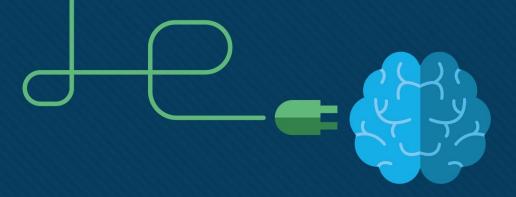


Chapter 3: Dynamic Routing

Instructor Materials

CCNA Routing and Switching


Routing and Switching Essentials v6.0

Chapter 3: Dynamic Routing

Routing and Switching Essentials v6.0 Planning Guide

Chapter 3: Dynamic Routing

CCNA Routing and Switching

Routing and Switching Essentials v6.0

Chapter 3 - Sections & Objectives

3.1 Dynamic Routing Protocols

- Explain the function of dynamic routing protocols.
- Explain the purpose of dynamic routing protocols.
- Explain the use of dynamic routing and static routing.

3.2 RIPv2

- Implement RIPv2.
- Configure the RIPv2 routing protocol.

3.3 The Routing Table

- Determine the route source, administrative distance, and metric for a given route.
- Explain the components of an IPv4 routing table entry for a given route.
- Explain the parent/child relationship in a dynamically built routing table.
- Determine which route will be used to forward a IPv4 packet.
- Determine which route will be used to forward a IPv6 packet.

3.1 Dynamic Routing Protocols

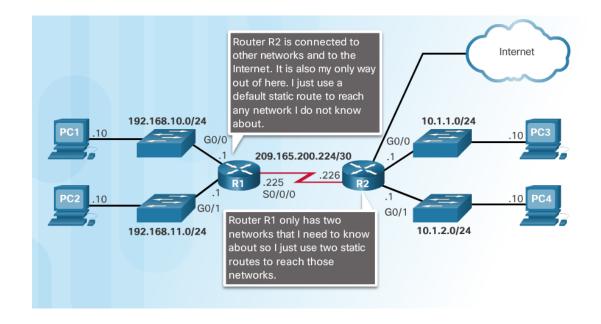
Dynamic Routing Protocol Overview


Dynamic Routing Protocol Overview

	Interior Gateway Protocols Exterior Gateway Protocols					
	Distance Vect	or	Link-State		Path Vector	
IPv4	RIPv2	EIGRP	OSPFv2	IS-IS	BGP-4	
IPv6	RIPng	EIGRP for IPv6	OSPFv3	IS-IS for IPv6	BGP-MP	

- RIP protocol was updated to RIPv2 to accommodate growth in the network environment
 - RIPv2 does not scale to current larger network implementations
- Routing Protocols developed to meet the need of larger networks include:
 - Open Shortest Path First (OSPF)
 - Intermediate System-to-Intermediate System (IS-IS).
 - Enhanced IGRP (EIGRP)
- Border Gateway Protocol (BGP) is used between Internet service providers (ISPs)

Dynamic Routing Protocol Overview

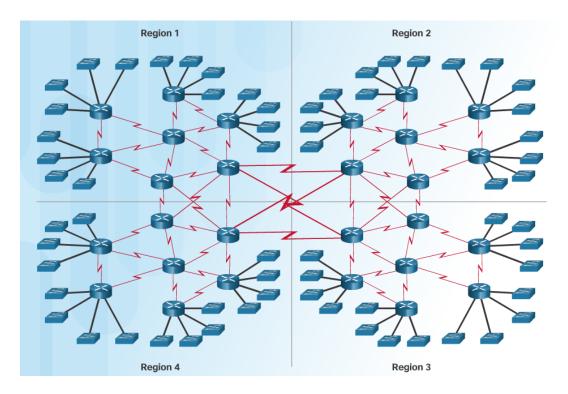

Dynamic Routing Protocol Components

- Purpose of dynamic routing protocols includes:
 - Discovery of remote networks
 - Maintaining up-to-date routing information
 - Choosing the best path to destination networks
 - Ability to find a new best path if the current path is no longer available
- The main components of dynamic routing protocols include:
 - Data structures tables or databases kept in RAM.
 - Routing protocol messages to discover neighboring routers, exchange routing information, and maintain accurate information about the network.
 - Algorithms to facilitate learning routing information and for best path determination.

