive and name

Backing up and Restoring Using USB (Cont.)

```
R1# copy running-config usbflash0:
Destination filename [running-config]? R1-Config
5024 bytes copied in 0.736 secs (6826 bytes/sec)

Copying to USB flash drive, and no file pre-exists.
```

```
R1# copy running-config usbflash0:
Destination filename [running-config]? R1-Config
%Warning:There is a file already existing with this name
Do you want to over write? [confirm]
5024 bytes copied in 1.796 secs (2797 bytes/sec)

Copying to USB flash drive, and the same configuration file already exists on the drive.
```

- copy run usbflash0:/ command copies the running-config file to the USB flash drive (slash is optional but indicates the root directory of the USB flash drive)
- IOS will prompt for the filename
- If the file already exists on the USB flash drive, the router will prompt to overwrite

Backing up and Restoring Using USB (Cont.)

```
R1# dir usbflash0:/
Directory of usbflash0:/
               0 Oct 15 2010 16:28:30 +00:00 Cisco
   16 -rw- 5024 Jan 7 2013 20:26:50 +00:00 R1-Config
4050042880 bytes total (3774144512 bytes free)
R1# more usbflash0:/R1-Config
! Last configuration change at 20:19:54 UTC Mon Jan 7 2013 by
admin version 15.2
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
hostname R1
boot-start-marker
boot-end-marker
logging buffered 51200 warnings
no aaa new-model
no ipv6 cef
```

- Use the dir command to see the file on the USB drive
- Use the more command to see the contents
- Use copy usbflash0:/R1-Config running-config to restore running config

Password Recovery

```
Readonly ROMMON initialized

monitor: command "boot" aborted due to user interrupt
rommon 1 > confreg 0x2142
rommon 2 > reset

System Bootstrap, Version 15.0(1r)M9, RELEASE SOFTWARE (fc1)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 2010 by cisco Systems, Inc.
<output omitted>
```

```
Router# copy startup-config running-config
Destination filename [running-config]?

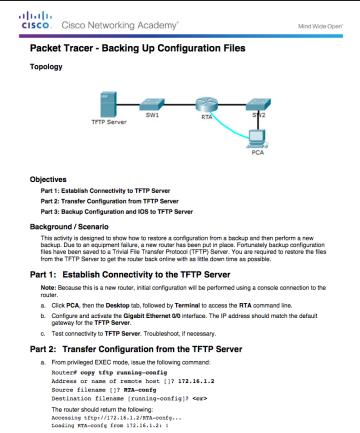
1450 bytes copied in 0.156 secs (9295 bytes/sec)
Router# conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# enable secret cisco
Router(config)# config-register 0x2102
Router(config)# end
Router# copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
```

Step 1. Enter the ROMMON mode.

With console access, a user can access the ROMMON mode by using a break sequence during the boot up process or removing the external flash memory when the device is powered off.

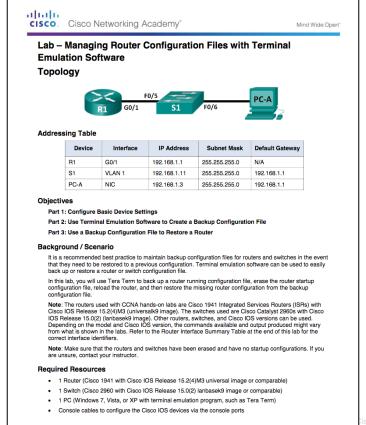
Step 2. Change the configuration register to 0x2142 to ignore the startup config file.

- Use the confreg 0x2142 command
- Type reset at the prompt to restart the device

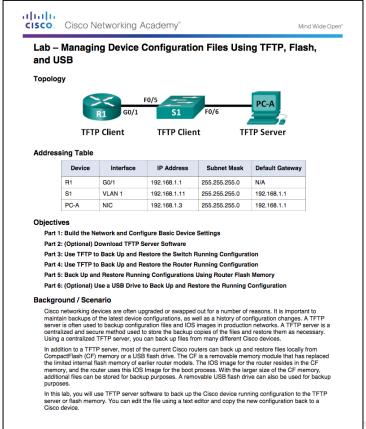

Step 3. Make necessary changes to the original startup config file.

