## Question 1.

(a) The scheme is (5,3), so n=5 and t=3. The polynomial will be quadratic.  $a_1=3^{394097}$  mod 101021=12117,  $a_2=5^{394097}$  mod 101021=30858 and S=394097. The polynomial is  $a(x)=a_1x+a_2x^2+S=12117x+30858x^2+394097$  mod 567997.

Using the polynomial we can calculate shares for each of the five users: (1,437072), (2,541763), (3,140173), (4,368296) and (5,90138).

(b) The three shares create a system of three equations with three variables:

$$a_1 + a_2 + S = 438827, (1)$$

$$2a_1 + 4a_2 + S = 273042, (2)$$

$$3a_1 + 9a_2 + S = 133864. (3)$$

After solving the system we get  $S = 63222 \mod 567997$ .

## Question 2.

(a)  $\alpha_1 = 113$ 

 $\alpha_2 = 169$ 

```
v = 83 \mod 311
```

Verification is done by:  $\gamma = \alpha_1^{y1} * \alpha_2^{y2} * v^r \mod p$ 

$$\gamma = 113^{18} * 169^{29} * 83^{27} \mod 311 = 15 * 250 * 243 = 20 \mod 311 -> \text{correct transcript}$$

$$\gamma$$
 =113^18 \* 169^26 \* 83^4 mod 311 = 15 \* 195 \* 32 = 300  $\neq$  20 -> not correct transcript

$$\gamma$$
 =113^15 \* 169^26 \* 83^4 mod 311 = 250 \* 195 \* 32 = 24 -> correct transcript

$$\gamma$$
 =113^{15} \* 169^{29} \* 83^{27} mod 311 = 250 \* 250 \* 243 = 126  $\neq$  24 -> not correct transcript

**(b)** 
$$y_1 = k_1 + a_1 * r \mod q$$

$$y_2 = k_2 + a_2 * r \mod q$$

I took two correct transcripts: (20, 27, (18, 29)) and (24, 4, (15, 26)) and decided to try both possibilities:

1) Transcript (20, 27, (18, 29)) was first and (24, 4, (15, 26)) was second:

I got these 4 equations by using  $(k_1)_2 = 3 * (k_1)_1 + 4 \mod 31$  and  $(k_2)_2 = 5 * (k_2)_1 + 3 \mod 31$ :

$$18 = k_1 + a_1 * 27 \mod 31$$

$$15 = 3 * k_1 + 4 + a_1 * 4 \mod 31$$

$$29 = k_2 + a_2 * 27 \bmod 31$$

$$26 = 5 * k_2 + 3 + a_2 * 4 \mod 31$$

From the first two:

$$k_1 = 18 - 27 * a_1 \mod 31 -> 15 = 3 * (18 - 27*a_1) + 4 + 4 * a_1 \mod 31$$

$$11 = -81 * a_1 + 4 * a_1 + 54 \mod 31$$

$$11 = 16 * a_1 + 23 \mod 31$$

$$19 = 16 * a_1 \mod 31$$

$$a_1 = 19 * 16^{-1} \mod 31 = 19 * 2 \mod 31 = 7$$

From the second two:

$$k_2 = 29$$
 - 27 \*  $a_2 \mod 31$  -> 26 = 5 \* (29 - 27 \*  $a_2$ ) + 3 + 4 \*  $a_2 \mod 31$ 

$$2 = 24 * a_2 \mod 31$$

$$a_2 = 2 * 24^{-1} \mod 31 = 2 * 22 \mod 31 = 13$$

2) Transcript (24, 4,(15, 26)) was first and (20, 27,(18, 29)) was second:

By similar computations I got:

$$15 = k_1 + 4 * a_1 \mod 31$$

$$18 = 3 * k_1 + 4 + 27 * a_1 \mod 31$$

$$18 = 3 * (15 - 4 * a_1) + 4 + 27 * a_1 \mod 31 -> a_1 = 0$$

$$26 = k_2 + 4 * a_2 \mod 31$$

$$29 = 5 * k_2 + 3 + 27 * a_2 \mod 31$$

$$29 = 5 * (26 - 4 * a_2) + 3 + 27 * a_2 \mod 31 -> a_2 = 25$$

But I didn't even need to control the second case, because I can verify that  $a_1=7$  and  $a_2=13$  is right solution from:

$$v = \alpha_1^{-a1} * \alpha_2^{-a2} \bmod p = 113^{-7} * 169^{-13} \bmod 311 = 7^{-1} * 91^{-1} \bmod 311 = 89 * 270 = 83 -> \text{ so these recovered keys } a_1, a_2 \text{ are correct (the inverses can be computed by ext.eucl.algorithm)}.$$

## Question 3.

Lets denote treshold as T, F is field marshal, G is general, C is colonel and M is major.

