Chapter 7: Access Control Lists

The password used in the Packet Tracer activities in this chapter is: PT_ccna5

Access router configuration

```
router ospf 100
redistribute connected metric 100 metric-type 1 subnets
redistribute static metric 100 metric-type 1 subnets
passive-interface Ethernet0
network 10.0.144.0 0.0.0.255 area 9
area 9 nssa
no ip classless
logging buffered alerts
logging console informational
logging 10.192.17.3
access-list 1 permit 10.132.36.16
access-list 1 permit 10.132.37.11
access-list 1 permit 10.132.37.3
access-list 2 permit 10.0.0.0 0.255.255.255
snmp-server community public RW 1
snmp-server trap-source Loopback1
snmp-server packetsize 8192
snmp-server trap-authentication
```

Access router configuration

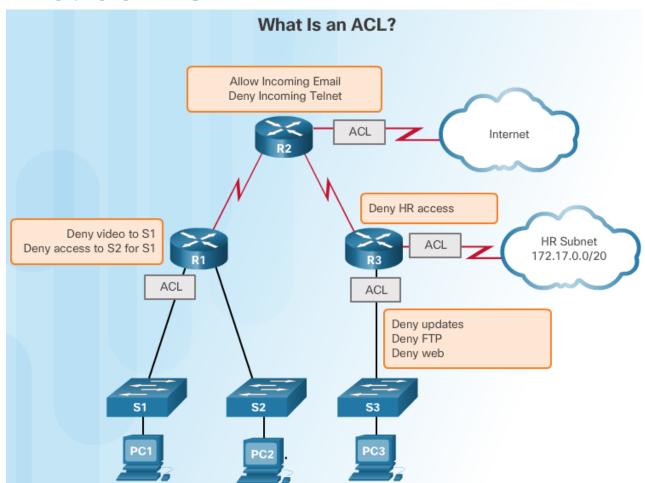
```
router ospf 100
redistribute connected metric 100 metric-type 1 subnets
redistribute static metric 100 metric-type 1 subnets
passive-interface Ethernet0
network 10.0.144.0 0.0.0.255 area 9
area 9 nssa
no ip classless
logging buffered alerts
logging console informational
logging 10.192.17.3
access-list 1 permit 10.132.36.16
access-list 1 permit 10.132.37.11
access-list 1 permit 10.132.37.3
access-list 2 permit 10.0.0.0 0.255.255.255
                                               útok pomocí snmpbrute
snmp-server community public RW 1
snmp-server trap-source Loopback1
snmp-server packetsize 8192
snmp-server trap-authentication
```

Backbone router configuration

```
version 11.2
no service finger
service password-encryption
service udp-small-servers
service tcp-small-servers
hostname Prague General Staff
boot system flash slot0:rsp-isv-mz 112-17 P.bin
aaa new-model
aaa authentication login default tacacs+ local
aaa authorization exec tacacs+ local
aaa authorization commands 1 tacacs+ local
aaa authorization commands 15 tacacs+ local
aaa accounting exec start-stop tacacs+
aaa accounting commands 0 start-stop tacacs+
aaa accounting commands 15 start-stop tacacs+
aaa accounting system start-stop tacacs+
enable password 7 121A0C041B04
```

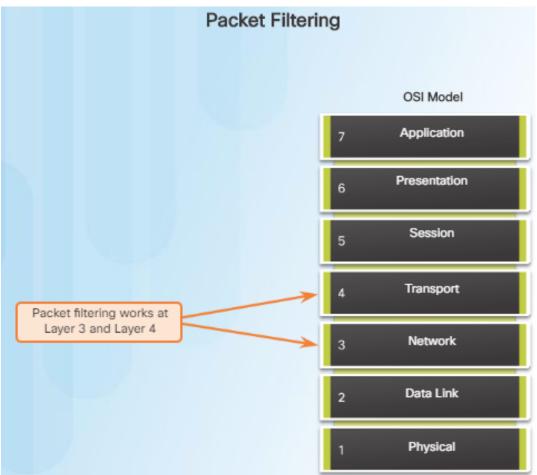
Backbone router configuration

```
version 11.2
no service finger
service password-encryption
service udp-small-servers
service tcp-small-servers
hostname Prague Generalni stab
boot system flash slot0:rsp-isv-mz 112-17 P.bin
aaa new-model
aaa authentication login default tacacs+ local
aaa authorization exec tacacs+ local
aaa authorization commands 1 tacacs+ local
aga authorization commands 15 tacacs+ local
aaa accounting exec start-stop tacacs+
aaa accounting commands 0 start-stop tacacs+
aaa accounting commands 15 start-stop tacacs+
aaa accounting system start-stop tacacs+
enable password 7 121A0C041B04
```