- Copy the startup config to the running config
- Configure all necessary passwords
- Change the configuration register back to 0X2102

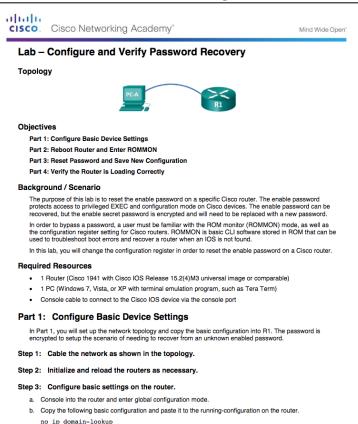
Step 4. Save the new configuration.



Packet Tracer – Backing Up Configuration Files

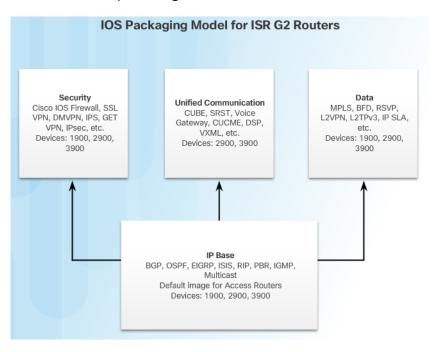


Lab – Managing Router Configuration Files with Tera Term



Lab – Managing Device Configuration Files Using TFTP, Flash, and USB

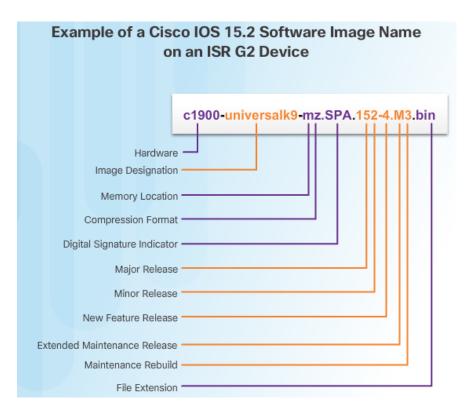
Lab – Researching Password Recovery Procedures



service password-encryption

IOS System Files

IOS 15 System Image Packaging


 G2 router is shipped with a single universal Cisco IOS and a license is used to enable the specific feature set packages.

- Each router ships with one of two types of universal images in ISR G2:
 - "universalk9" offers all of the Cisco IOS software features, including strong payload cryptography features, such as IPsec VPN, SSL VPN, and Secure Unified Communications
 - "universalk9_npe" some countries have import requirements that require that the platform does not support any strong cryptography functionality, this image does not support any strong payload encryption
- Features are activated through licensing.
- Other technology packages enabled using Cisco Software Activation licensing keys.

IOS System Files

IOS Image Filenames

Displays the files stored in flash memory

```
R1# show flash0:
-# - --length-- -----date/time----- path

8 68831808 Apr 2 2013 21:29:58 +00:00 c1900-universalk9-mz.SPA.152-4.M3.bin

182394880 bytes available (74092544 bytes used)

R1#
```

- The most common designation for memory location and compression format is mz. The first letter indicates the location where the image is executed on the router. The locations can include:
 - f flash
 - m RAM
 - r ROM
 - I relocatable
- The compression format can be z for zip or x for mzip.

TFTP Servers as a Backup Location

- Cisco IOS Software images and configuration files can be stored on a central TFTP server.
- It is good practice to keep a backup copy of the Cisco IOS Software image in case the system image in the router becomes corrupted or accidentally erased.
- Using a network TFTP server allows image and configuration uploads and downloads over the network. The network TFTP server can be another router, a workstation, or a host system.

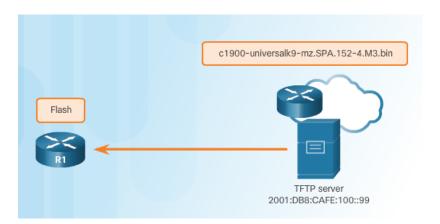
Steps to Backup IOS Image to TFTP Server

The network administrator wants to create a backup of the current image file on the router (c1900universalk9-mz.SPA.152-4.M3.bin) to the TFTP server at 172.16.1.100.

```
Verify connectivity to the server.

R1# ping 172.16.1.100

Type escape sequence to abort.


Sending 5, 100-byte ICMP Echos to 172.16.1.100, timeout is 2

seconds:
!!!!!

Success rate is 100 percent (5/5),
round-trip min/avg/max = 56/56/56 ms
```

Steps to Backup IOS Image to TFTP Server (Cont.)

