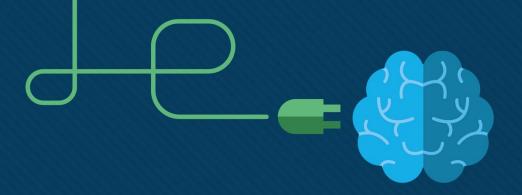





# Chapter 2: Static Routing

**Instructor Materials** 

**CCNA** Routing and Switching


Routing and Switching Essentials v6.0



# Chapter 2: Static Routing

Routing and Switching Essentials 6.0 Planning Guide





# Chapter 2: Static Routing

**CCNA Routing and Switching** 

Routing and Switching Essentials v6.0



# Chapter 2 - Sections & Objectives

#### 2.1 Static Routing Advantages

- Explain how static routes are implemented in a small to medium-sized business network.
- Explain advantages and disadvantages of static routing.
- Explain the purpose of different types of static routes.

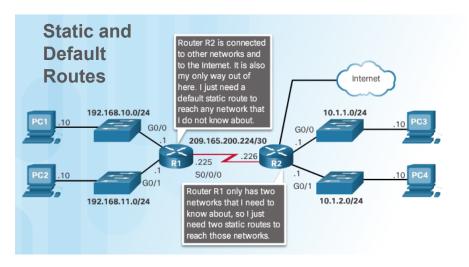
#### 2.2 Configure Static and Default Routes

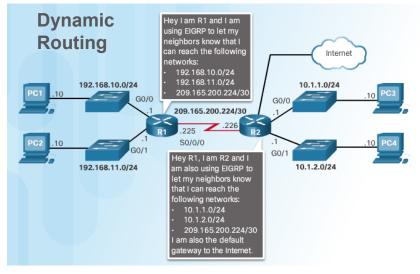
- Configure static routes to enable connectivity in a small to medium-sized business network.
- Configure IPv4 static routes by specifying a next-hop address.
- Configure an IPv4 default route.
- Configure IPv6 static routes by specifying a next-hop address.
- Configure an IPv6 default route.
- Configure a floating static route to provide a backup connection.
- Configure IPv4 and IPv6 static host routes that direct traffic to a specific host.



# Chapter 2 - Sections & Objectives (Cont.)

- 2.3 Troubleshoot Static and Default Routes
  - Given an IP addressing scheme, configure IP address parameters on devices to provide end-to-end connectivity in a small to medium-sized business network.
  - Explain how a router processes packets when a static route is configured.
  - Troubleshoot common static and default route configuration issues.





# 2.1 Implement Static Routes

### Static Routing

### Reach Remote Networks

- A router learns about remote networks in two ways:
  - Manually entered into the route table using static routes
    - Static routes are not automatically updated and must be reconfigured when topology changes
  - Dynamically (Automatically) learned using a routing protocol

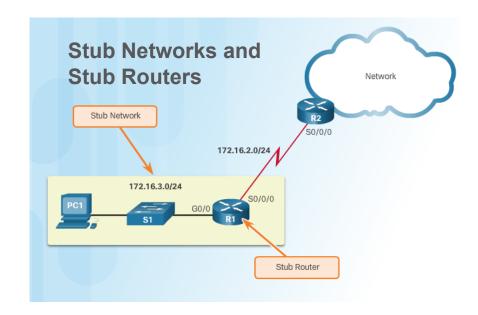




# Static Routing Why Use Static Routing?

# **Dynamic versus Static Routing**

|                             | Dynamic Routing                            | Static Routing                          |
|-----------------------------|--------------------------------------------|-----------------------------------------|
| Configuration<br>Complexity | Generally independent of the network size  | Increases with network size             |
| Topology Changes            | Automatically adapts to topology changes   | Administrator intervention required     |
| Scaling                     | Suitable for simple and complex topologies | Suitable for simple topologies          |
| Security                    | Less secure                                | More secure                             |
| Resource Usage              | Uses CPU, memory, link bandwith            | No extra resources needed               |
| Predictability              | Route depends on the current topology      | Route to destination is always the same |



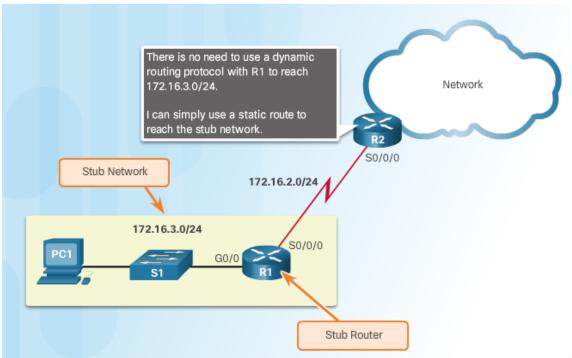

#### Static Routing

# When to Use Static Routes

#### Three uses for static routes:

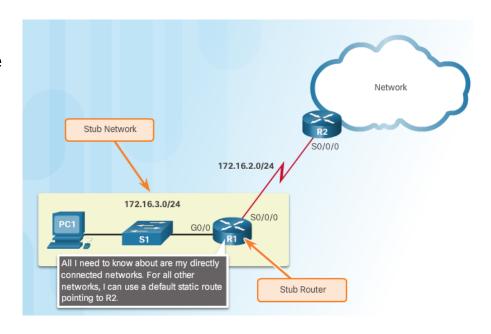
- Smaller networks that are not expected to grow
- Routing to and from stub networks
  - Stub network accessed by a single route and has one neighbor
  - 172.16.3.0 is a stub network
- A single default route to represent a path to any network not found in the routing table
  - Use default route on R1 to point to R2 for all other networks




# Static Route Applications

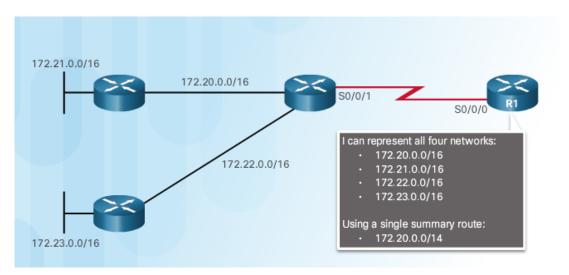
#### Use Static Routes To:

- Connect to a specific network
- Connect a stub router
- Summarize routing table entries which reduces size of routing advertisements
- Create a backup route in case a primary route link fails


# Standard Static Route

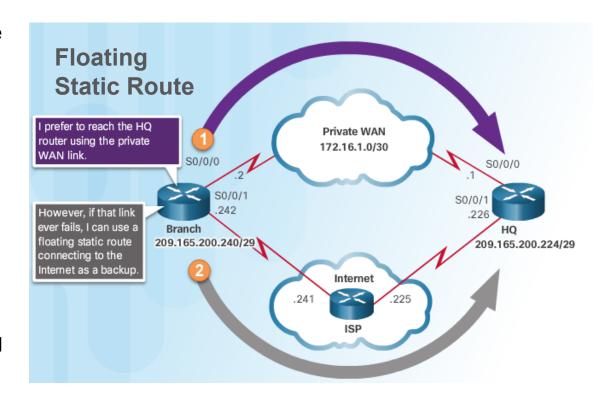
R2 configured with a static route to reach the stub network 172.16.3.0/24