7.1 ACL Operation

7.1 ACL Operation

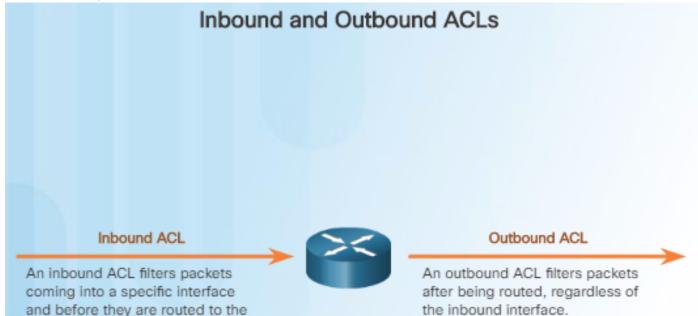
- how ACLs filter traffic
- how ACLs use wildcard masks
- how to place ACLs


What is an ACL?

 An ACL is a series of IOS commands that control whether a router forwards or drops packets.

 ACLs are not configured by default.

Purpose of ACLs: Packet Filtering



- An ACL is a sequential list of permit or deny statements (ACEs).
- Packet Filtering:
 - incoming/outgoing packets.
 - Layer 3 or Layer 4.
- The last statement: implicit deny => at least one permit statement.

Purpose of ACLs

ACL Operation

outbound interface.

 ACLs do not act on packets that originate from the router itself.

- ACLs:
 - Inbound ACLs.
 - Outbound ACLs.

Wildcard = inverse mask

	Decimal Address	Binary Address
IP Address to be Processed	192.168.10.0	11000000.10101000.00001010.00000000
Wildcard Mask	0.0.255.255	00000000.00000000.11111111111111111
Resulting IP Address	192.168.0.0	11000000.10101000.00000000.00000000

Wildcard Masks to Match IPv4 Hosts and Subnets

Example 1

Wildcard Mask 0.0.0.0 0000000.00000000.000000000000		Decimal	Binary
	IP Address	192.168.1.1	11000000.10101000.00000001.00000001
Percult 102 169 1 1 11000000 10101000 0000001 0000000	Wildcard Mask	0.0.0.0	00000000.00000000.00000000.00000000
Result 192.166.1.1 1100000.10101000.0000001.0000000	Result	192.168.1.1	11000000.10101000.00000001.00000001

Example 2				
	Decimal	Binary		
IP Address	192.168.1.1	11000000.10101000.00000001.00000001		
Wildcard Mask	255.255.255.255	11111111.111111111.111111111.1111111		
Result	0.0.0.0	00000000.00000000.00000000.00000000		

Example 3		
	Decimal	Binary
IP Address	192.168.1.1	11000000.10101000.00000001.00000001
Wildcard Mask	0.0.0.255	00000000.00000000.00000000.11111111
Result	192.168.1.0	11000000.10101000.00000001.00000000

- Example 1: all.
- Example2: nothing.
- Example 3: all from 192.168.1.0/24.

Wildcard Mask Calculation

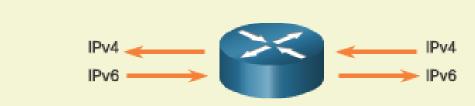
Wildcard Mask Keywords

 $192.168.10.10 \ 0.0.0.0 = host 192.168.10.10$

 $0.0.0.0 \ 255.255.255.255 = any$

The any and host Keywords

Example 1


```
R1(config)# access-list 1 permit 0.0.0.0 255.255.255.255
!OR
R1(config)# access-list 1 permit any
```

Example 2

```
R1(config)# access-list 1 permit 192.168.10.10 0.0.0.0
!OR
R1(config)# access-list 1 permit host 192.168.10.10
```