Static Routing Uses

- Networks often use both static and dynamic routing.
- Static Routing is used as follows:
 - For easy routing table maintenance in small networks.
 - Routing to and from a stub network.
 - Accessing a single default route.

Dynamic versus Static Routing


Static Routing Advantages and Disadvantages

Advantages	Disadvantages
Easy to implement in a small network.	Suitable only for simple topologies or for special purposes such as a default static route.
Very secure. No advertisements are sent as compared to dynamic routing protocols.	Configuration complexity increases dramatically as network grows.
Route to destination is always the same.	Manual intervention required to re-route traffic.
No routing algorithm or update mechanism required; therefore, extra resources (CPU or RAM) are not required.	

Dynamic versus Static Routing

Dynamic Routing Protocols Uses

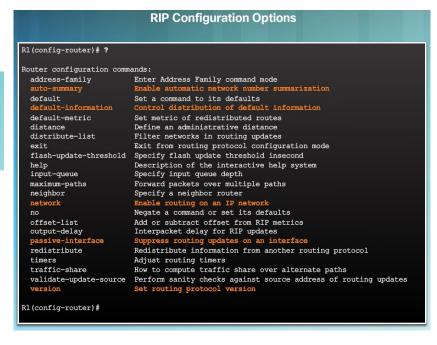
- Dynamic routing is the best choice for large networks
- Dynamic routing protocols help the network administrator manage the network:
 - Providing redundant paths
 - Automatically implementing the alternate path when a link goes down.

Dynamic versus Static Routing

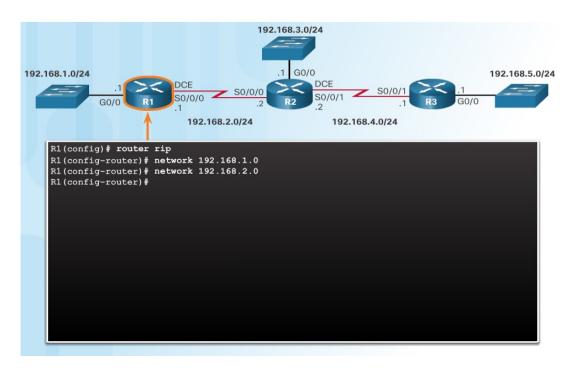
Dynamic Routing Advantages and Disadvantages

Advantages	Disadvantages
Suitable in all topologies where multiple routers are required.	Can be more complex to implement.
Generally independent of the network size.	Less secure. Additional configuration settings are required to secure.
Automatically adapts topology to reroute traffic if possible.	Route depends on the current topology.
	Requires additional CPU, RAM, and link bandwidth.

3.2 RIPv2



Dynamic versus Static Routing Router RIP Configuration Mode


Use the router rip command to enable RIP v1

```
R1# conf t
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)# router rip
R1(config-router)#
```

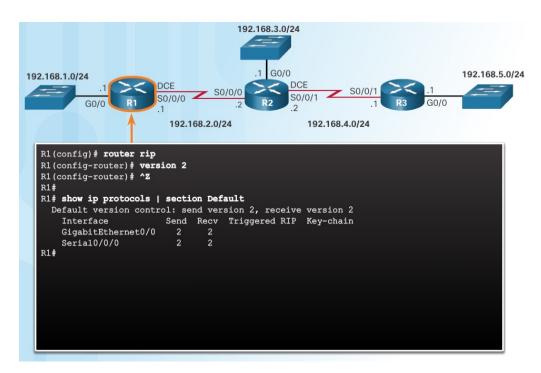
Use the no router rip command to disable RIP

Configuring the RIP Protocol Advertise Networks

- The network network-address router configuration mode command:
 - Enables RIP on all interfaces that belong to a specific network
 - Advertises the network in RIP routing updates sent to other routers every 30 seconds.