# **Default Static Route**

- Default route matches all packets and is used when a packet does not match a specific route in the routing table
- Can be dynamically learned or statically configured
- Default Static route uses 0.0.0.0/0 as the destination IPv4 address
- Creates a Gateway of Last Resort
- Common use is when connecting a company's edge router to the ISP network
- Router has only one router to which it is connected




# **Summary Static Route**

- Multiple static routes can be summarized into a single network address
  - Destination networks must be contiguous
  - Multiple static routes must use the same exit interface or next hop
  - In figure, four networks is summarized into one summary static route



# Floating Static Route

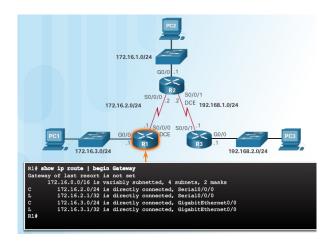
- Static routes that are used to provide a backup path
- Used when primary route is not available
- Configured with a higher administrative distance (trustworthiness) than the primary route
- Example: EIGRP administrative distance equals 90. A floating static route with an AD of 91 or higher would serve as backup route and will be used if EIGRP route goes down.

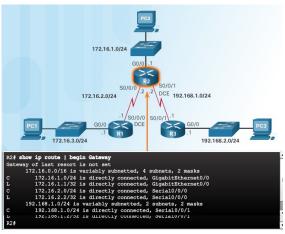


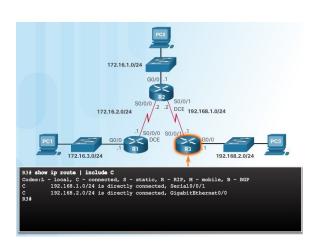
# 2.2 Configure Static and Default Routes

# ip route Command

# ip route Command Syntax


Router(config) # ip route network-address subnet-mask (ip-address | exit-intf)

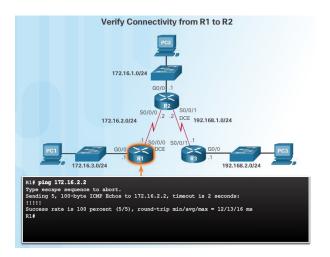

| Parameter       | Description                                                                                                                                                                                                                             |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| network-address | Destination network address of the remote network to be added to the routing table                                                                                                                                                      |
| subnet-mask     | <ul> <li>Subnet mask of the remote network to be added to the routing table.</li> <li>The subnet mask can be modified to summarize a group of networks.</li> </ul>                                                                      |
| ip-address      | <ul> <li>Commonly referred to as the next-hop router's IP address.</li> <li>Typically used when connecting to a broadcast media (i.e., Ethernet).</li> <li>Commonly creates a recursive lookup</li> </ul>                               |
| exit-intf       | <ul> <li>Use the outgoing interface to forward packets to the destination network.</li> <li>Also referred to as a directly attached static route.</li> <li>Typically used when connecting in a point-to-point configuration.</li> </ul> |
| distance        | <ul> <li>(Optional) Configures an administrative distance.</li> <li>Typically used to configure a floating static route.</li> </ul>                                                                                                     |

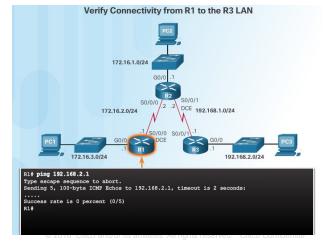



# Configure IPv4 Static Routes Next-Hop Options

In this example, each router only has entries for directly connected network

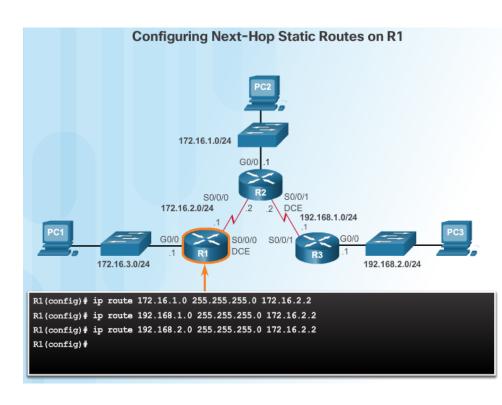




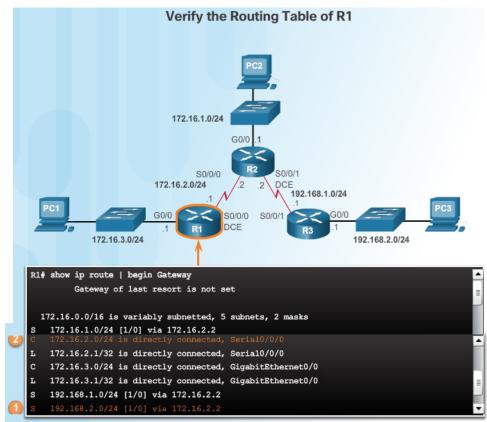



# Next-Hop Options (Cont.)


- R1 does not have an entry in its routing table for the R3 LAN network
- In a static route next-hop can be identified by
  - Next-hop IP address
  - Router exit interface
  - Next-hop IP address and exit interface

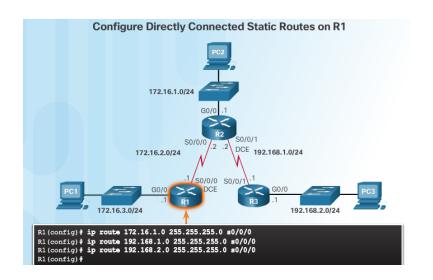


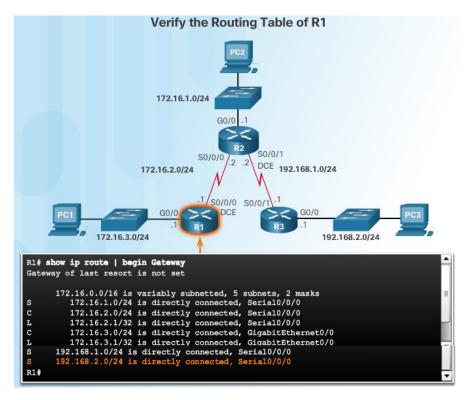



# Configure a Next-Hop Static Route

- In this example, only the next-hop IP address is specified
- Before packet is forwarded the router must determine the exit interface to use (route resolvability)




# Configure a Next-Hop Static Route (Cont.)


- In example, when a packet is destined for 192.168.2.0/24 network, R1:
  - Looks for match (#1) and needs to forward packets to 172.16.2.2
  - R1 must determine how to reach 172.16.2.2 first
  - Searches a second time for 172.16.2.0/24 (#2) and matches to exit interface s0/0/0
  - Takes two routing table lookups, process referred to as recursive lookup
  - If the exit interface is "down" or "administratively down" then the static route configured with next-hop will not be installed in routing table

