Question 1.

r=6 (mod 17)
r=3 (modT)
r=9 (mod 11)

First we check that ged(17,7) = 1, gcd(17,11) = 1 and ged(7,11) = 1, therefore we can use the
Chinese remainder theorem.

Let’s denote the numbers from the assignment as a1 = 6, mqy = 17, aa = 3, ma = 7, ag = 9,
mg = 11.

We have three integers my, ma and mg st ged(m;,m;) = 1 if i # j and integers ay, a2, ag st
0 < a; <m;, 1 <i<3. The system of congruences

r=a; mod m;,1<i<3

has the solution =z = Zle aiM;N;. where M = H?:l mi, My = 4 N; = Z\-Il-_i mod m; and the

m, !
solution is unique up to the congruence modulo M. Since we are looking for 0 € © < M, we can do

the computation of z = E?:l a;M;N; mod M.
First we compute M = mj - mo-m3 =17 -7-11 = 1309. Then we can compute M;:

1309 17-7-11

Vo 1809 17Tl o

B

.nf3:—1309:717.7.11:17-7:119
11 11

Now we need the inverses of M;.

Ni=M;" mod my
=77"" mod 17
=9' mod17
=2 mod 17

We found the last equation simply, since 2.9 =18 =1 maod 17.



Na=M; "' mod my
=187 ! mod7
=571 mod7

=3 mod?7

Again we simply find the last equation, since 3-5=15=1 mod 7.

Ny =M;' mod ms
=119"' mod 11
=97 mod11
=(-2)"" mod 11
=5 mod 11

Again —2-5=—-10=1 mod 11.

Now we can compute the z:

3
=" a;M;N; mod M =
i=1
=6-77-2+3-187-3+9-119-5 mod 1300 =
=924 4+ 1683 + 5355 mod 1309 =
= 7962 mod 1309 =
= 108

So we have the result =+ = 108. We can easily check that 108 = 6 mod 17, 108 = 3 mod 7 and
finally 108 =9 mod 11.



Question 2.

I'm gonna use Euler’s criterion:

2

p=1 {1 mod p  if there is an integer = such that a = «* mod p,

—1 mod p if there is no such integer.

Let’s look at the number {1,...,10}:

SRl _ 14004 — 1 p0d P
9PE=L _ 94004 — 1 mod P
2=l qa004 — 4 mod p
A= — 44004 — 1 od P
=L _ 24004 — 1 110d P
GR=L _ pa00d _ _q mod p
RS _ 24004 — 1 1nod P
QI _ Q1004 — 1 10d P
2=t _ 1004 — ¢ 4 P

8009—1
2

10 =10"""" =1 modp

So numbers 1,2,4,5,7,8,9,10 are quadratic residui modulo 8009, and number 3,6 are not.



Question 3.

(a) Rabin cryptosystem
n = 698069 = 887 - 787

Encryption: Since w = 456556 and w < n:

c=w? (mod n) = 4565562 = 675805 (mod 698069)

Decryption:
The formula is w = /¢ (mod n). Firstly we use Chinese remainder theorem:

wp = 675805  (mod 887) w, = 675805  (mod 787)

w, = 675805" 1 (mod 887) w, = 675805 ¢ (mod 787)
wy = 675805222 (mod 887) wy = 67580597 (mod 787)
wp = 249 (mod 887) wg =96 (mod 787)

Secondly we have to find y, and y; (can be found as Bezout'’s coefficients) for p = 887 and

q = T8T:
yp=p ' (mod q) yy=q ' (mod p)
¥, = 8871 (mod 787) y, = 78771 (mod 887)
yp = —181 (mod 787) yq = 204 (mod 887)

Lastly we calculate four possible solutions as follows:
wy = Fwp-q-ygTwg-p-yp (modn)

wy = 249 787 - 204 + 96 - 887-(—181)= 131525 (mod 698069)

( (
wy = 249 - 787 - 204 — 96 - 887-(—181)= 241513 (mod 698069)
w3 = —249 - 787 - 204 4 96 - 887-(—181)= 456556 (mod 698069)
wy = —249 - 787 - 204 — 96 - 887-(—181)= 566544 (mod 698069)

The original message is ws3.



(b) El Gamal cryptosystem

p = 567899 o = 12345
g=2 =938
Encryption:

Firstly, we need y = ¢® (mod p) = 212345 = 222588 (mod 567899).
Now we can encrypt the message w = 456556 as follows:

c=(a,b)
a=gq" (mod p) b=w-y" (mod p)
a=2%8 b = 456556 - 22258878

a=201104 (mod 567899) b= 325068 (mod 567809)

The encrypted message is (201104, 325068)

Question 4.

To show this, we prove that the discrete logarithm problem is reducible to finding two collisions,
i.e. we can solve the discrete logarithm by finding two colliding messages.

First we find the two colliding messages m = x + yg and m’' = =/ + y'q. We want to find [ such that
log, 8 =1 mod p (or B =a' mod p).

Because the messages m, m’ have the same hash value, it holds that o*g¥ = o® ¥ mod p.