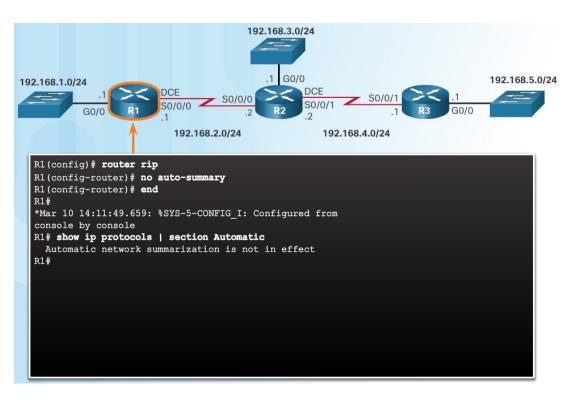
Note: RIPv1 is a classful routing protocol for IPv4.

Verify RIP Routing


```
R1# show ip protocols
*** IP Routing is NSF aware ***
 Routing Protocol is "rip"
  Outgoing update filter list for all interfaces is not set
  Incoming update filter list for all interfaces is not set
  Sending updates every 30 seconds, next due in 16 seconds
  Invalid after 180 seconds, hold down 180, flushed after 240
  Redistributing: rip
  Default version control: send version 1, receive any version
                          Send Recv Triggered RIP Key-chain
    Interface
    GigabitEthernet0/0
                                1 2
                               1 2
    Serial0/0/0
  Automatic network summarization is in effect
  Maximum path: 4
  Routing for Networks:
    192,168,1.0
    192,168,2,0
  Routing Information Sources:
                    Distance
                                  Last Update
   Gateway
    192.168.2.2
                                  00:00:15
  Distance: (default is 120)
R1#
```

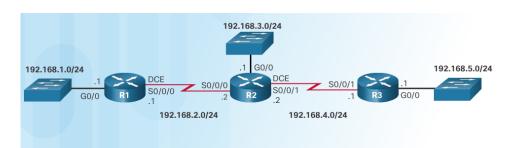
show ip protocols – displays IPv4 routing protocols configured on the router.

```
R1# show ip route | begin Gateway
Gateway of last resort is not set
      192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
         192.168.1.0/24 is directly connected,
GigabitEthernet0/0
         192.168.1.1/32 is directly connected,
GigabitEthernet0/0
      192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
         192.168.2.0/24 is directly connected, Serial0/0/0
         192.168.2.1/32 is directly connected, Serial0/0/0
      192.168.3.0/24 [120/1] via 192.168.2.2, 00:00:24,
      192.168.4.0/24 [120/1] via 192.168.2.2, 00:00:24,
Serial0/0/0
      192.168.5.0/24 [120/2] via 192.168.2.2, 00:00:24,
Serial0/0/0
R1#
```


show ip route – displays RIP routes installed in the routing table.

Enable and Verify RIPv2

- Use the version 2 router configuration mode command to enable RIPv2
- Use the show ip protocols command to verify that RIPv2 is configured.
- Use the show ip route command to verify the RIPv2 routes in the routing table.

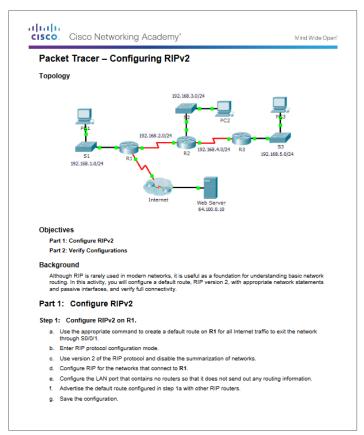

Disable Auto Summarization

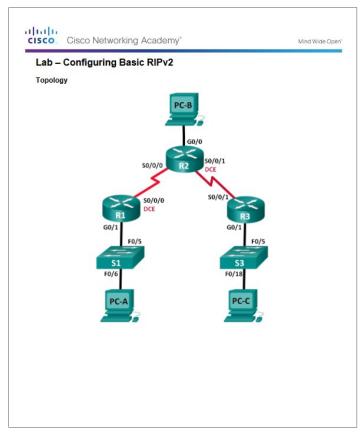
- RIPv2 automatically summarizes networks at major network boundaries.
- Use the no auto-summary router configuration mode command to disable auto summarization.
- Use the show ip protocols command to verify that auto summarization is off.