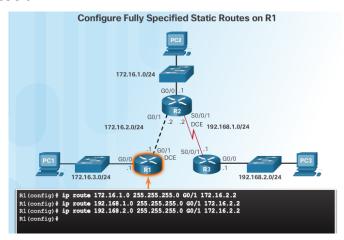


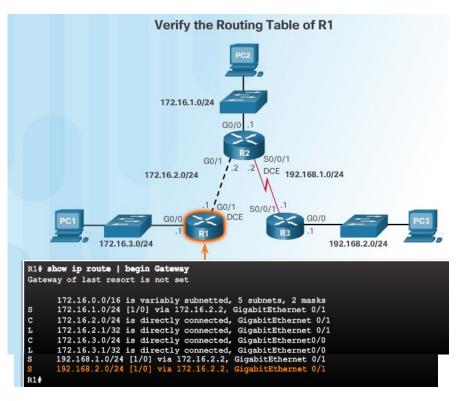
# Configure a Directly Connected Static Route

- Use the exit interface to specify next-hop so no other lookups are required
- Administrative distance of static route is 1



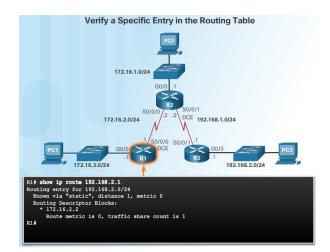


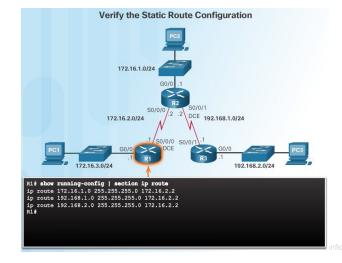

# Configure a Directly Connected Static Route (Cont.)


- Cisco Express Forwarding (CEF)
  - default behavior on IOS 12.0 or later
  - provides optimized lookup
  - uses a Forwarding Information Base (FIB) which is a copy of the routing table and an adjacency table that includes Layer 2 addresses
  - no recursive lookup needed for next-hop IP address lookups



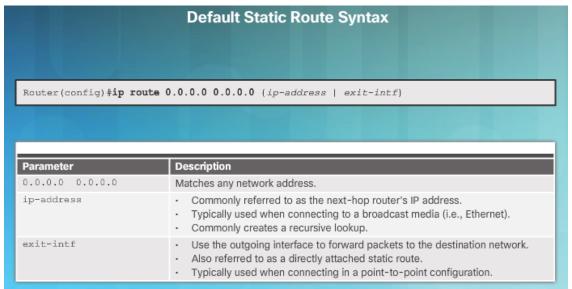
# Configure a Fully Specified Static Route


- Both the exit interface and the next-hop IP address are specified
- When exit interface is an Ethernet network, fully specified static route is used
- Note: With CEF, a next-hop address could be used instead



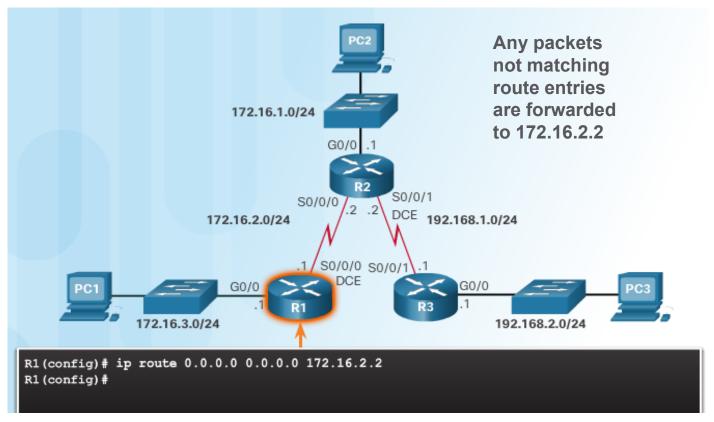



# Configure IPv4 Static Routes Verify a Static Route


### Verify the Routing Table of R1 172.16.1.0/24 50/0/0 DCE 192.168.1.0/24 172.16.2.0/24 S0/0/0 S0/0/1 172.16.3.0/24 192.168.2.0/24 R1# show ip route static | begin Gateway Gateway of last resort is not set 172.16.0.0/16 is variably subnetted, 5 subnets, 2 masks 172.16.1.0/24 [1/0] via 172.16.2.2 192.168.1.0/24 [1/0] via 172.16.2.2 192.168.2.0/24 [1/0] via 172.16.2.2 R1#



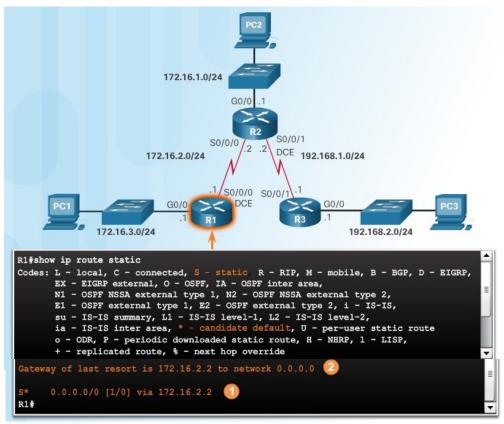



## **Default Static Route**

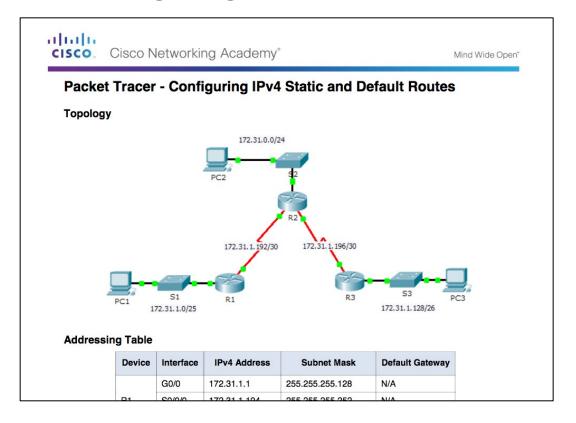
- Default static routes are commonly used when connecting:
  - An edge router to a service provider network
  - A stub router (a router with only one upstream neighbor router)
- Default route is used when no other routes in the routing table match the destination IP





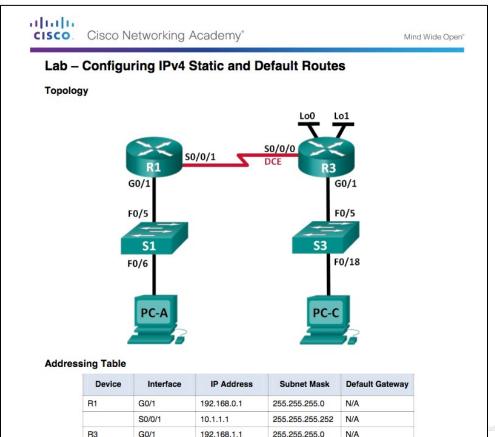

# Configure a Default Static Route






# Verify a Default Static Route

- show ip route static displays just the static routes
  - S indicates static route
  - candidate default route indicated by \*
  - /0 mask in route entry indicates none of the bits are required to match