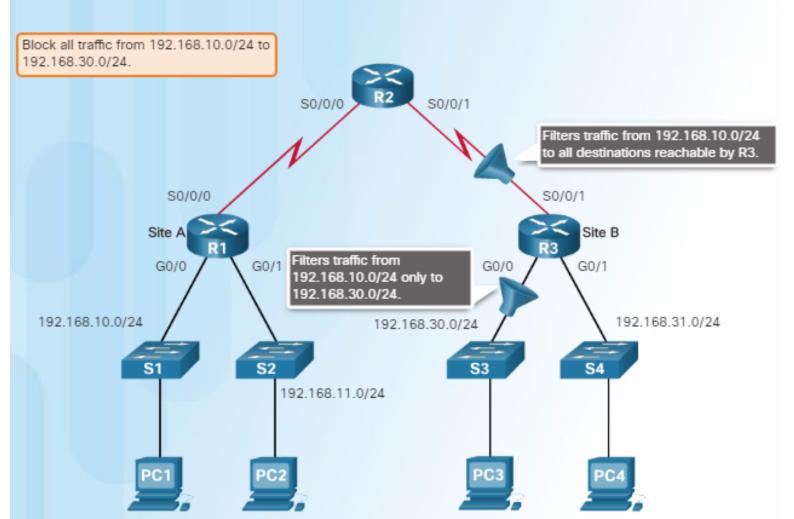
This is the format of the host and any optional keywords in an ACL statement.

ACL Traffic Filtering on a Router

One list per interface, per direction, and per protocol

With two interfaces and two protocols running, this router could have a total of 8 separate ACLs applied.

The Rules for Applying ACLs


You can only have one ACL per protocol, per interface, and per direction:

- · One ACL per protocol (e.g., IPv4 or IPv6)
- · One ACL per direction (i.e., IN or OUT)
- · One ACL per interface (e.g., GigabitEthernet0/0)

General Guidelines for Creating ACLs ACL Placement S0/0/0 S0/0/1 Extended ACLs are usually placed Standard ACLs are usually placed near the source. near the destination. S0/0/0 S0/0/ G0/1 G0/1 G0/0 G0/0 192.168.10.0/24 192.168.30.0/24 192.168.31.0/24 192.168.11.0/24 192,168,10,10 192.168.11.10 192.168.30.12 192,168,31,12 Destination Source

Standard ACLs Since standard ACLs do not specify destination addresses, they should be configured as close to the destination as possible.

Standard ACL Placement

7.2 Standard IPv4 ACLs

Chapter 7.2 - ACL Operation

 Configure standard IPv4 ACLs to filter traffic in a SMB network.

Configure a standard ACL to secure VTY access.

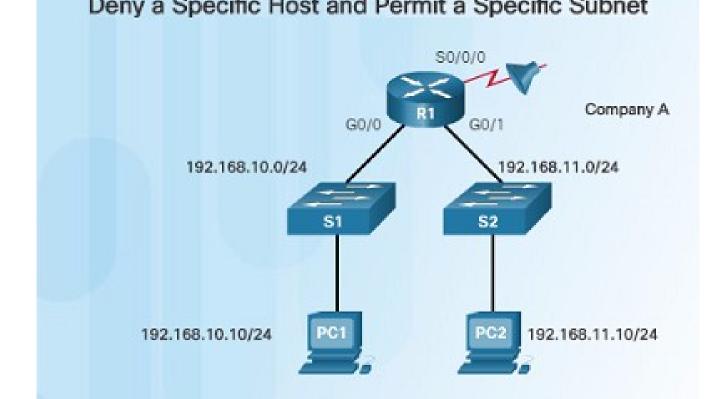
Numbered Standard IPv4 ACL Syntax

Router(config)# access-list access-list-number { deny | permit | remark } source [source-wildcard][log]

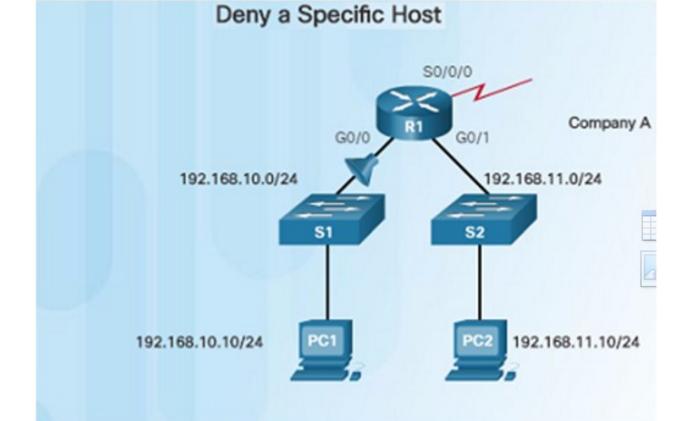
Step 1: Use the access-list global configuration command to create an entry in a standard IPv4 ACL.