Configure Passive Interfaces

- RIP updates:
 - Are forwarded out all RIP-enabled interfaces by default.
 - Only need to be sent out interfaces that are connected to other RIP-enabled routers.
- Sending RIP updates to LANs wastes bandwidth, wastes resources, and is a security risk.
- Use the passive-interface router configuration command to stop routing updates out the interface. Still allows that network to be advertised to other routers.

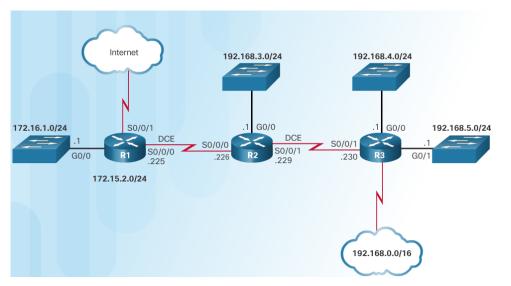

```
R1(config)# router rip
R1(config-router) # passive-interface g0/0
R1(config-router)# end
R1#
R1# show ip protocols | begin Default
  Default version control: send version 2, receive version 2
                          Send Recv Triggered RIP Key-
 chain
    Seria10/0/0
  Automatic network summarization is not in effect
  Maximum path: 4
  Routing for Networks:
    192.168.1.0
    192.168.2.0
  Passive Interface(s):
    GigabitEthernet0/0
  Routing Information Sources:
    Gateway
                     Distance
                                   Last Update
    192.168.2.2
                                   00:00:06
  Distance: (default is 120)
R1#
```


Propagate a Default Route


```
R1 (config) # ip route 0.0.0.0 0.0.0.0 80/0/1 209.165.200.226
R1(config) # router rip
R1(config-router) # default-information originate
R1(config-router)# ^Z
*Mar 10 23:33:51.801: %SYS-5-CONFIG I: Configured from console by console
R1# show ip route | begin Gateway
Gateway of last resort is 209.165.200.226 to network 0.0.0.0
      0.0.0.0/0 [1/0] via 209.165.200.226, Serial0/0/1
      192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
         192.168.1.0/24 is directly connected, GigabitEthernet0/0
         192.168.1.1/32 is directly connected, GigabitEthernet0/0
      192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
         192.168.2.0/24 is directly connected, Serial0/0/0
         192.168.2.1/32 is directly connected, Serial0/0/0
      192.168.3.0/24 [120/1] via 192.168.2.2, 00:00:08, Serial0/0/0
      192.168.4.0/24 [120/1] via 192.168.2.2, 00:00:08, Serial0/0/0
      192.168.5.0/24 [120/2] via 192.168.2.2, 00:00:08, Serial0/0/0
      209.165.200.0/24 is variably subnetted, 2 subnets, 2 masks
         209.165.200.0/24 is directly connected, Serial0/0/1
         209.165.200.225/27 is directly connected, Serial0/0/1
R1#
```

- In the diagram a default static route to the Internet is configured on R1.
- The default-information originate router configuration command instructs R1 to send the default static route information in the RIP updates.