# Packet Tracer – Configuring IPv4 Static and Default Routes

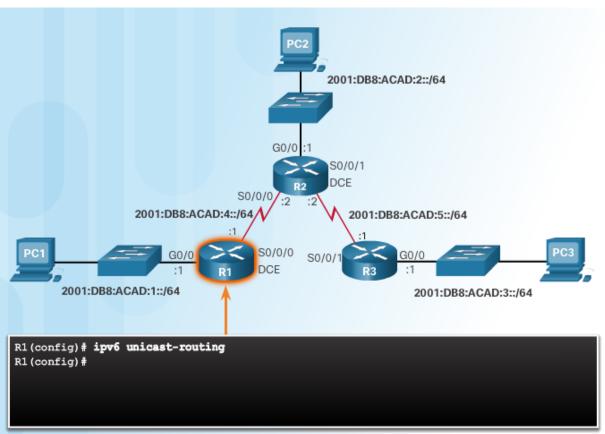




# Lab – Configuring IPv4 Static and Default Routes

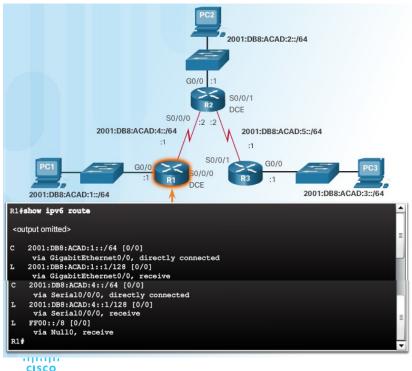


# The ipv6 route Command


Router(config) # ipv6 route ipv6-prefix/prefix-length {ipv6-address | exit-intf}

| Parameter     | Description                                                                                                                                                                                                                             |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ipv6-prefix   | Destination network address of the remote network to be added to the routing table.                                                                                                                                                     |
| prefix-length | Prefix length of the remote network to be added to the routing table.                                                                                                                                                                   |
| ipv6-address  | <ul> <li>Commonly referred to as the next-hop router's IP address.</li> <li>Typically used when connecting to a broadcast media (i.e., Ethernet).</li> <li>Commonly creates a recursive lookup.</li> </ul>                              |
| exit-intf     | <ul> <li>Use the outgoing interface to forward packets to the destination network.</li> <li>Also referred to as a directly attached static route.</li> <li>Typically used when connecting in a point-to-point configuration.</li> </ul> |



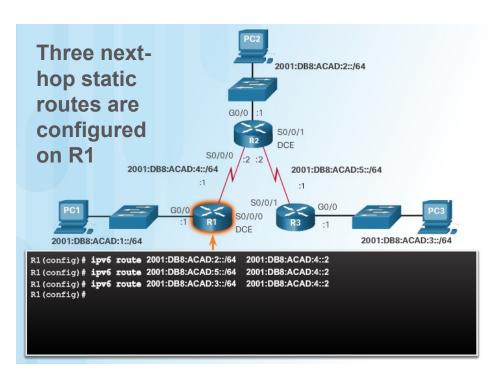

# The ipv6 route Command (Cont.)

ipv6 unicast-routing enables the router to forward IPv6 packets



# **Next-Hop Options**

- Each router only knows about directly connected networks
  - R1 can **ping** R2 (ipv6 2001:DB8:ACAD:4::2) but cannot **ping** R3 (ipv6 2001:DB8:ACAD:3::2)



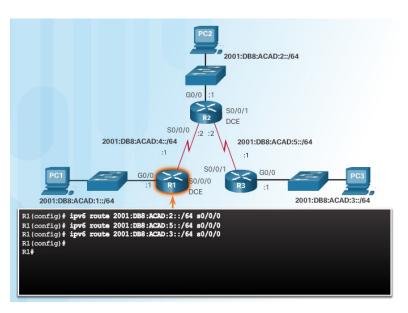

```
R2#show ipv6 route
 <output omitted>
   2001:DB8:ACAD:2::/64 [0/0]
     via GigabitEthernet0/0, directly connected
    2001:DB8:ACAD:2::1/128 [0/0]
     via GigabitEthernet0/0, receive
   2001:DB8:ACAD:4::/64 [0/0]
     via Serial0/0/0, directly connected
   2001:DB8:ACAD:4::2/128 [0/0]
     via Serial0/0/0, receive
   2001:DB8:ACAD:5::/64 [0/0]
    via Serial0/0/1, directly connected
   2001:DB8:ACAD:5::2/128 [0/0]
    via Serial0/0/1, receive
   FF00::/8 [0/0]
    via NullO, receive
```

# Next-Hop Options (Cont.)

- Next hop can be identified by an IPv6 address, exit interface, or both.
- Destination is specified by one of three route types:
  - Next-hop static IPv6 route Only the next-hop IPv6 address is specified
  - Directly connected static IPv6 route Only the router exit interface is specified
  - Fully specified static IPv6 route The next-hop IPv6 address and exit interface are specified

# Configure a Next Hop Static IPv6 Route




As with IPv4, must resolve the route to determine the exit interface to use to forward the packet

```
R1# show ipv6 route
IPv6 Routing Table - default - 8 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static route, B - BGP,
       R - RIP, H - NHRP, I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea,
       IS - ISIS summary, D - EIGRP, EX - EIGRP external, ND - ND Default,
       NDp - ND Prefix, DCE - Destination, NDr - Redirect, O - OSPF Intra,
       OI - OSPF Inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1,
       ON2 - OSPF NSSA ext 2
    2001:DB8:ACAD:1::/64 [0/0]
     via GigabitEthernet0/0, directly connected
    2001:DB8:ACAD:1::1/128 [0/0]
     via GigabitEthernet0/0, receive
    2001:DB8:ACAD:2::/64 [1/0]
     via 2001:DB8:ACAD:4::2
    2001:DB8:ACAD:3::/64 [1/0]
     via 2001:DB8:ACAD:4::2
    2001:DB8:ACAD:4::/64 [0/0]
     via Serial0/0/0, directly connected
    2001:DB8:ACAD:4::1/128 [0/0]
     via Serial0/0/0, receive
   2001:DB8:ACAD:5::/64 [1/0]
     via 2001:DB8:ACAD:4::2
    FF00::/8 [0/0]
     via NullO, receive
```

The IPv6 address matches the route for the directly connected network 2001:DB8:ACAD:4::/64 with the exit interface Serial 0/0/0.

