Question 1.

(a) € = {11111,00100,10010,01001}
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h(C) = h(11111,10010) = 3.

(b) Strings 11011, 01101, 10011, 00111 decoded according to the nearest neighbor strategy

R(11011,11111) =1
R(11011,00100) = 5
(11011, 10010) = 2
A(11011,01001) = 2
11011 — 11111

h(01101,11111) = 2
A(01101,00100) = 2
(01101, 10010) = 5
A(01101,01001) = 1
01101 — 01001

=

(10011,11111) = 2
(10011, 00100) = 3
(10011, 10010) = 1
h(10011,01001) = 3
10011 — 10010

-

A(00111,11111) = 2
A(00111,00100) = 2
R(0D111,10010) = 3
h(00111,01001) = 3
00111 — 11111 or 00100



Question 2.

(a)

(b)

The number of codewords is set to 4.

We will start with N = 1, for which we create Chpaee = {00,01,10,11} which is a (2V,4, N)
code according to N.

We will construct the code for any N as follows — each codeword will be constructed as a
codeword from Ch,se concatenated N-times.

So since Cpgse 18 a (2,4, 1) code, for any N the codewords will be of length 2N.

And since the first codeword ¢; will always consist only of 0s, ¢2 and ¢3 will have N number
of 1s on mutually opposite positions, and ¢4 will be only 1s, together it makes the minimum
distance = N (the same principle as in Chpqse, where ¢; = 00 and ¢2 = 01 and therefore d = 1).

Example:
For N = 3 we will get C' = {000000,010101,101010, 111111}, which is a (6,4, 3) code.

We will create the code by creating a base of the code which will be then concatenated d-times.
The process is as follows:

e We create M codewords as increasing binary numbers 0, ..., M — 1 on [logy M bits,
which is the least amount of bits needed to store value M — 1. Since each codeword is a
different binary represented number, the minimum distance is at this point 1.

e We get the result codewords by d-times concatenating corresponding base codeword.
¢; = (Base;)?, therefore n = d - [logy M
Since the minimum distance of base code is 1, the minimum distance of C' is d.

Example:

M =5,d = 3. We must construct (n,5,3) code.

The base codewords will be of length [log, 5] = 3 bits.

Base = {000, 001,010,011, 100}

Concatenate each base codeword d-times:

C' = {000000000, 001001001, 010010010,011011011, 100100100}

Question 3.

(a)

(b)

After increasing the middle bit in code words of code €2 by 1 (so that 0 becomes 1, 1 becomes
2 and 2 becomes (), we get code with code words {000,222, 111}.

Codes C'1 and C2 are equivalent.

When we calculate the distances between code words of both codes, we find out that code C'1
contains a pair of code words with distance 4, while there is no such pair in code C2.

(i) Distance of code words in code C'1:
d(0011, 1010) = 2
d(0011, 0101) — 2
d(1010, 0101) = 4

(ii) Distance of code words in code C'2:
d(0000, 0110) = 2
d(0000, 0011) = 2
d(0110, 0011) = 2

Therefore, codes C'1 and C2 are not equivalent.



Question 4.

We can map each string from binary code €' with (n, M,d) to a vector R™. Each character ¢ of
codeword s, on position ¢ maps to a number u.[i] = [ if ¢ = 1 or u,[i] = —{ if ¢ = 0. To create
normalized vectors, we will set | = 1/y/n.

Observe that we can deduce how many characters two codewords s, and s, share, by performing
dot product of corresponding vectors wu, and wy: ((ug-uy)+1)-(n/2) (if strings share no characters,
dot product is -1 and each character they share adds 2/n to the dot product).

Proof by contradiction: Let us assume that we have found a binary code C' with (n, M, d) where
M > 2n and d > n/2. C = {s1,s2,....sy} and corresponding vectors are uj, us,...up. Since
d > n/2, dot product of any two different vectors u, and u, must be u, - u, < 0 (since s, and s,
share at most half the characters). Notice, that vectors uy, us, ..., upr now have all the properties
that are required by given lemma. But this contradicts given lemma that says that we can find at
most 2n of vectors with these properties (we have M > 2n of them).

Question 5.

(a) By multiplying digits on even positions by 2, we get 29058x. By summing the digits we get
24 + z. If we want 24 + 2 to be divisible by 10, then x = 6.

(b) Given digits dy,ds, ds,dy, ds of codeword dydadsdsdsaz , we multiply the first, third and fifth
digit by 2 (because they’re on even positions going from right) and we get 2d;d22d3ds2ds.
Then get sum S of the digits of 2d1d22d3ds2ds (if 2d; > 9 we take its individual digits) and
the check digit = = (10 — (S mod 10)) mod 10

It can detect any single error. If it couldn’t, there would a changed digit that was differed
from the original one by 10, which is impossible, since digits are 0-9, or a digit that when
multiplied by 2 and the sum of the digits of the result differed by 10 from the sum of digits
of the original one multiplied by 2. That is also impossible, since the sum of digits of a any
digit multiplied by 2 is at most 9.

(c
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(d) It can’t detect transposition error involving adjacent digits if the digits are 0 and 9, because
2:04+9=0+1+8, where 148 is the sum of digits of 29, meaning if adjacent digits 9 and 0
exchange positions it will still be a valid codeword. Example might be the codewords 190546
and 109546, which both have the same sum of individual (unchanged and doubled) digits.

Question 6.

Following graph represents the process of creation of the Huffman code.

Huffman code C is therefore defined by the following table:
symbol | codeword

A 0
B 100
C 101
D 11

AVG(C) = e Plc) || =0.45-1+0.10-3+0.15-3+0.3-2=18
Average codeword length is 1.8.

S(X) ==Y sex P(x) - logy(P())
= —1-(0.45 - 1og,(0.45) + 0.10 - logy(0.10) + 0.15 - logy(0.15) + 0.30 - logy(0.30)) ~ 1.78223

Efficiency is equal to Af'(c,)\()C) ~ %223 ~ 0.99013.