Steps to Copy an IOS Image to a Device

A new image file (c1900-universalk9-mz.SPA.152-4.M3.bin) will be copied from the TFTP server at 2001:DB8:CAFE:100::99 to the router.

```
Verify connectivity to the server.

R1# ping 2001:DB8:CAFE:100::99

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 2001:DB8:CAFE:100::99,

timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5),

round-trip min/avg/max = 56/56/56 ms
```

Steps to Copy an IOS Image to a Device (Cont.)

```
Verify free flash size.

R1# show flash0:
-# - --length-- -----date/time----- path
<output omitted>

182394880 bytes available (74092544 bytes used)

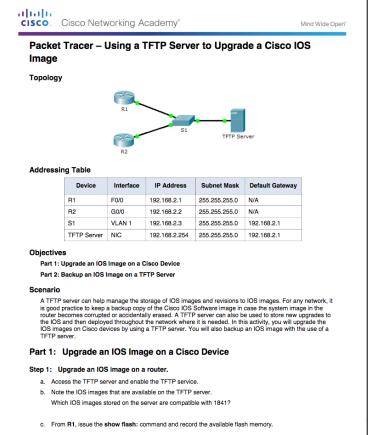
R1#
```

The boot system Command

To upgrade to the copied IOS image after that image is saved on the router's flash memory, configure the router to load the new image during boot up using the **boot system** command.

```
Set the image to boot and reload the system.

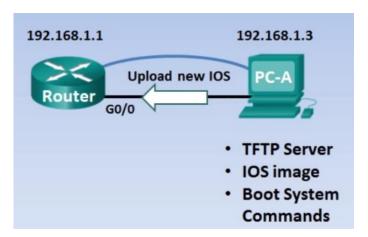
R1# configure terminal
R1 (config)# boot system
flash0://c1900-universalk9-mz.SPA.152-4.M3.bin
R1 (config)# exit
R1# copy running-config startup-config
R1# reload
```

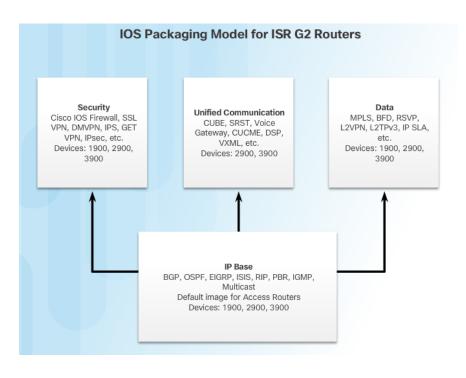

```
R1# show version
Cisco IOS Software, C1900 Software (C1900-UNIVERSALK9-M), Version 15.2(4)M3,
RELEASE SOFTWARE (fc2)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2013 by Cisco Systems, Inc.
Compiled Tue 26-Feb-13 02:11 by prod_rel_team

ROM: System Bootstrap, Version 15.0(1r)M15, RELEASE SOFTWARE (fc1)

R1 uptime is 1 hour, 2 minutes
System returned to ROM by power-on
System image file is "flash0:
c1900-universalk9-mz.SPA.152-4.M3.bin"
```

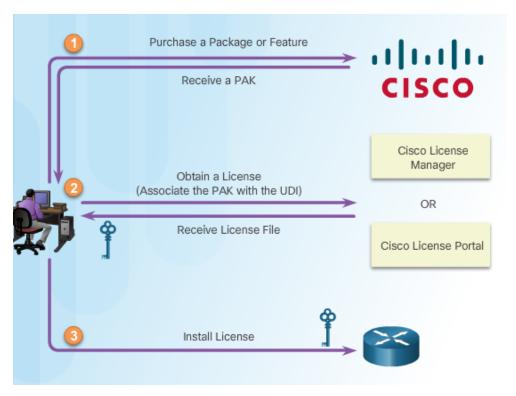
- To verify the new image has loaded, use the show version command.
- Several boot system commands can be entered to provide a faulttolerant boot plan.
- If there is no boot system commands, the router defaults to loading the first valid Cisco IOS image in flash memory.