# Configure a Directly Connected Static IPv6 Route

- Alternative to next hop is to specify the exit interface
- Packet destined for 2001:DB8:ACAD:3::/64 network, forwarded out Serial 0/0/0 no other lookups needed



```
R1# show ipv6 route
IPv6 Routing Table - default - 8 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static route
       B - BGP, R - RIP, I1 - ISIS L1, I2 - ISIS L2
       IA - ISIS interarea, IS - ISIS summary, D - EIGRP, EX - EIGRP external
       ND - ND Default, NDp - ND Prefix, DCE - Destination, NDr - Redirect
       O - OSPF Intra, OI - OSPF Inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
    2001:DB8:ACAD:1::/64 [0/0]
     via GigabitEthernet0/0, directly connected
   2001:DB8:ACAD:1::1/128 [0/0]
     via GigabitEthernet0/0, receive
    2001:DB8:ACAD:2::/64 [1/0]
     via Serial0/0/0, directly connected
    2001:DB8:ACAD:3::/64 [1/0]
     via Serial0/0/0, directly connected
    2001:DB8:ACAD:4::/64 [0/0]
     via Serial0/0/0, directly connected
  2001:DB8:ACAD:4::1/128 [0/0]
     via Serial0/0/0, receive
   2001:DB8:ACAD:5::/64 [1/0]
     via Serial0/0/0, directly connected
   FF00::/8 [0/0]
     via NullO, receive
R1#
```

# Configure a Fully Specified Static IPv6 Route

Fully specified static route must be used if IPv6 link-local address is used as next-hop



#### Configure IPv6 Static Routes

## Verify IPv6 Static Routes

```
2001:DB8:ACAD:2::/64
                                                   S0/0/1
                                                  DCE
                                    S0/0/0
                    2001:DB8:ACAD:4::/64
                                                     2001:DB8:ACAD:5::/64
                                                      :1
                                             S0/0/1
                                                          G0/0
                                                                    2001:DB8:ACAD:3::/64
    2001:DB8:ACAD:1::/64
R1# show ipv6 route static
IPv6 Routing Table - default - 8 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static route, B - BGP,
       R - RIP, I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary,
       D - EIGRP, EX - EIGRP external, ND - ND Default, NDp - ND Prefix,
       DCE - Destination, NDr - Redirect, O - OSPF Intra, OI - OSPF Inter,
       OE1 - OSPF ext 1, OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1,
       ON2 - OSPF NSSA ext 2
    2001:DB8:ACAD:2::/64 [1/0]
     via 2001:DB8:ACAD:4::2
   2001:DB8:ACAD:3::/64 [1/0]
     via 2001:DB8:ACAD:4::2
   2001:DB8:ACAD:5::/64 [1/0]
     via 2001:DB8:ACAD:4::2
R1#
```

```
R1# show ipv6 route 2001:db8:acad:3::

Routing entry for 2001:DB8:ACAD:3::/64

Known via "static", distance 1, metric 0

Route count is 1/1, share count 0

Routing paths:

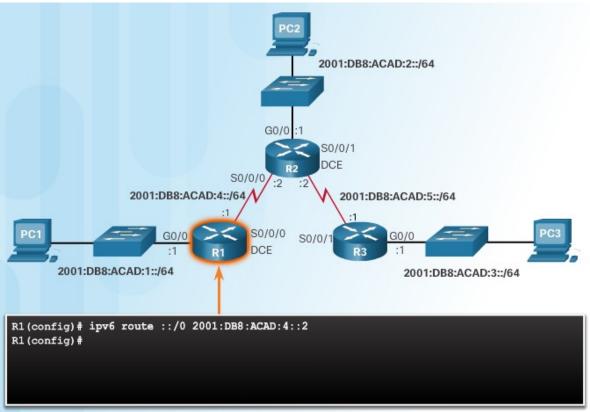
2001:DB8:ACAD:4::2

Last updated 00:19:11 ago

R1#
```

```
R1# show running-config | section ipv6 route
ipv6 route 2001:DB8:ACAD:2::/64 2001:DB8:ACAD:4::2
ipv6 route 2001:DB8:ACAD:3::/64 2001:DB8:ACAD:4::2
ipv6 route 2001:DB8:ACAD:5::/64 2001:DB8:ACAD:4::2
R1#
```

#### Default Static IPv6 Route


Default static route matches all packets not specified in routing table

Router(config) # ipv6 route ::/0 (ipv6-address | exit-intf)

| Parameter    | Description                                                                                                                                                                                                                             |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ::/0         | Matches any IPv6 prefix regardless of prefix length.                                                                                                                                                                                    |
| ipv6-address | <ul> <li>Commonly referred to as the next-hop router's IPv6 address.</li> <li>Typically used when connecting to a broadcast media (i.e., Ethernet).</li> <li>Commonly creates a recursive lookup.</li> </ul>                            |
| exit-intf    | <ul> <li>Use the outgoing interface to forward packets to the destination network.</li> <li>Also referred to as a directly attached static route.</li> <li>Typically used when connecting in a point-to-point configuration.</li> </ul> |



## Configure a Default Static IPv6 Route



- R1 is a stub router because it is only connected to R2
- More efficient to configure a default static IPv6 route in this topology

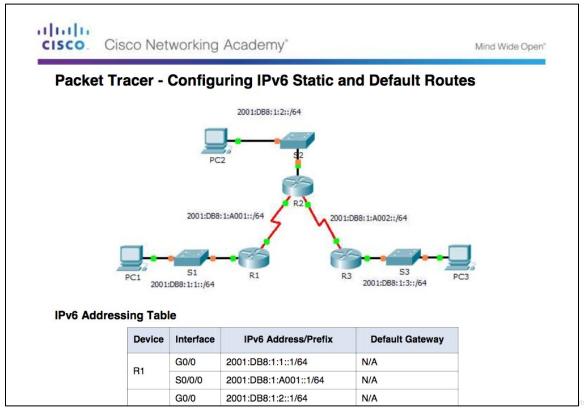
## Verify a Default Static Route

- ::/0 mask indicates that none of the bits are required to match
- If a more specific match does not exist, the default static IPv6 route matches all packets.