R1(config) # access-list 1 permit 192.168.10.0 0.0.0.255

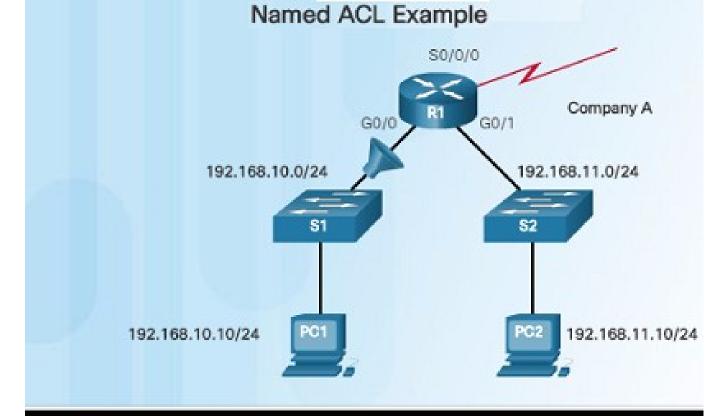
The example statement matches any address that starts with 192.168.10.x. Use the remark option to add a description to your ACL.


Step 2: Use the interface configuration command to select an interface to which to apply the ACL.

R1(config)# interface serial 0/0/0


Step 3: Use the ip access-group interface configuration command to activate the existing ACL on an interface.

R1(config-if) # ip access-group 1 out


This example activates the standard IPv4 ACL 1 on the interface as an outbound filter.


```
R1(config)# no access-list 1
R1(config)# access-list 1 deny host 192.168.10.10
R1(config)# access-list 1 permit 192.168.10.0 0.0.0.255
R1(config)# interface s0/0/0
R1(config-if)# ip access-group 1 out
```


R1(config)# no access-list 1
R1(config)# access-list 1 deny host 192.168.10.10
R1(config)# access-list 1 permit any
R1(config)# interface g0/0
R1(config-if)# ip access-group 1 in

R1(config)# ip access-list standard NO_ACCESS
R1(config-std-nacl)# deny host 192.168.11.10
R1(config-std-nacl)# permit any
R1(config-std-nacl)# exit
R1(config)# interface g0/0
R1(config-if)# ip access-group NO_ACCESS out

Method 1 – Use a Text Editor

Editing Numbered ACLs Using a Text Editor R1(config)# access-list 1 deny host 192.168.10.99 Configuration R1(config)# access-list 1 permit 192.168.0.0 0.0.255.255 R1# show running-config | include access-list 1 access-list 1 deny host 192.168.10.99 Step 1 access-list 1 permit 192.168.0.0 0.0.255.255 <Text editor> access-list 1 deny host 192.168.10.10 Step 2 access-list 1 permit 192.168.0.0 0.0.255.255 R1# config t Enter configuration commands, one per line. End with CNTL/Z. R1(config)# no access-list 1 Step 3 R1(config)# access-list 1 deny host 192.168.10.10 R1(config)# access-list 1 permit 192.168.0.0 0.0.255.255 R1# show running-config | include access-list 1 access-list 1 deny host 192.168.10.10 Step 4 access-list 1 permit 192.168.0.0 0.0.255.255

use the **show**running-config
command to
display the ACL

Modify IPv4 ACLs

Method 2 – Use Sequence Numbers

```
Editing Numbered ACLs Using Sequence Numbers
             R1(config)# access-list 1 deny host 192.168.10.99
Configuration
             R1(config)# access-list 1 permit 192.168.0.0 0.0.255.255
             R1# show access-lists 1
             Standard IP access list 1
     Step 1
                        192.168.10.99
                20 permit 192.168.0.0, wildcard bits 0.0.255.255
             R1# conf t
             R1(config)# ip access-list standard 1
             R1(config-std-nacl)# no 10
             R1(config-std-nacl)# 10 deny host 192.168.10.10
             R1(config-std-nacl)# end
             R1#
             R1# show access-lists
             Standard IP access list 1
                        192.168.10.10
                20 permit 192.168.0.0, wildcard bits 0.0.255.255
             R1#
```