Packet Tracer - Using a TFTP Server to Upgrade a Cisco IOS Image

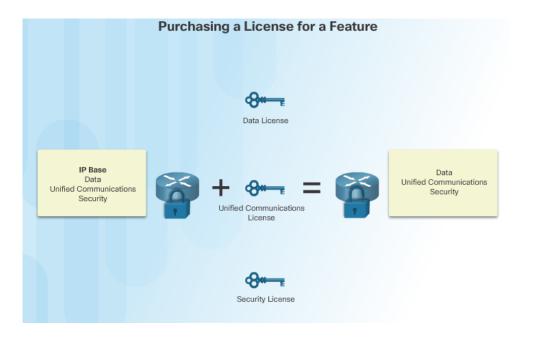

Video Demonstration - Managing Cisco IOS Images

Objective:

- Use a TFTP server to upload an updated IOS image file to a Cisco Router.
- Use the boot system command to boot the router to the new IOS image file.
- Reload the router and successfully boot to the new IOS image file.



Licensing Overview


- Each device ships with the same universal image.
- Technology packages are enabled in the universal image via Cisco Software Activation licensing keys.
- The Cisco IOS Software Activation feature allows the user to enable licensed features and register licenses.
- Technology packages that are available:
 - IP Base
 - Data
 - Unified Communications (UC)
 - Security (SEC)

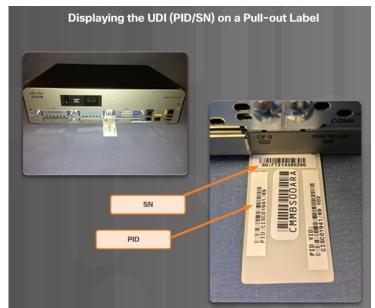
Licensing Process

- The figure shows the three steps to permanently activate a new software package or feature on a router.
- PAK Product Activation Key
- UDI Unique Device Identifier

Step 1. Purchase the Software Package or Feature to Install

- Customers receive a PAK with purchase that serves as a receipt and is used to obtain a license.
- A PAK is an 11 digit alpha numeric key created by Cisco manufacturing. It defines the Feature Set associated with the PAK.
- As shown in the figure, a separate license is required for each package, IP Base, Data, UC, and SEC.

Step 2. Obtain a License


- The UDI is a combination of the Product ID (PID), the Serial Number (SN), and the hardware version. The SN is an 11 digit number which uniquely identifies a device. The PID identifies the type of device. Only the PID and SN are used for license creation.
- This UDI can be displayed using the show license udi command shown.

```
R1# show license udi

Device# PID SN UDI

-----
*0 CISCO1941/K9 FTX1636848Z CISCO1941/K9:FTX1636848Z

R1#
```


Step 3. Install the License

```
R1# license install flash0:securityk9-CISCO1941-FHH12250057.lic
Installing licenses from "flash0:securityk9-CISCO1941-FHH12250057.lic"
Installing...Feature:securityk9...Successful:Supported
1/1 licenses were successfully installed
0/1 licenses were existing licenses
0/1 licenses were failed to install
R1#

*Jul 30 10:47:41.648: %IOS_LICENSE_IMAGE_APPLICATION-6-LICENSE_LEVEL: Module name =
c1941 Next reboot level = securityk9 and License = securityk9

*Jul 30 10:47:42.036: %LICENSE-6-INSTALL: Feature securityk9 1.0 was installed in this
device. UDI=CISCO1941:FHH12250057; StoreIndex=0:Primary License Storage
R1# reload
```

A permanent license is a license that never expires. After a permanent license is installed on a router, it is good for that particular feature set for the life of the router, even across IOS versions.