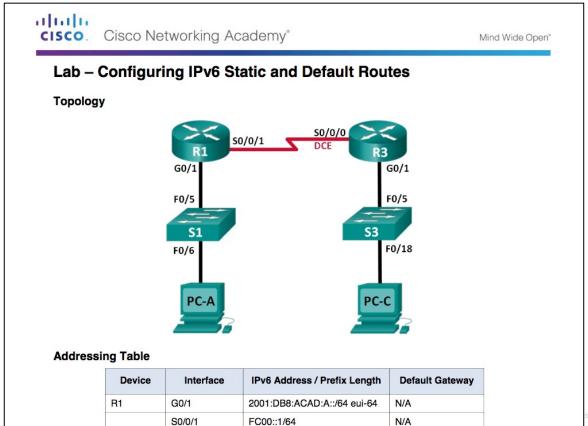
```
2001:DB8:ACAD:2::/64
                                                     2001:DB8:ACAD:5::/64
    2001:DB8:ACAD:1::/64
R1# show ipv6 route static
IPv6 Routing Table - default - 6 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static route, B - BGP,
       R - RIP, I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary,
       D - EIGRP, EX - EIGRP external, ND - ND Default, NDp - ND Prefix,
       DCE - Destination, NDr - Redirect, O - OSPF Intra, OI - OSPF Inter,
       OE1 - OSPF ext 1, OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1,
       ON2 - OSPE NSSA ext 2
    ::/0 [1/0]
          via 2001:DB8:ACAD:4::2
```

```
R1# ping 2001:0DB8:ACAD:3::1

Type escape sequence to abort.


Sending 5, 100-byte ICMP Echos to 2001:DB8:ACAD:3::1,

timeout is 2 seconds:
!!!!


Success rate is 100 percent (5/5), round-trip min/avg/max

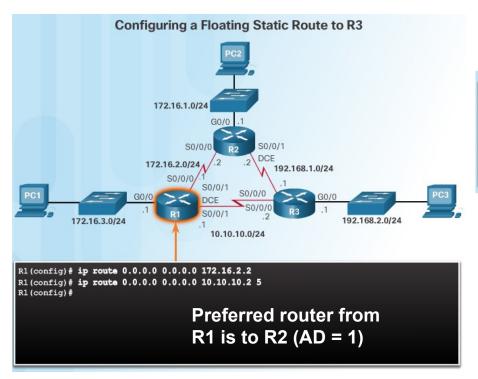
= 28/28/28 ms
R1#
```

## Packet Tracer – Configuring IPv6 Static and Default Routes



## Lab – Configuring IPv6 Static and Default Routes

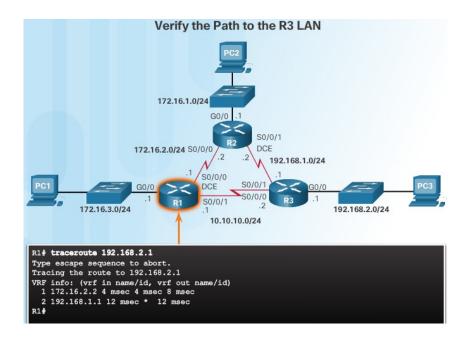


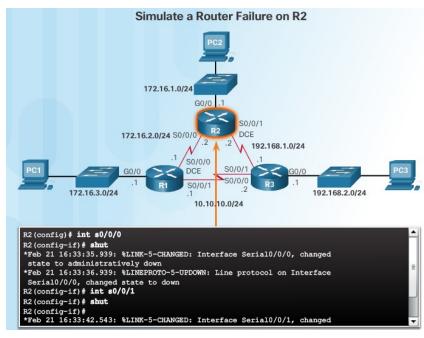

## Floating Static Routes

Floating static routes have an administrative distance greater than the dynamic routing protocol or other static route

- Used as backup routes
- Administrative distance of common routing protocols
  - EIGRP = 90
  - IGRP = 100
  - OSPF = 110
  - IS-IS = 115
  - RIP = 120
- By default, AD of static route = 1
- Static route AD can be increased to make route less desirable until preferred route is lost

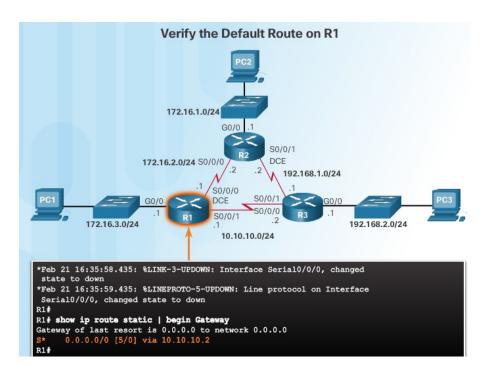


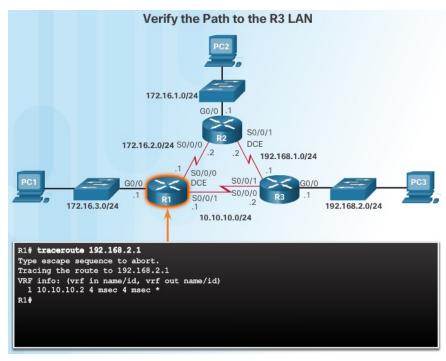

## Configure a Floating Static Route




```
R1# show ip route static | begin Gateway
Gateway of last resort is 0.0.0.0 to network 0.0.0.0

S* 0.0.0.0/0 [1/0] via 172.16.2.2
```

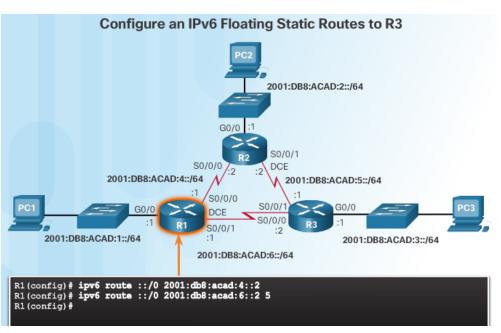

## Test the IPv4 Floating Static Route



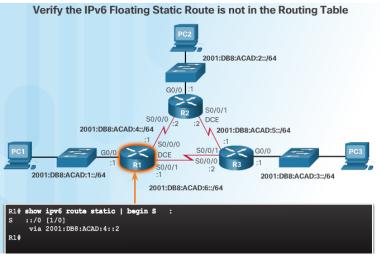





## Test the IPv4 Floating Static Route (Cont.)

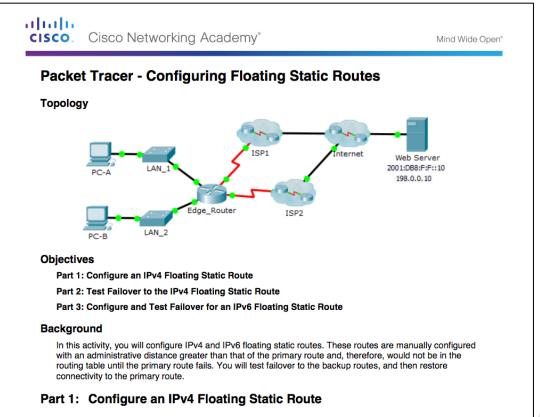





## Configure an IPv6 Floating Static Route

Similar to IPv4 floating static routes

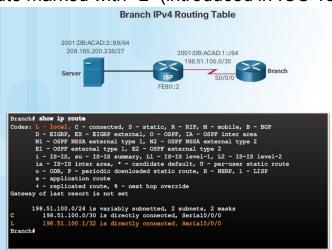


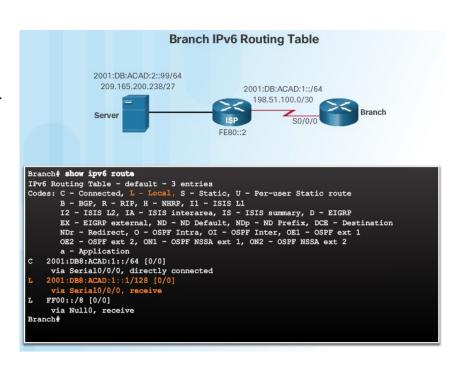





## Packet Tracer - Configuring Floating Static Routes

Configure on IDv4 static default rout





#### Configure Static Host Routes

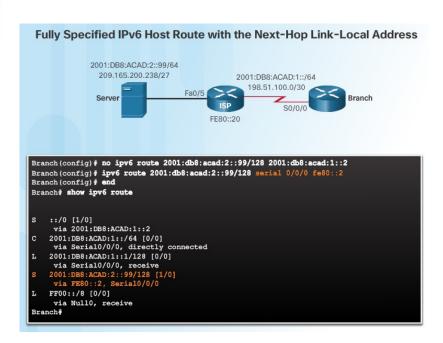
## **Automatically Installed Host Routes**

Host route is an IPv4 address with a 32-bit mask or IPv6 address with a 128-bit mask.