- The deny 192.168.10.99
 statement is incorrect. The host to deny should be
 192.168.10.10
- The misconfigured statement had to be deleted with the no command: no 10
- new statement with the correct host was added: 10 deny host 192.168.10.10

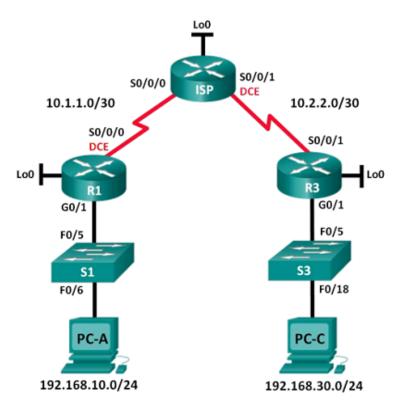
Verifying ACLs

```
R1# show ip interface s0/0/0
Serial0/0/0 is up, line protocol is up
  Internet address is 10.1.1.1/30
<output omitted>
  Outgoing access list is 1
  Inbound access list is not set
<output omitted>
R1# show ip interface q0/0
GigabitEthernet0/0 is up, line protocol is up
  Internet address is 192,168,10,1/24
<output omitted>
  Outgoing access list is NO ACCESS
  Inbound access list is not set
<output omitted>
```

```
R1# show access-lists
Standard IP access list 1
    10 deny 192.168.10.10
    20 permit 192.168.0.0, wildcard bits 0.0.255.255
Standard IP access list NO_ACCESS
    15 deny 192.168.11.11
    10 deny 192.168.11.10
    20 permit 192.168.11.0, wildcard bits 0.0.0.255
R1#
```

- Use the show ip interface command to verify that the ACL is applied to the correct interface.
- The output will display the name of the access list and the direction in which it was applied to the interface.
- Use the show access-lists command to display the access-lists configured on the router.
- Notice how the sequence is displayed out of order for the NO_ACCESS access list. This will be discussed later in this section.

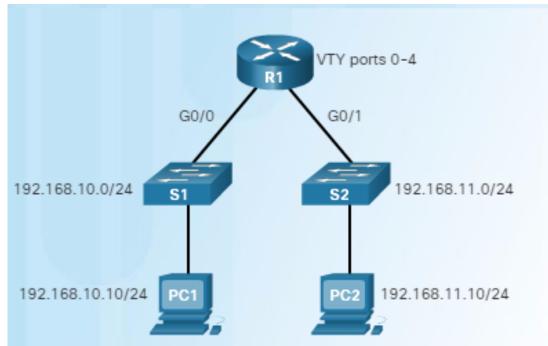
ACL Statistics


```
R1# show access-lists
Standard IP access list 1
    10 deny 192.168.10.10 (8 match(es))
    20 permit 192.168.0.0, wildcard bits 0.0.255.255
Standard IP access list NO ACCESS
    15 deny 192.168.11.11
                                                                              show
    10 deny 192.168.11.10 (4 match(es))
                                                                               access-
    20 permit 192.168.11.0, wildcard bits 0.0.0.255
R1# clear access-list counters 1
                                                                               lists
|S1||E3
R1# show access-lists
                                                                              clear
Standard IP access list 1
                                                         Matches have been
                                                                               access-list
    10 deny 192.168.10.10
                                                              cleared.
    20 permit 192.168.0.0, wildcard bits 0.0.255.255
                                                                               counters
Standard IP access list NO_ACCESS
    15 deny 192.168.11.11
    10 deny 192.168.11.10 (4 match(es))
    20 permit 192.168.11.0, wildcard bits 0.0.0.255
```

Recall that every ACL has an implicit **deny any** as the last statement. The statistics for this implicit command will not be displayed. However, if this command is configured manually, the results will be displayed.

Modify IPv4 ACLs

Lab – Configuring and Modifying Standard IPv4 ACLs


Lab – Configuring and Verifying Standard IPv4 ACLs Topology

 ACL that allows traffic from all hosts on the 192.168.10.0/24 network and all hosts on the 192.168.20.0/24 network to access all hosts on the 192.168.30.0/24 network.

Napište na tabuli!