License Verification

Permanent License Verification							
R1# show version <output omitted=""> License Info: License UDI:</output>							
Device#	PID	sn					
*0	CISCO1941/K9	FTX1636848Z					
Technology	Package License	Information for Module: c1900'					
Technology	Technology	Package	Technology-package				
	Current	Type	Next reboot				
ipbase	ipbasek9	Permanent	ipbasek9				
security	seck9	Permanent	seck9				
uc	None	None	None				
data	None	None	None				

Activate an Evaluation Right-To-Use License

Evaluation License Installation

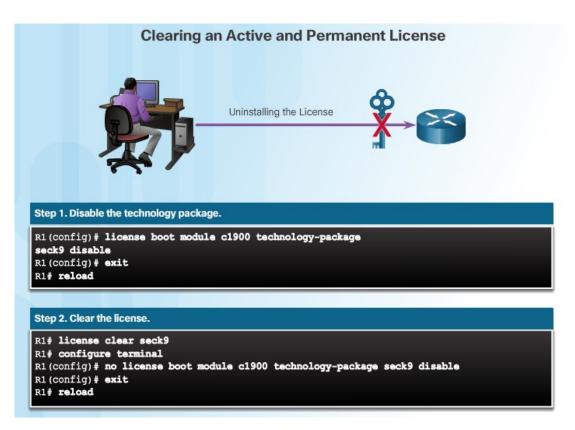
```
R1(config) # license accept end user agreement
R1(config) # license boot module c1900 technology-package
datak9
% use 'write' command to make license boot config take effect
on next boot
R1(config) #
*Apr 25 23:15:01.874: %IOS_LICENSE_IMAGE_APPLICATION-6-
LICENSE_LEVEL: Module name = c1900 Next reboot level = datak9
and License = datak9
*Apr 25 23:15:02.502: %LICENSE-6-EULA_ACCEPTED: EULA for
feature datak9 1.0 has been accepted.
UDI=CISCO1941/K9:FTX1636848Z; StoreIndex=1:Built-In License
Storage
R1(config) #
```

Evaluation License Verification

```
R1# show license
Index 1 Feature: ipbasek9
        Period left: Life time
       License Type: Permanent
        License State: Active, In Use
        License Count: Non-Counted
       License Priority: Medium
Index 2 Feature: securityk9
        Period left: Life time
       License Type: Permanent
        License State: Active, In Use
        License Count: Non-Counted
       License Priority: Medium
Index 3 Feature: datak9
        Period left: 8 weeks 4 days
        Period Used: 0 minute 0 second
       License Type: EvalRightToUse
       License State: Active, Not in Use, EULA accepted
        License Count: Non-Counted
       License Priority: Low
<output omitted >
```

Back up the License

- The license save command is used to copy all licenses in a device and store them.
- Saved licenses are restored by using the license install command.
- The command to back up a copy of the licenses on a device is:
 - Router# license save file-sys://lic-location
- Use the show flash0: command to verify that the licenses have been saved.

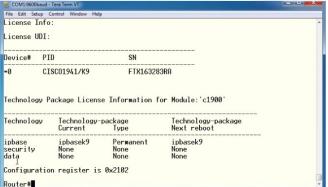

```
R1# license save flash0:all_licenses.lic
license lines saved .... to flash0:all_licenses.lic

R1# show flash0:
-# - --length-- -----date/time----- path
<output omitted>
8 68831808 Apr 2 2013 21:29:58 +00:00
c1900-universalk9-mz.SPA.152-4.M3.bin
9 1153 Apr 26 2013 02:24:30 +00:00 all_licenses.lic

182390784 bytes available (74096640 bytes used)

R1#
```

Uninstall the License



 Only licenses that have been added by using the license install command are removed.

Video Demonstration - Working with IOS 15 Image Licenses

Objective

- Identify the additional licensing types of Cisco ISR-G2 routers
- Identify the differences between permanent licensing and evaluation right-to-use licensing
- Activate the security technology package on a Cisco 1941 router
- Accept the end user license agreement
- Verify the securityk9 license and save it to flash memory

10.4 Chapter Summary

Conclusion

Packet Tracer – Skills Integration Challenge

Conclusion

Chapter 10: Device Discovery, Management, and Maintenance

- Use discovery protocols to map a network topology.
- Configure NTP and Syslog in a small to medium-sized business network.
- Maintain router and switch configuration and IOS files.