- Automatically installed when IP address is configured
- Configured as a static host route
- Allows more efficiency for packets directed to the router
- Local route marked with "L" (introduced in IOS 15)



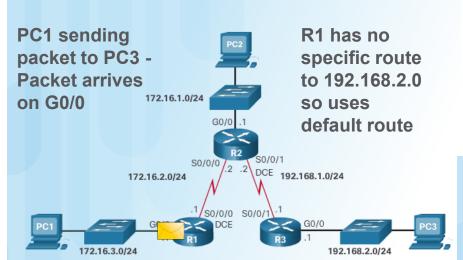


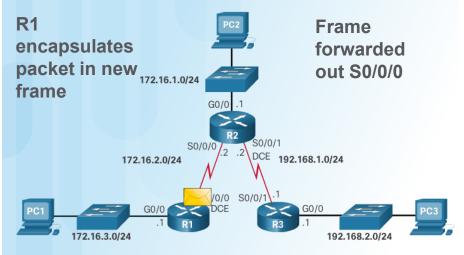

#### Configure Static Host Routes

## Configure IPv4 and IPv6 Static Host Routes

#### IPv4 and IPv6 Host Route Configuration and Verification

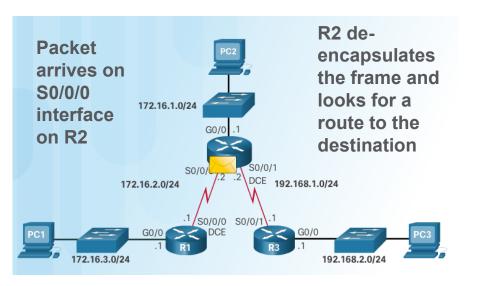


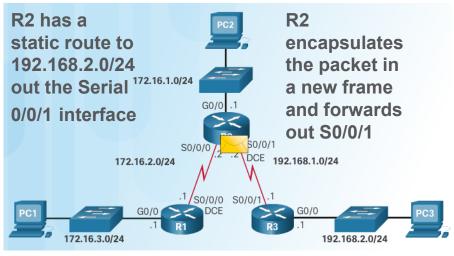

```
Branch (config) # ip route 209.165.200.238 255.255.255.255 198.51.100.2
Branch (config) # ipv6 route 2001:db8:acad:2::99/128 2001:db8:acad:1::2
Branch (config) # end
Branch# show ip route | begin Gateway
Gateway of last resort is not set
      198.51.100.0/24 is variably subnetted, 2 subnets, 2 masks
         198.51.100.0/30 is directly connected, Serial0/0/0
         198.51.100.1/32 is directly connected, Serial0/0/0
      209.165.200.0/32 is subnetted, 1 subnets
         209.165.200.238 [1/0] via 198.51.100.2
Branch# show ipv6 route
   2001:DB8:ACAD:1::/64 [0/0]
     via Serial0/0/0, directly connected
L 2001:DB8:ACAD:1::1/128 [0/0]
     via Serial0/0/0, receive
  2001:DB8:ACAD:2::99/128 [1/0]
     via 2001:DB8:ACAD:1::2
L FF00::/8 [0/0]
     via NullO, receive
Branch#
     ......
```




# 2.3 Troubleshoot Static and Default Routes

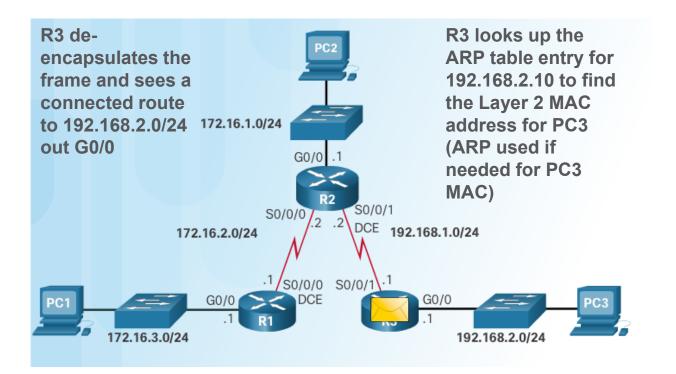
#### Packet Processing with Static Routes


## Static Routes and Packet Forwarding





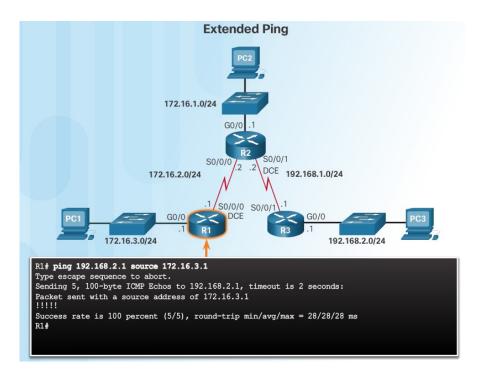

#### Packet Processing with Static Routes


## Static Routes and Packet Forwarding (Cont.)

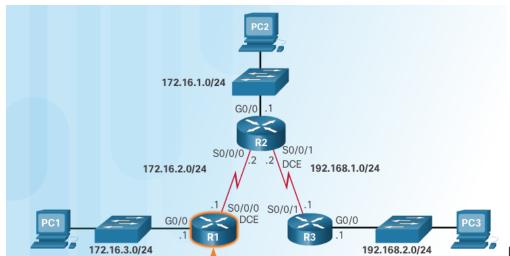




#### Packet Processing with Static Routes


## Static Routes and Packet Forwarding (Cont.)




- R3 encapsulates the packet in a new frame with the MAC address of the G0/0 interface as the source Layer 2 address and the MAC address of PC3 as the destination MAC address
- Frame is forwarded out of G0/0 interface and packet arrives on the NIC interface of PC3

## Troubleshoot a Missing Route

- Common IOS troubleshooting commands include:
  - ping
  - traceroute
  - show ip route
  - show ip interface brief
  - show cdp neighbors detail