From assignment we know, that:

$$\begin{split} F &\geq T \\ 3G &\geq T \rightarrow G \geq \frac{T}{3} \\ 2G + 5C &\geq T \rightarrow 2*\frac{T}{3} + 5C \geq T \rightarrow C \geq \frac{T}{15} \\ G + 7C + 15M \geq T \rightarrow \frac{T}{3} + 7*\frac{T}{15} + 15M \geq T \rightarrow M \geq \frac{T}{75} \end{split}$$

Now for condition that any number of Colonels or Majors cannot launch the missile without General it must holds:

$$50*C + 100*M < T$$

but we get that:

$$50 * \frac{T}{15} + 100 * \frac{T}{75} < T$$

Which is obviously not true. Thus there is no single instance of a threshold secret sharing scheme that would satisfy all conditions.

## Question 4.

(a)

No. Because when we take second and third column combination (2,2) appears 3 times and repetition count is 1.

(b)

i.

OA(2,7,2)

This array exists and here is an example:

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 | 0 | 1 |

OA(2,8,2)

Lets assume that such orthogonal array exists. Then it must hold

$$\begin{array}{l} \lambda \geq \frac{k(n-1)+1}{n^2} \\ \text{But in our case} \\ 2 \geq \frac{8(2-1)+1}{2^2} \\ \text{and} \end{array}$$

 $2 < \frac{9}{4}$ 

Thus there is no such orthogonal array.

(a) We can see that the verification will succeed for any  $b^{\Pi}$ 

$$\mbox{Alice sends: } y = rs^b \mod n$$
 Bob verifies:  $xv^b = r^2(s^2)^b = (rs^b)^2 = y^2 \mod n$ 

In case Bob sends the challenge b=2 to Alice, she calculates  $y=rs^2 \mod n$  and sends it to Bob. Since  $v=s^2 \mod n$ , Alice opens her commitment by revealing r, as Bob can calculate  $r=yv^{-1}$ . However, because of the assumption that it's computationally infeasible for Bob to find  $\sqrt{v} \mod n$ , s remains secret.

(b) If Eve can guess the challenge, she can calculate her commitment for b=0,1 as described in the slides, either by sending  $x=r^2$  for b=0 or  $x=r^2v^{-1}$  for b=1, then she responds with y=r to Bob's challenge.

In case the challenge is b=2, she sends her commitment as  $x=r^2$  and as a response she sends y=rv, since  $s^b=s^2=v \mod n$ . Here is how Bob correctly verifies her response:

Eve sends commitment:  $x=r^2 \mod n$ Bob sends challenge: b=2Eve sends response:  $y=rs^2=rv \mod n$ Bob verifies:  $xv^b=r^2v^2=(rv)^2=y^2 \mod n$ 

As the part (a) suggests, in this case she can also fool Bob if he sends the challenge b=0, as she can just send y=r as a response, which Bob verifies as  $y^2=xv^0=r^2$ .

Actually we can generalize this method for all possible values of b. Eve just needs to correctly guess if the challenge will be odd or even. Then she calculates  $x=r^2$  for even b or  $x=r^2v^{-1}$ . After Bob responds with his challenge, she calculates her response  $y=rv^x$ , x being the number of even/odd numbers between 0 and b. So in case of even numbers,  $x=\frac{b}{2}$ , in case of odd numbers  $x=\frac{b-1}{2}$ .

For example, this is how it works for b = 3:

 $x=\frac{3-1}{2}=1$  Eve sends commitment:  $x=r^2v^{-1} \mod n$  Bob sends challenge: b=3 Eve sends response:  $y=rv^x=rv^1 \mod n$  Bob verifies:  $xv^b=r^2v^2=(rv)^2=y^2 \mod n$ 

For b=5, her response would be  $y=rv^2$  and the verification would be  $xv^5=r^2v^{-1}v^5=r^2v^4=y^2$ .

This implies that the probability of fooling Bob is still  $2^{-t}$  for t rounds, therefore Alice and Bob did not improve the security of this protocol.

Of course Bob does not need to know r, he just needs to know  $x = r^2$ , which Alice sends first as her commitment.

Let A be an arbitrarily chosen t-(q,n,1) orthogonal array. Using  $q^t$  rows of A as codewords of our new code, we construct code C. We prove that code C is a q-ary maximum distance separable [n,k]-code as follows. Suppose that  $d(C) \leq n-t$  (and therefore that C is not a maximum distance separable code with aforementioned properties). Then there exist two codewords  $x,y \in C$  such that they match on at least t columns. Within these columns the rows of x,y are the same which is a contradiction since we have constructed the code from an orthogonal array with  $\lambda=1$ .

Now we show that the other side of the equivalence holds. Let C be a q-ary maximum distance separable [n,k]-code.  $M=q^{n-d+1}$ . We construct a  $M\times n$  array A by taking the codewords of C to be the rows of A. Consider the restriction of A to any subset of n-d+1 columns. The  $q^{n-d+1}$  (n-d+1)-tuples obtained from the rows of A must all be different (otherwise two codewords would be less than d bits apart). Since there are  $q^{n-d+1}$  different (n-d+1)-tuples, every possible (n-d+1)-tuple occurs in exactly one row of A in this restriction. Since this holds for all the possible subsets of n-d+1 columns of A, we have shown that A is a (n-d+1)-(q,n,1) orthogonal array.