IV054
Solution of HW 8

1 Hashing and ElGamal signature

See the file signature.xls.

2 Hasse theorem for bounds of EC order; EC with the same order
an different group structure

By Vincent Mihalkovié:

SageMath helps me a lot:

maxx, minn = 0, Integer.MAX_VALUE

for a in range(7):
for b in range(7):
# We need to check non-singularity (-16(4a**3 + 27b#x2) J 7 != 0)
E = EllipticCurve(GF(7), [a,bl)
number_of _points = len( E.points() )
if number_of_points < minn:
minn = number_of_points
min_curve = E

if number_of_points > maxx:
maxx = number_of_points
max_curve = E

if number_of_points ==
print( E.abelian_group() )

print( min_curve, min_curve.points() )
print( max_curve, max_curve.points() )

(a) First, look at the Hasse's theorem on elliptic curves:

IN=p-1<2/p
IN -8 <2v8
8—2VB <N <8428
3<N <13

Minimal curve 3% = 2% + 4 with 3 points:

[OC-, (0, 2)! (0, 5)]

Maximum curve y* = 2% + 3 with 13 points:

[cc, (1,2),(1,5),(2,2),(2,5),(3,3), (3,4), (4,2),(4,5),(5,3), (5,4), (6, 3), (6,4)]

(b) Additive Abelian group isomorphic to Z3 x Zz embedded in Abelian group of points on Elliptic
Curve defined by y? = 23 4 2 over F;
If we look at the points ([oo, (0, 3),(0,4), (3,1),(3,6), (5,1), (5,6),(6,1), (6,6)]) All of them
has order 3 (except oo) there is no generator element with order 9.
But additive Abelian group isomorphic to Zg embedded in Abelian group of points on Elliptic
Curve defined by y2 =23 4+ 32 + 2 over F7, has
[0, (0,3),(0,4),(2,3),(2,4), (4. 1), (4.6), (5, 3),(5,4)] points, in which six of them
[(2,3),(2,4),(4,1),...] has order 9, thus they are generators of this Abelian group!



3 Proof of theorem and estimating bounds

By Jakub Déczy:

(a)

(b)

When considering, if i € Z,;(x = 4,y) is a valid point on a curve, we have to evaluate
y? = % + ax? + b and determine, if 2% 4 az? + b is a quadratic residue. We have 3 possible
outeomes.

(i) =* + ar +bh=0: (z y) is a point on a curve.

(i) =* + ar? 4 bis a quadratic residue : (z.,y).(r,—y) are points on a curve (if p is a prime,
we can always find two distinet points because y £ —y mod p and (—y}2 =47).

(iii) 2° + ax? + b is not a quadratic residue : there cannot exist any y, such that (z,y) is a
point on this elliptic curve.

Since this lists all possible points (x, y) for any = € Z,, we can count the number of points on

elliptic curve E as:
p—1 (0 if #® 4+ a2? + b is not a quadratic residue
|El=143 ¢ 1 ifa’+ar’+b=1
z=0 | 2 if ' + axz?® + b is a quadratic residue

We have to add 1, becanse of the neutral element ().
And this equation is equivalent to:

r+axrc+b P 2 rart 4 b
|E|—1+Z((—)+l)=1+p+Z(T)
=l

The number of points on elliptic curve is bound by Hesse's theorem

pP-20P-1<N<p+2yp+1

Substituting N by equation from a) we get:

Pt +art+b
p—2yF-1%< l+p+2(—
=l P

-E\F‘ipz_:(a + ax? +b)£2@

=

5 (.1::; +az? + b)
0 P

r=

) “p+2ypt+1l

< 2,/p




4 Factorization

By Daniel Schramm:

We know that the function f(x) = 2% mod 1927 has a period r = 460.

To factorise the number 1927 we will perform a subroutine of the Shor's guantum polynomial time
algorithm for integer factorisation.

First, we check whether + = 460 is an even number,

Obviously, » is an even nmunber.
Therefore, we continue by checking if 27 = +1 (mod 1927).

Since 277 = 1270 {mod 1927}, we know that 1270 is a nontrivial selution of % = 1 (mod 1927).
This implies that 1927 | ({1270 — 1) - (1270 + 1)).

We compute the factors Ny, Na of 1927 as follows:

Ny = ged(1270 — 1,1927) Ny = ged (1270 + 1,1927)
=47 =41

The factors of the number 1927 are 41 and 47.

5 Finding order of EC using Hasse’s theorem and Langrange’s

By Markéta Nausové:
First we can use Hasse's theorem to get some bounds on the number of points on the elliptic curve
E. From the assignment we have p = 113. The Hasse's theorem says that [|[E| —p — 1] < 2,/p. We
can modify the noneguality so that is says that £ < p+2,/p+ 1land |E| =p-2,/p+ L

|E| = 113 — 24/ 113 + 1 = 92,7
|E| < 1134+ 2V113 + 1 = 135,3

Therefore we have the integer bounds 93 < |E| < 135,

Let’s denote the points on the curve from the assignment as P = (74.3) and @@ = (28, 11). Each
point of the curve generates a cyclic subgroup. For example point P generates a subgroup of order
3 and point @@ generates a subgroup of order 14 {the order is the number of points in the subgroup,
so that is is the smallest positive integer k st P =0).

Lagrange's theorem says that if H is a subgroup of a finite group &, then the order of H divides
the order of (7.

We can use this theorem to find number of point of the curve £, We know that (£, +) has subgroup
generated by P with order 3 and another subgroup generated by @ with order 14. [t must hold
that 3jorder of group formed by £ and 14|order of group formed by E. Since order of group is the
number of elements in the group we can write 3 | [£] and 14 | |£] (3 and 14 divide |E|). Hence we
can say that |E| = k-3 for some integer k and also |E| = [ - 14 for some integer . Together we
can say that |E| =m -3 14 = m - 42 for some integer m. The only m for which also the condition
93 < |E| =m 42 < 135 holds is m = 3, which gives us |E| =423 = 126, The number of points
of £ is therefore 126.



6 Discovering vulnerability of the established key

By Ales Paroulek:

nal = (55.0)

By definition of point addition, if we add two points /) and % such that Py = Py and 3 = 0, the
lambda will have no solution and in such a case the result will be the infinity point.

Since Bob chose a number ng which will multiply the point nf?, the only possible keys are (55, ()
and the infinity point, since (55,01 + (55,0) = oo and (55,0) + sc = (55.0) and this would again

repeat.