We replace § with of: o®(ad)? = o (o!)¥ mod p

o®al¥ = a® o/¥ mod p

@t — o= HY mad P

z+ly=1"+ly mod p— 1 (for exponents we use modulus order of & = p — 1)

y —y)=(r—2z')mod p—1

We can replace p— 1 = 2q and get [(y — y) = (r — z’) mod 2¢

‘We can solve this using these two equations and CRT:

Wy —y) = (r—z') mod q

(y —y)=(zr—z') mod 2

For the first one we have to show that inversion of y' — y exists, i.e. ¥’ —y # 0 (mod g).

If y # v/, it holds that y' — y # 0 (mod g) because 0 < ',y < ¢ — L.

If y = 3 it holds that o® = a® (mod p) (because h(m) = h(m')), = = 2/ (mod p—1), = = 2’
(mod 2g) and because 0 < =,z < ¢ — 1 that means = = 2, but that breaks the condition m # m’
- contradiction. Therefore y # 1.

For the first equation we have one solution | = (z —2) * (3’ —3)~" (mod q)

For the second equation we have two different solutions (because we are using modulus 2) and we
can try both without changing the complexity to get the final value of [ (there is only one because
v is primitive root).

‘We showed that we can solve the discrete logarithm problem by finding two colliding messages and
therefore finding two colliding messages is at least as hard as solving the discrete logarithm problem.



Question 5.

(@)

(b)

(c)

Probabhility that at least two people were born on the same day of the week is easier to
calculate with complementary probability - everyone was born on different day of the week
and subtract it from 1. (variation without repetition, how many ways to pick 5 digits from 7
numbers, order is important)!

I — Pr(all distinct) = 1 — =5 = 0.8500624

The probability that exactly two people (couple) were born on the same day of the week (and
three other people in different days) is: How many ways can we select a pair, couple - two
from five people each person from pair was born on the same (one) day from seven
possible days. The other three remaining people have respectively six, five and four
possible born dayvs, divided by all possible outcomes

BRI 5002082

| J

the probability for at least three people were born on the same day of the week is equal to
probability that exactly two people were born on the same day of the week (prob. from (b))
subtracted from probability that at least two people were born on the same day of the week
(prob. from (a)). We have to be careful and don’t forget to subtract also the probability of
two pairs, because (b) is probability of exactly one pair. So we have to choose two from five
people - first pair and two from three people - second pair now assign two from seven
days to each pair and finally assign last day from 5 residual days to last the person:

Ll (1698488




Question 6.

First, we will show that there are exactly two decryptions x;, z; of even parity and exactly two
decryptions x, x; of odd parity, where i # 7 # k # [

The decryptions are in the following form:

T = Mp-q-Yg + mg-p-yp modn
T9 = Mp-q-Yg + (—mg)-p-yp modn
3= (—mp)-q-yg + mg-p-yp modn
e =(—mp)-q-yg +(—mg)-p-yp modn

1

where m, = y/cmod p, my = /emod ¢, y, = p ! mod ¢ and Yy =g " modp.

Sinee p, ¢ are prime numbers such that p = ¢ = 3 mod 4, then p and ¢ are odd prime numbers.
Since p is an odd prime number and —m, = p — m, (mod p), then m, is of opposite parity from
—m,

This holds also for m, and —mg — i.e. since g is an odd prime number and —my = g —my (mod q)
then myq is of opposite parity from —my.

Let my and mg have the same parity. Then —my, and —m, also have the same parity (opposite
from myp and my).

Then the decryption xy can be written as:

TL =T Q- Ug T Mg D Up mod n
=—((-mp) q-yg+(—mg) - p-yp) modn
=—14 mod n
=n—u1y4 mod n

And the decryption xg9 can be written as:

T2 =mMp-q-Yg+ (—mg) - p-up mod n
=—((-mp)-q-yg+my-p-yp) modn
= —13 mod n
=n-—xr3 mod n



Since n = p- ¢ is an odd number, the decryptions =y and x4 are clearly of opposite parity. And so
are the decryptions o9 and 3.

Second, we will show that for each pair x,, 2; of decryptions of the same parity, where s # £, the
value of Jacobi symbol modulo n of x; is opposite from the Jacobi symbol modulo n of ;.

The Jacobi symbols modulo n for the decryption z, is as follows:

(mp-q-yq+mq-p-yp) My - q - yq—l—mq P- yp)
n

(mp q- yq+mq p- yp)_(mp-q-yq+mq-p-yp)

q
My - q - yq) . (mq -p--yp)
q
B ('.'n-p) (mq)
S \p q
And in an analogous way we get the Jacobi symbol modulo n for the decryption 2:
() - () () - (%) () (%)
n p q P q q
- (ﬁ) : (m)
P q
For the decryption xa:
(- () (3)-() (3) ()
n r q p p q
And for the decryption x4:
(ceemionsen) () (2)-3) (3) () (3
n p q P P q q
)6
by q

Since ged(my, p) = ged(myg, ) = 1 none of the Jacobi symbols modulo n for any decryption will be
equal to zero.
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This implies that the Jacobi symbols modulo n are the same for the decryptions 21 and x4 (which
are of opposite parity).

And also for the decryptions x3 and z3 (again of opposite parity) the Jacobi symbols modulo n are
the same (and they have an opposite value from the Jacobi symbols modulo n for 2y and 2y).

Therefore, we can see that each of the four possible decryptions x1, 22, 23 and x4 of ciphertext ¢ is
uniquely determined by two bits of information — its parity and Jacobi symbol.