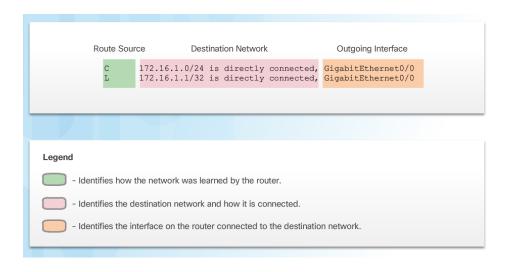
Packet Tracer - Configuring RIPv2



Lab - Configuring Basic RIPv2

3.3 The Routing Table

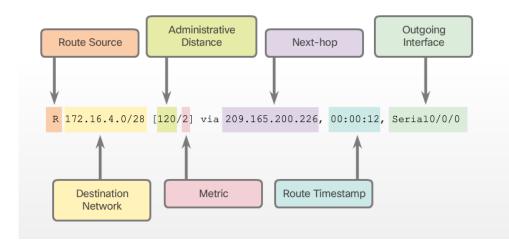
Parts of an IPv4 Route Entry Routing Table Entries




```
R1# show ip route | begin Gateway
Gateway of last resort is 209.165.200.234 to network 0.0.0.0
S* 0.0.0.0/0 [1/0] via 209.165.200.234, Serial0/0/1
                      is directly connected, Serial0/0/1
    172.16.0.0/16 is variably subnetted, 5 subnets, 3 masks
C 172.16.1.0/24 is directly connected, GigabitEthernet0/0
    172.16.1.1/32 is directly connected, GigabitEthernet0/0
    172.16.2.0/24 [120/1] via 209.165.200.226, 00:00:12, Serial0/0/0
    172.16.3.0/24 [120/2] via 209.165.200.226, 00:00:12, Serial0/0/0
    172.16.4.0/28 [120/2] via 209.165.200.226, 00:00:12, Serial0/0/0
    192.168.0.0/16 [120/2] via 209.165.200.226, 00:00:03, Serial0/0/0
    209.165.200.0/24 is variably subnetted, 5 subnets, 2 masks
    209.165.200.224/30 is directly connected, Serial0/0/0
    209.165.200.225/32 is directly connected, Serial0/0/0
    209.165.200.228/30 [120/1] via 209.165.200.226, 00:00:12, Serial0/0/0
    209.165.200.232/30 is directly connected, Serial0/0/1
    209.165.200.233/30 is directly connected, Serial0/0/1
R1#
```

Routing Table for R1

Parts of an IPv4 Route Entry Directly Connected Entries



- Directly Connected Networks (C) are automatically added to the routing table when the interface is configured and activated.
- Entries contain the following information:
 - Route source how the route was learned.
 - Destination network remote network.
 - Outgoing Interface exit interface used to forward packets to destination.
- Other route source entries include:
 - S –Static Route
 - D EIGRP routing protocol
 - O OSPF routing protocol
 - R RIP routing protocol

Parts of an IPv4 Route Entry

Remote Network Entries

- Routes to remote networks contain the following information:
 - Route source how route was learned
 - Destination network
 - Administrative distance (AD) trustworthiness of the route.
 - Metric value assigned to reach the remote network. Lower is better.
 - Next hop IPv4 address of the next router that the packet should be forwarded to.
 - Route timestamp time since the route was updated.
 - Outgoing interface the exit interface to use to forward the packet

Dynamically Learned IPv4 Routes Routing Table Terms

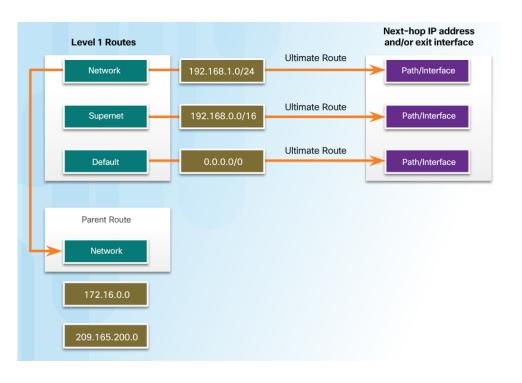
- The routing table is a hierarchical structure that is used to speed up the lookup process when locating routes and forwarding packets.
- The hierarchy includes:
 - Ultimate Routes
 - Level 1 routes
 - Level 1 parent routes
 - Level 2 child routes

```
R1# show ip route | begin Gateway
Gateway of last resort is 209.165.200.234 to network 0.0.0.0
S*
      0.0.0.0/0 [1/0] via 209.165.200.234, Serial0/0/1
                is directly connected, Serial0/0/1
      172.16.0.0/16 is variably subnetted, 5 subnets, 3 masks
      172.16.1.0/24 is directly connected, GigabitEthernet0/0
      172.16.1.1/32 is directly connected, GigabitEthernet0/0
      172.16.2.0/24 [120/1] via 209.165.200.226, 00:00:12, Serial0/0/0
      172.16.3.0/24 [120/2] via 209.165.200.226, 00:00:12, Serial0/0/0
      172.16.4.0/28 [120/2] via 209.165.200.226, 00:00:12, Serial0/0/0
      192.168.0.0/16 [120/2] via 209.165.200.226, 00:00:03, Serial0/0/0
      209.165.200.0/24 is variably subnetted, 5 subnets, 2 masks
      209.165.200.224/30 is directly connected, Serial0/0/0
      209.165.200.225/32 is directly connected, Serial0/0/0
      209.165.200.228/30 [120/1] via 209.165.200.226, 00:00:12, Serial0/0/0
      209.165.200.232/30 is directly connected, Serial0/0/1
      209.165.200.233/32 is directly connected, Serial0/0/1
R1#
```

