Question 1.

(a) No. Let C' = {010,101, 111}, then 0 - 010 = 000 ¢ C.

(b) No. Let C = {0}, then ¢’ = {1} which is not a linear code, since 0-1 =0 ¢ C".

(¢) Yes. We need to verify linear code axioms:

(i) Observe a ® b= a + b under Fj. Let ¢1,¢] € Cy and ¢z, € Co, then:
(c1®c2) + (1 ®ch) = (c1 +¢2) + () +¢h)
=(c1+¢)) + (c2+¢h)
=d +d
=dledel”,
where ¢ € Cy and ¢§ € Cs. So the axiom of additive closure holds.

(ii) Observe 0-a = 0" and 1-a = a under F5. So we need to check only that 0" € C”. Since
0™ € C1 and 0™ € Cy, then 0" ® 0" = 0™ € C”. So the axiom of scalar multiplication
closure holds.

Question 2.

(a) We can read out the n = 5 and k = 2 directly from the generating
matrix G. With a little effort, since the code contains only four words,
we can also see that the codeword with smallest weight is 01010 and
therefore d = 2.

(b) The code C' has 4 codewords: {00000,10101,01010,11111}. The
array has dimension ¢"~* = 23 = 8 by ¢* = 4. A standard (Slepian)
array is given as follows:

| 00000 | 10101 | 01010 | 11111 |

10000 | 00101 | 11010 | 01111
01000 | 11101 | 00010 | 10111
00100 | 10001 | 01110 | 11011
00001 | 10100 | 01011 | 11110
10010 | 00111 | 11000 | 01101
00011 | 10110 | 01001 | 11100
00110 | 10011 | 01100 | 11001

(c) We can find the word 11110 which is decoded to the first row in its
column — codeword 00111.

Question 3.

(a) Yes.
Code generated by G7 is C; = {0000, 1001, 0101, 1100}
Code generated by Go is C2 = {0000, 1010, 0011, 1001}
We can get code C by doing permutation of 2nd and 3th and of 1st and 4th columns on the
code words of Cs.
(b) Yes.
Code generated by Gy is C; = {00000, 11000, 01010, 00101, 01111, 10010, 11101, 10111}.
Code generated by G is Cy = {00000, 11110, 10010, 01111, 11101, 01100, 10001, 00011}.
We can get code C; by doing permutation of 2nd and 5th columns on the code words of Cs.
(¢) Two codes are permutation equivalent if they are equal up to a fixed permutation on the code
word coordinates, so we can generate the code words and try all the possible permutations
and then decide if they are permutation equivalent. All the combinations have a finite and
fixed number.

Question 4.

Consider the binary linear code C' with generator matrix

G =

—_ =
S ==
=]
== O
W

= O O
(E e

(a) Find the parity-check matrix of C.

To get the parity check matrix I first edit the generator G matrix to normal form.

111000 I 1 1000 111000 10 1 10 1
110110 ~f001110{~]01010T1~f01010 1|~
101101 010101 001110 001110
1 0 0(0 1 1
~[010(101|=[IL|A]
00 1|1 1
Then parity matrix H is created as:
0 @ 1 200
H=[-AT|L]=(101010
1 00 01

(b) Find the syndrome of the word 100001.
To find the syndrome I have to multiply received word w = 100001 with the matrix H.

w- HT = (010)

Syndrome of this word is 010.

Question 5.

{1001,0111,1110}

(a) Third word is linear combination of the first two. Generator matrix for binary linear code
containing these words can look like this:

i (@
¢= [1 11 0]

This code is also the smallest possible, because vectors in matrix G are linearly independent.
C = {0000, 1001, 1110,0111} |C| = 22

(b) These words are linearly independent in GF(3). Generator matrix for such a code can look
like this:

This matrix generates the smallest ternary linear code Cs. |C3| = 33

Question 6.

Proof. We know that = z125...2190 € C <= zH' =0 = (0,...,0). If HiT denotes the i-th
——

12 zeros
column in H T, then this is iff A z-H, =0.
1<i<12

We can sum up these equations into one and see that the following must hold

Z 3z; = Z x; =0 (mod 2)

1<i<12 1<i<12

However, this only holds iff we have an even number indices 7 € {1,...,12} s.t. x; = 1. U

Question 7.

Consider code C; and its dual Cll. Consider an operation O that transforms C; into equivalent
code Co. We will show that for each such operation, there is a corresponding equivalent operation
O’ that transforms Cy- into C-.

There are two types of operations that we have to consider:
(a) permutation of the words or positions of the code

Permutation of words is trivial case. Permutation of words in Cj, doesn’t affect Ci- so in
this case, the corresponding operation on C’f‘ is to do nothing.

Permutation of positions of the code does affect dual code. To make things simpler, we can
decompose permutation into sequence of swapping of two columns. Now, when we swap two
columns in C to obtain Oy, we swap columns on same positions in Cj- to obtain Cy- to ensure
that same pairs of symbols will be multiplied with each other as before swapping. Thus the
scalar product will remain the same (zero) for all pairs of codewords.

(b) multiplication of symbols appearing in a fixed position by a non-zero scalar

Consider vivovs...v, € C7 and wjugus...u, € CIJ‘ and suppose that to obtain Cs, col-
umn ¢ of v was multiplied by non-zero scalar z. Before, i-th column added v;u; to the sum.
Now it would add xwv;u; so naturally, the sum wouldn’t be zero anymore. To fix this in Cj,
column i of u can be multiplied by modular inverse of x (mod q), denoted as = !. It holds
that = !z = 1 (mod q) and modular inverse exists for all numbers that share no prime factors
with ¢, which are actually all numbers 1,2,...¢ — 1 since we assume that q is a prime. So
now given columns will again be adding zv;z~'u; = v;u; to the sum. Thus the scalar product
will remain the same (zero) for all pairs of codewords.

For any equivalent codes C7 and Co, there is a sequence of operations a) and b) that can transform
one code into the other. We can map all of those operations to the corresponding operations on dual
codes as shown above. Described operations on dual codes are again operations of type either a) or
b) (swapping rows = permutation of positions and multiplying by modular inverse = multiplying
by non-zero scalar). So Cj- and C3- are equivalent because one can be obtained from the other by
sequence of operations a) and b).