The access-class Command


```
R1(config) # line vty 0 4
R1(config-line) # login local
R1(config-line) # transport input ssh
R1(config-line) # access-class 21 in
R1(config-line) # exit
R1(config) # access-list 21 permit 192.168.10.0 0.0.0.255
R1(config) # access-list 21 deny any
```

Verifying the VTY Port is Secured

```
R1# show access-lists
Standard IP access list 21
    10 permit 192.168.10.0, wildcard bits 0.0.0.255 (2 matches)
    20 deny any (1 match)
R1#
                                                  G0/1
                                    G0/0
               192.168.10.0/24
                                                             192.168.11.0/24
               192.168.10.10/24
                                                           192.168.11.10/24
                                                     PC2
   PC1>ssh 192.168.10.1
                                                   PC2>ssh 192.168.11.1
                                                       ssh connect to host 192.168.11.1 port
                                                       22: Connection refused
   Login as: admin
    Password: *****
    R1>
                                                   PC2>
```

Securing VTY ports with a Standard IPv4 ACL

Lab – Configuring and Verifying VTY Restrictions

Lab – Configuring and Verifying VTY Restrictions

Topology

Addressing Table

Device	Interface	IP Address	Subnet Mask	Default Gateway
R1	G0/0	192.168.0.1	255.255.255.0	N/A
	G0/1	192.168.1.1	255.255.255.0	N/A
S1	VLAN 1	192.168.1.2	255.255.255.0	192.168.1.1
PC-A	NIC	192.168.1.3	255.255.255.0	192.168.1.1
PC-B	NIC	192.168.0.3	255.255.255.0	192.168.0.1

only administrator PCs have permission to telnet or SSH into the router.

Objectives

Part 1: Configure Basic Device Settings

Part 2: Configure and Apply the Access Control List on R1

Part 3: Verify the Access Control List Using Telnet

Part 4: Challenge - Configure and Apply the Access Control List on S1

Příklad reálného filtru

access-list	100	deny	ip	15.2.6.0 0.0.0.255	any log	
access-list	100	deny	ip	host 15.1.1.20 host 15.1.1.20) log	
access-list	100	deny	ip	127.0.0.0 0.255.255.255	any log	
access-list	100	deny	ip	10.0.0.0 0.255.255.255	any log	
access-list	100	deny	ip	0.0.0.0 0.255.255.255	any log	
access-list	100	deny	ip	172.16.0.0 0.15.255.255	any log	
access-list	100	deny	ip	192.168.0.0 0.0.255.255	any log	
access-list	100	deny	ip	192.0.2.0 0.0.0.255	any log	
access-list	100	deny	ip	169.254.0.0 0.0.255.255	any log	
access-list	100	deny	ip	224.0.0.0 15.255.255.255	any log	
access-list	100	deny	ip	any host 15.2.6.255	log	
access-list	100	deny	ip	any host 15.2.6.0 log		
access-list	100	permit	tcp	any 15.2.6.0 0.0.0.255 establi	shed	
access-list	100	deny	icmp	any any echo log		
access-list	100	deny	icmp	any any redirect log		
access-list	100	deny	icmp	any any mask-request log		
access-list		_	_	any 15.2.6.0 0.0.0.255		
access-list	100	permit	ospf	15.1.0.0 0.0.255.255 host 14.	.1.1.20	
access-list	100	deny	tcp	any any range 6000 6063 log		
access-list	100	deny	tcp	any any eq 6667 log		
access-list	100	deny	tcp	any any range 12345 12346 log		
access-list	100	deny	tcp	any any eq 31337 log		
access-list			tcp	any eq 20 15.2.6.0 0.0.0.255	gt 1023	
access-list	100	deny	udp	any any eq 2049 log		
access-list			udp	any any eq 31337 log		
access-list	100	deny	udp	any any range 33400 34400 log		
access-list			udp	any eq 53 15.2.6.0 0.0.0.255		
access-list	100	deny	tcp	any range 0 65525 any range 0		
access-list	100	deny	udp	any range 0 65525 any range 0	65535 log	
access-list	100	deny	ip	any any log		

Příklady na závěr

R1(config)#access-list 10 deny 172.16.16.0 0.0.3.255

R2(config)#access-list 10 deny 172.16.16.0 0.0.7.255

R3(config)#access-list 10 deny 172.16.32.0 0.0.15.255

R4(config)#access-list 10 deny 172.16.64.0 0.0.63.255

R5(config)#access-list 10 deny 192.168.160.0 0.0.31.255