Ultimate Route

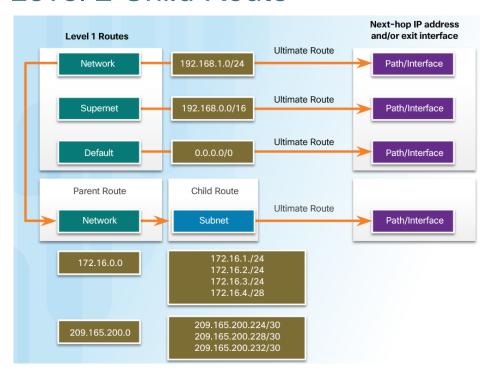
- An ultimate route is a routing table entry that contains either a next-hop IPv4 address or an exit interface.
- Directly connected, dynamically learned, and local routes are ultimate routes.

```
R1# show ip route | begin Gateway
Gateway of last resort is 209.165.200.234 to network 0.0.0.0
      0.0.0.0/0 [1/0] via 209.165.200.234, Serial0/0/1
                is directly connected, Serial0/0/1
      172.16.0.0/16 is variably subnetted, 5 subnets, 3 masks
      172.16.1.0/24 is directly connected, GigabitEthernet0/0
      172.16.1.1/32 is directly connected, GigabitEthernet0/0
      172.16.2.0/24 [120/1] via 209.165.200.226, 00:00:12, Serial0/0/0
      172.16.3.0/24 [120/2] via 209.165.200.226, 00:00:12, Serial0/0/0
      172.16.4.0/28 [120/2] via 209.165.200.226, 00:00:12, Serial0/0/0
      192.168.0.0/16 [120/2] via 209.165.200.226, 00:00:03, Serial0/0/0
      209.165.200.0/24 is variably subnetted, 5 subnets, 2 masks
      209.165.200.224/30 is directly connected, Serial0/0/0
      209.165.200.225/32 is directly connected, Serial0/0/0
      209.165.200.228/30 [120/1] via 209.165.200.226, 00:00:12, Serial0/0/0
      209.165.200.232/30 is directly connected, Serial0/0/1
      209.165.200.233/32 is directly connected, Serial0/0/1
R1#
```


Level 1 Route


```
R1# show ip route | begin Gateway
Gateway of last resort is 209.165.200.234 to network 0.0.0.0
      0.0.0.0/0 [1/0] via 209.165.200.234, Serial0/0/1
                is directly connected, Serial0/0/1
      172.16.0.0/16 is variably subnetted, 5 subnets, 3 masks
      172.16.1.0/24 is directly connected, GigabitEthernet0/0
      172.16.1.1/32 is directly connected, GigabitEthernet0/0
     172.16.2.0/24 [120/1] via 209.165.200.226, 00:00:12, Serial0/0/0
      172.16.3.0/24 [120/2] via 209.165.200.226, 00:00:12, Serial0/0/0
      172.16.4.0/28 [120/2] via 209.165.200.226, 00:00:12, Serial0/0/0
      192.168.0.0/16 [120/2] via 209.165.200.226, 00:00:03, Serial0/0/0
      209.165.200.0/24 is variably subnetted, 5 subnets, 2 masks
      209.165.200.224/30 is directly connected, Serial0/0/0
      209.165.200.225/32 is directly connected, Serial0/0/0
      209.165.200.228/30 [120/1] via 209.165.200.226, 00:00:12, Serial0/0/0
      209.165.200.232/30 is directly connected, Serial0/0/1
      209.165.200.233/32 is directly connected, Serial0/0/1
R1#
```