## Troubleshoot a Missing Route (Cont.)



```
RI# show ip interface brief
Interface IP-Address OK? Method Status Protocol
Embedded-Service-Engine0/0 unassigned YES unset administratively down down
GigabitEthernet0/0 172.16.3.1 YES manual up up
GigabitEthernet0/1 unassigned YES unset administratively down down
Serial0/0/0 172.16.2.1 YES manual up up
Serial0/0/1 unassigned YES unset administratively down down
RI#
```

```
RI# traceroute 192.168.2.1
Type escape sequence to abort.
Tracing the route to 192.168.2.1
VRF info: (vrf in name/id, vrf out name/id)
1 172.16.2.2 4 msec 4 msec 8 msec
2 192.168.1.1 12 msec 12 msec *
RI#
```

```
Rl# show ip route | begin Gateway
Gateway of last resort is not set

172.16.0.0/16 is variably subnetted, 5 subnets, 2 masks

172.16.1.0/24 [1/0] via 172.16.2.2
C 172.16.2.0/24 is directly connected, Serial0/0/0
L 172.16.2.1/32 is directly connected, Serial0/0/0
C 172.16.3.0/24 is directly connected, GigabitEthernet0/0
L 172.16.3.1/32 is directly connected, GigabitEthernet0/0
L 172.16.3.1/32 is directly connected, GigabitEthernet0/0
S 192.168.1.0/24 [1/0] via 172.16.2.2
S 192.168.2.0/24 [1/0] via 172.16.2.2
R1#
```

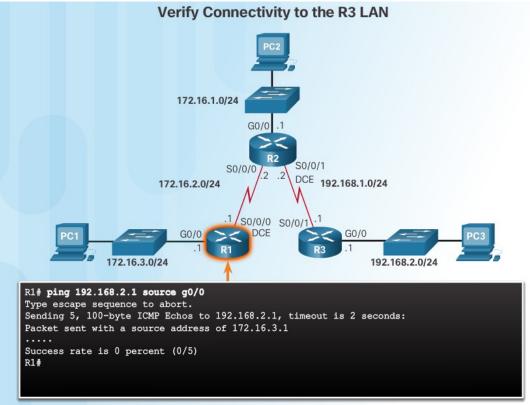
```
Rl# show cdp neighbors

Capability Codes: R - Router, T - Trans Bridge,

B - Source Route Bridge, S - Switch, H - Host,

I - IGMP, r - Repeater, P - Phone, D - Remote,

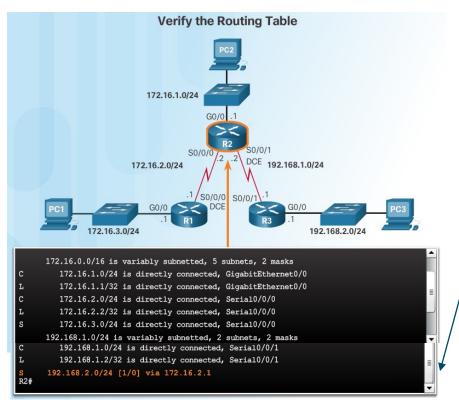
C - CVTA, M - Two-port Mac Relay


Device ID Local Intrice Holdtme Capability Platform Port ID

netlab-cs5 Gig 0/0 156 S I WS-C2960- Fas 0/1

R2 Ser 0/0/0 153 R S I CISC01941 Ser 0/0/0

R1#
```


## Solve a Connectivity Problem

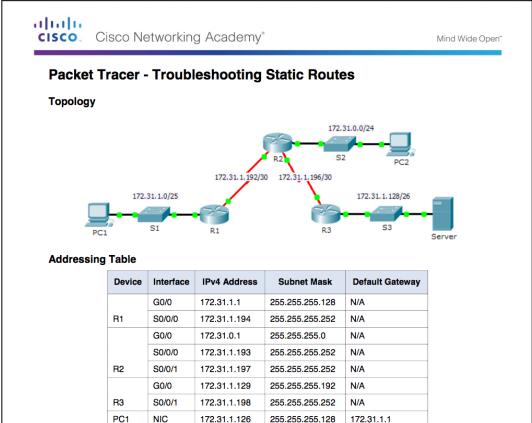


```
RI# traceroute 192.168.2.1
Type escape sequence to abort.
Tracing the route to 192.168.2.1
VRF info: (vrf in name/id, vrf out name/id)
1 172.16.2.2 4 msec 4 msec 8 msec
2 172.16.2.1 12 msec 12 msec 12 msec
3 172.16.2.2 12 msec 8 msec
4 172.16.2.1 20 msec 16 msec 20 msec
5 172.16.2.2 16 msec 16 msec 16 msec
6 172.16.2.1 20 msec 20 msec
7 172.16.2.2 20 msec
```

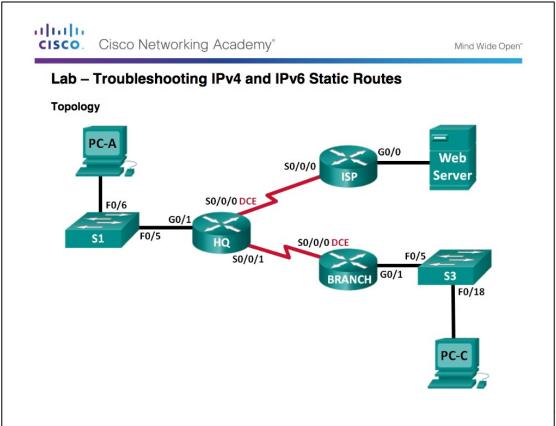
A traceroute reveals that R2 forwards the traceroute back to R1. R1 returns it to R2

## Troubleshoot IPv4 Static and Default Route Configuration Solve a Connectivity Problem (Cont.)




Static route to 192.168.2.0/24 has been configured using the next-hop address 172.16.2.1.

```
R2# show running-config | section ip route
ip route 172.16.3.0 255.255.255.0 172.16.2.1
ip route 192.168.2.0 255.255.255.0 172.16.2.1
R2#
R2# conf t
Enter configuration commands, one per line. End with CNTL/Z.
R2 (config)# no ip route 192.168.2.0 255.255.255.0 172.16.2.1
R2 (config)# ip route 192.168.2.0 255.255.255.0 192.168.1.1
R2 (config)# R2 (config)#
```


Incorrect route is removed and the correct route is then entered

```
Rl# ping 192.168.2.1 source g0/0
Type escape sequence to abort.
Sending 5, 100-byte ICMF Echos to 192.168.2.1, timeout is 2 seconds:
Packet sent with a source address of 172.16.3.1
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms
Rl#
```

## Packet Tracer – Troubleshooting Static Routes



## Lab – Troubleshooting Static Routes



# 2.4 Chapter Summary



#### Conclusion

## Chapter 2: Static Routing

- Explain how static routes are implemented in a small to medium-sized business network.
- Configure static routes to enable connectivity in a small to medium-sized business network.
- Troubleshoot static and default route configurations.



