Question 1.

(a) part a

We know that p =31, g =37, n = pg =31 + 37 = 1147, e = 11.

(i) Eneryption

My UCO is 408367. We cannot use the whole UCO as a message, because it is of a
higher value than n. Therefore, we divide UCO into two parts: m; = 408, my = 367.

Then we encrypt the messages in the following way:
c1 =mj mod n = 40811 mod 1147 = 149
e3 = m§ mod n — 367 mod 1147 — 564

Therefore, the encrypted UCO is 149564,

(ii) Deeryption

To decrypt, we need d such that:
e+d=1mod [(p—1)(g—1)]
11%d =1 mod 1080

Therefore, d = 491.

Then, we can decrypt the messages in the following way:

my = c‘f mod n = 149491 mod 1147 = 408
ma = ¢4 mod n = 564*! mod 1147 — 367

(b) part b
The last two digits of my UCO are 67, therefore in binary: 1000011,

We encrypt the message w = (1,0,0,0,0,1,1) by computing X 'w”’, so the encryption is:
X'w? = (393, 306, 140, 152. 435, 486, 323)(1,0,0,0,0,1,1) = 1202

Then, let’s decrypt. It is known that u = 131 and m = 521.

(i) First, we compute 131~ mod 521 — 175.

(b) part b

The last two digits of my UCO are 67, therefore in binary: 1000011.

We encrypt the message w = (1,0,0,0,0,1,1) by computing X'w’, so the eneryption is:
X'wl = (393, 396, 140, 152, 435, 486, 323)(1,0,0,0,0,1,1) = 1202

Then, let’s decrypt. It is known that u = 131 and m = 521.

(i) First, we compute 131~! mod 521 = 175.

(i1) Then, we compute: 175 % ¢ mod 521 = 175 * 1202 mod 521 = 387.

(iii) To be able to decrypt, we need X that we are able to compute from X":
X' = u*(x, 39,73, T4, T5, Tg, T7) mod m
X' =131 # (x1, w2, w3, 4, x5, 6, 77) mod 521

Therefore, X is equal to:
X =(3,7,13,29, 59,127, 257)

(iv) Finally, we are able to decrypt in the following way:
387 = 257, therefore x7: 1 and our new value is 387 - 257 = 130
130 = 127, therefore xzg: 1 and our new value is 130 - 127 = 3
3 < 59, therefore x5: 0
3 < 29, therefore x4: 0
3 < 13, therefore x4: 0
3 < 7, therefore x2: 0
3 =3, therefore z: 1

Therefore, the message after the decryption is: 1000011

Question 2.

No, these moduli are not safe. We suppose that the device is not perfect and generates some primes
more often then the others. Moduli are then product of two primes, but there are some common
primes, therefore the moduli can have the common prime as their ged. We can easily for every pair
(or generally tuple) of generated moduli compute ged (using euclidean algorithm) and therefore
factorize the moduli without bruteforce. We can check:

ged(65201327,134635439) = 8219, therefore we can easily compute 65201327 /8219 = 7933 which
gives us 65201327 = 8219 - 7933 and 134635439/8219 = 16381 which gives us 134635439 = 8219 -
16381,

ged(122176133,122237737) = 15401, therefore we can easily compute 122176133/15401 = 7933
which gives us 122176133 = 15401 - 7933 and 122237737/15401 = 7937 which gives us 122237737 =
15401 - 7937.

ged(122237737,99633161) = 7937, therefore we can easily compute 122237737/7937 = 15401 which
gives us 122237737 = 15401 - 7937 (we already have this in the second step) and 99633161/7937 =
12553 which gives us 99633161 = 7937 - 12553.

There was no moduli with trivial common divisors with other moduli therefore there is no secure
moduli (we were able to easily factorize all of them).

Question 3.

Solution: 633917 = 593 - 1069.

Since n = pq and @(n) = (p — 1)(g — 1), we need to solve the following nonlinear system of two
equations and two variables:

633917 = pq
633256 = (p — 1)(g — 1)

From the second equation, we can express p as p = pg — g+ 1 — 633256 = 633917 — g+ 1 — 633256 =
662 — ¢. Inserting this in the first equation we get

(662 — q) - g = +633917
662 — g7 — 633917 =0
g2 — 16629 + 633917 =0

By solving this quadratic equation we obtain that g; = 593 and g2 = 1069. This corresponds to the
fact that p and g are interchangeable, and the factorisation is 633917 = 593 . 1069.

Question 4.

We need to show that for all ¢ that g, is strongly one-way function, that is (using definition from
crl905 2 2.pdf page 21):

® g. can be computed in polynomial time
e there are d,., €. > 0 such that |25 < |ge(x)| < |x]%

e for every randomized polynomial time algorithm A, and any constant d = 0, there exists an
my such that for |z] = m > mg: Pr(A(g.(z)) € g7 (g:(2))) < 5

Furthermore we know that f is strongly one-way function, so we know following:

f can be computed in polynomial time
— hence there is polynomial time algorithm F' which computes f
e there are d, e > 0 such that |z|* < |f(z)| < |z|?

e for every randomized polynomial time algorithm A, and any constant d > 0, there exists an
myg such that for |z| = m > mga: Pr(A(f(z)) € f~ () < #

Let ¢ € {0,1}™ be arbitrary:

We will prove the first bullet, that is, we will show that g. can be computed in polynomial time.
Consider following algorithm G.:

e input x is binary word of length 2n

e split = into half, call these z, x5

compute A(za), call the result y

concatenate ¢ and y, call the result z
e return z
We can see that this algorithm G. computes g. and that it is polynomial time, because A is

polynomial time and remaining operations are linear in size of input. Hence g, can be computed in
polynomial time.