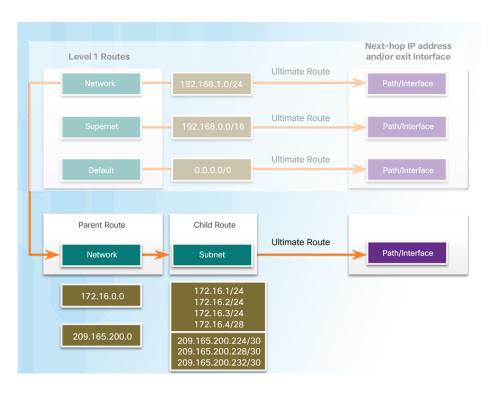
- A level 1 route can be a:
 - Network route a network route that has a subnet mask equal to that of the classful mask.
 - Supernet route a network address with a mask less than the classful mask, for example, a summary address.
 - Default route a static route with the address 0.0.0.0/0


Level 1 Parent Route

- A parent route is a level 1 network route that is subnetted.
- In the routing table, it basically provides a heading for the specific subnets it contains.

```
R1# show ip route | begin Gateway
Gateway of last resort is 209.165.200.234 to network 0.0.0.0
      0.0.0.0/0 [1/0] via 209.165.200.234, Serial0/0/1
                is directly connected, Serial0/0/1
      172.16.0.0/16 is variably subnetted, 5 subnets, 3 masks
      172.16.1.0/24 is directly connected, GigabitEthernet0/0
      172.16.1.1/32 is directly connected, GigabitEthernet0/0
      172.16.2.0/24 [120/1] via 209.165.200.226, 00:00:12, Serial0/0/0
      172.16.3.0/24 [120/2] via 209.165.200.226, 00:00:12, Serial0/0/0
      172.16.4.0/28 [120/2] via 209.165.200.226, 00:00:12, Serial0/0/0
      192.168.0.0/16 [120/2] via 209.165.200.226, 00:00:03, Serial0/0/0
      209.165.200.0/24 is variably subnetted, 5 subnets, 2 masks
      209.165.200.224/30 is directly connected, Serial0/0/0
      209.165.200.225/32 is directly connected, Serial0/0/0
      209.165.200.228/30 [120/1] via 209.165.200.226, 00:00:12, Serial0/0/0
      209.165.200.232/30 is directly connected, Serial0/0/1
      209.165.200.233/32 is directly connected, Serial0/0/1
```

Level 2 Child Route



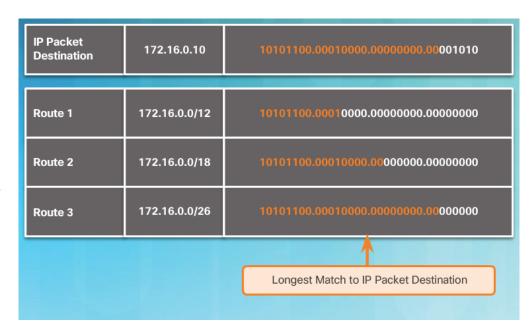
- A level 2 child route is a route that is a subnet of a classful network address.
- Level 1 parent routes contain level 2 child routes.
- Level 2 child routes are also ultimate routes.

```
R1# show ip route | begin Gateway
Gateway of last resort is 209.165.200.234 to network 0.0.0.0
      0.0.0.0/0 [1/0] via 209.165.200.234, Serial0/0/1
                is directly connected, Serial0/0/1
      172.16.0.0/16 is variably subnetted, 5 subnets, 3 masks
      172.16.1.0/24 is directly connected, GigabitEthernet0/0
     172.16.1.1/32 is directly connected, GigabitEthernet0/0
     172.16.2.0/24 [120/1] via 209.165.200.226, 00:00:12, Serial0/0/0
      172.16.3.0/24 [120/2] via 209.165.200.226, 00:00:12, Serial0/0/0
     172.16.4.0/28 [120/2] via 209.165.200.226, 00:00:12, Serial0/0/0
      192.168.0.0/16 [120/2] via 209.165.200.226, 00:00:03, Serial0/0/0
     209.165.200.0/24 is variably subnetted, 5 subnets, 2 masks
      209.165.200.224/30 is directly connected, Serial0/0/0
      209.165.200.225/32 is directly connected, Serial0/0/0
     209.165.200.228/30 [120/1] via 209.165.200.226, 00:00:12, Serial0/0/0
     209.165.200.232/30 is directly connected, Serial0/0/1
     209.165.200.233/30 is directly connected, Serial0/0/1
```