We will prove the second bullet, that is, we will find d.,e. > 0 such that |z|5 < |g.(x)| < |z|%.
Notice that this is trivial by choice d. = €, = 1, because size of input and output of g. is 2n, that
is, |z| = 2n and |g.(x)| = 2n, hence 2n = |z|' < 2n = |gu(z)| < |z|% = 2n.

Finally we will prove the third bullet, that is, we will show that for every randomized polynomial
time algorithm A, and any constant d > 0, there exists an my such that for |z| = m > my :

Pr(A(ge(z)) € g; ' (9:(x))) < i
We will prove this by reduction:

Consider there is algorithm A such that it would not hold, that is, there is constant d = 0 and for
all my there exists || = m > my such that Pr(A(ge(zm)) € 6. (ge(zm))) > L.

Then consider following algorithm Fla:

e input z is binary word of length n

e concatenate ¢ and z, call the result u
& compute A(y), call the result z

e split z into half, call these 21, 29

e refurn za

Let x1, 79 be such that z;||ro = =, then notice that g.(z) = ¢||f(z;). Hence for all m > my
there exists T 1, Tm2 such that zm,1||Tm2 = zm and therefore Pr(A(g.(zm)) € g2 (gelzm))) =
Pr(Fa(f(zm1)) € FH(flzm1))) > #, which contradicts our assumption that f is strongly one-
way function. Hence there is no such algorithm A.

That is, we have proven all three bullets, hence g. is strongly one-way function.

Question 5.

(a)

1010011
s e 11001001
G=5GP=13000111

0101011

(b) ep(w,e)=wG +e
(1010) * G' = 1010100
1010100 4 0000100 = 1010000 which is our encoded word.

() e1 = eP~'. Since P is orthogonal, it’s the same as ¢; = ¢PT = (1100110) + PT = 1110010
1101100
H=/1 0110140
0111001

aHT = (010). .. corresponds to sixth column of H, so ¢ = 1110000 = w; = 1110
Since wy = wS, we need to find S~! and compute wy + S~! to get w.

0
o
S_l
1

[l =R]
=
[l =)

(1110} = 1 = 0110 which is the decoded cryptotext.

Question 6.

This is clearly some variation of the three-pass protocol, so after the second step, they should
continue as follows:

3. Alice computes modular multiplicative inverse of ey, let’s call it d4 such that dq xeq = 1
(mod 2* — 1). Then she computes C,C = B in GF(2") and sends C to Bob. (€ = m®5,

because Alice now unlocked her "lock" on the message)

4. Bob computes modular multiplicative inverse of eg, let's call it dp such that dp *eg = 1
(mod 2" — 1). Then he can get m by computing C%% in GF(2") = m.

If m was, for example, some encryption key, now the two of them can begin encrypted communication
using m.

Proof:

First, consider the case where m > 0. All nonzero elements of GF(2") form a multiplicative group
of order 2® —1. From Lagrange’s theorem we know that the order of group element divides order of
finite group. In our case this means that for some m in GF(2") if = is the smallest nonzero integer

IV054 2020 David Hofman (456229) Homework 5

such that m* = 1in GF(2") then must divide 2" — 1. With the previous argument in mind, we
also know that m®"~! = 1 in GF(2"). It follows that m*(2"~!) = 1 in GF(2") as well, and that
mF2 =+ — o in GF(27).

This implies that to get m from m® in GF(2") we need to find some integer d such that m® =
m*2" =1+ in GF(2), so we want to satisfy the equation de = k(2" — 1) + 1, that is de = 1 (mod
2™ — 1), in other words we need to find the modular multiplicative inverse of e with respect to
modulus 2% — 1. This is exactly what we are doing in steps 3. and 4 when computing d, and dp.
‘We can also be sure that in our case the modular multiplicative inverse of ed or eB with re-
spect to modulus 2" — 1 always exists, because we have previously enforced that ged(ey, 2" — 1) =
gediep, 2" — 1) = 1.

To show how it works in practice after the second step:

e In the third step Alice knows e4 and B = (m®) = (m®®)** in GF(2") She computes da as
described above, then computes C' = B% = (m°8)49 = (e 2" =1+ = pes i GF(27).

e In fourth step Bob knows eg and €' = m®®, he computes dg as described above, then m =
Cis = meeds = pF" U+ = i in GF(27). He successfully received m.

Lastly, the case where m = 0 wasn’t previously considered, but 0° = 0 in GF(2") for any = > 0,
so in this case it works as well.