The IPv4 Route Lookup Process

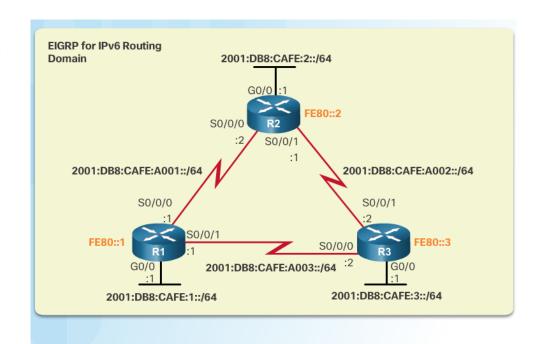
Route Lookup Process

Router lookup process:


- If the best match is a level 1 ultimate route, then this route is used to forward the packet.
- If the best match is a level 1 parent route, the router then examines child routes (the subnet routes).
- If there is a match with a level 2 child route, that is used to forward the packet.
- If there is no match with level 2 child routes, the router searches level 1 supernet or default routes. If there is a match, that route is used.
- If there is no match found in the routing table the packet is dropped.

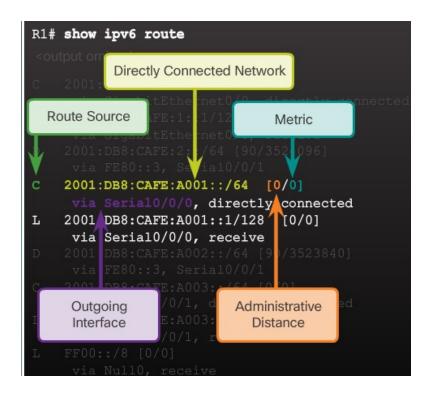
The IPv4 Route Lookup Process

Best Route = Longest Match


- The best match is the route in the routing table that has the most number of far left matching bits with the destination IPv4 address of the packet.
- The route with the greatest number of equivalent far left bits, or the longest match, is always the preferred route.

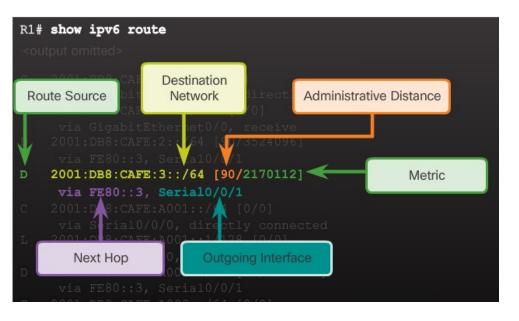
Analyze an IPv6 Routing Table

IPv6 Routing Table Entries


- An IPv6 routing table includes directly connected, static and dynamically learned routes.
- All IPv6 routes are level 1 ultimate routes.

The FE80 address represents the link-local address assigned to each router.

Analyze an IPv6 Routing Table


Directly Connected Entries

- Use the show ipv6 route command to display the IPv6 routing table.
- The directly connected route entries include the following:
 - Route source How the route was learned.
 Directly connected indicated with a C and L for local route.
 - Directly connected network address.
 - Administrative distance Trustworthiness of the route (lower more trustworthy).
 - Metric Value assigned to reach the network (lower is preferred route).
 - Outgoing interface Exit interface used to forward packet.

Analyze an IPv6 Routing Table

Remote IPv6 Network Entries

- The remote IPv6 route entries also include the following:
 - Route source How the route was learned. Common codes include O (OSPF), D (EIGRP), R (RIP), and S (Static route).
 - Next hop Identifies the IPv6 address of the next router to forward the packet to.
- The IPv6 router lookup process:
 - Examines level 1 network routes for the best match.
 - Longest match is the best match.

3.4 Chapter Summary

Conclusion

Chapter 3: Dynamic Routing

- Explain the function of dynamic routing protocols.
- Implement RIPv2.
- Determine the route source, administrative distance, and metric for a given route.

