Lecture 3

ANALYSIS AND DESIGN

PBOO7 Software Engineering |
Faculty of Informatics, Masaryk University

Fall 2020

9 - ARIES l-'v,n(‘%
@ © BarboraBiihnova
AV
g past

Outline

< Software analysis and design

<> Structured vs. object-oriented methods

< UML Objects and classes, finding analysis classes

< Relationships between objects and classes
= Links
= Associations
= Dependencies

<> Inheritance and polymorphism

Chapter 7 Design and implementation 2

Software Analysis and Design

Lecture 3/Part 1

v Chapter 7 Design and implementation
b‘?r, —".@-'(lv\
Tag mash

Analysis, design and implementation

< Software development PROBLEM
= analysis, design and implementation Requirements
» the stage in the software engineering l
process at which an executable

software system is developed Analysis

l

) _ Design
There are two ways of constructing a

software design: One way is to make it so
simple that there are obviously no
deficiencies, and the other way is to make it
so complicated that there are no obvious l
deficiencies.”

Implementation

System
— C.A.R. Hoare SOLUTION

Chapter 7 Design and implementation

Analysis, design and implementation

< Software analysis, design and implementation are
Invariably inter-leaved with blurred border in between.

= Software analysis Is a creative activity in PROBLEM
which you identify software processes, Requirements
entities (objects) and their relationships. l

= Software design refines analytical models
with implementation details.

= Implementation is the process of realizing Implementation
the design as a program. l

System
SOLUTION

Analysis
Design

< Where is the line between the problem domain
and the solution domain?

<> Why do we distinguish them when the line is blurred anyway?

Chapter 7 Design and implementation

Process stages

<> There Is a variety of different design processes that
depend on the organization using the process.

< Common activities in these processes include:

Define the context and modes of use of the system;
Draft the system architecture;

Identify the principal system processes and entities;
Develop design models;

Specify component/object interfaces;

A e o A

Finalize system architecture.
< What activities are part of analysis/design/implementation?

Chapter 7 Design and implementation 6

1. System context and interactions

< Understanding the relationships between the
software and its external environment is essential for
deciding
= how to provide the required system functionality and

= how to structure the system to communicate with its
environment.

< Understanding of the context also lets you establish the
boundaries of the system.

= Setting the system boundaries helps you decide what features
are implemented in the system being designed and what
features are in other associated systems.

Chapter 7 Design and implementation 7

Context and interaction models

< A system context model is a structural model that demonstrates the
users and other systems in the environment of the system being
developed.

< An interaction model is a dynamic model that shows how the
system interacts with its environment as it is used.

<> Do we really need visual models for that? What is their role in A&D?

Control
1 system 1

- e
1 ™~

- S F~'.Ep|ti:1 rt
Weather —— weather
information L 1.n Weather

station

system i K\
1 1.n Report status
Weather

. information
Satellite 1 systemn

Chapter 7 Design and implementation 8

2. Architectural design

< Starts system analysis and/or finishes system design.

» |s it the same architecture design in both cases?

< Involves identifying major system components and
their communications.

= Represents the link between requirements specification and
analysis/design processes.

= E.g. The weather station is composed of independent
subsystems that communicate via (asynchronous) messaging.

< Software architecture gives answers to the most
expensive gquestions.

— heard from O. KrajiCek

Chapter 6 Architectural design 9

High-level architecture of the weather

station
1 1 1
asubsystemy» usubsystemy esubsystem»

Fault manager

Configuration manager

Power man dger

Communication link

1

asubsystems
Communications

1

usubsystema
Data collection

Data collection

Transmitter

Receiver

/

WeatherData

Chapter 7 Design and implementation

10

Architectural abstraction

< Architecture in the small (analysis) is concerned with
the architecture of individual programs.

= At this level, we are concerned with the way that an individual
program is decomposed into components.

< Architecture in the large (design) is concerned with
the architecture of complex enterprise systems that
Include other systems, programs, and program
components.

» These systems are distributed over different computers, which
may be owned and managed by different companies.

Chapter 6 Architectural design 11

Advantages of explicit architecture

< Stakeholder communication and project planning

= Architecture may be used to facilitate the discussion by system
stakeholders.

< System analysis

= Means that analysis of whether the system can meet its non-
functional requirements is possible.

< System documentation

*= Via a complete system model that shows the different
components in a system, their interfaces and their connections.

<> Large-scale reuse

= The architecture may be reusable across a range of systems
= Product-line architectures may be developed.

Chapter 6 Architectural design 12

3. System analysis

< Identification of system entities (object classes in
object-oriented analysis) playing the key roles in the
system’s problem domain, and their relationships.

< Distillation and documentation of key system
processes.
<> System analysis is a difficult creative activity.

= There is no 'magic formula' for good analysis. It relies on the
skill, experience and domain knowledge of system analysts.

<> Object/relationships/processes identification is an
iterative process. You are unlikely to get it right first
time.

Chapter 7 Design and implementation

13

Weather station object classes

WeatherStation WeatherData
identifier airfemperatures
reportWeather () groundTemperatures
reportStatus () windDrections
powerSave (instruments)
pressures

remoteControl (commands)
reconfigure (commands)
restart (instruments) collect ()
shutdown (instruments) summarize ()

rainfall

Ground Anemometer Barometer
thermometer
an_ldent bar Ident
gt_ldent windSpeed pressure
temperature windDirection height
get () get () get ()
test () test () test ()

Chapter 7 Design and implementation

14

5. Design models

< Design models refine analysis models with the
Information required to communicate and document
the intended implementation of the system.

= E.g. Dependencies, interfaces, data-access classes, GUI
classes.

< Static models describe the static structure of the system
In terms of system entities and relationships.

= Can you list some static UML diagrams?

< Dynamic models describe the dynamic interactions
between entities.

= Can you list some dynamic UML diagrams?

Chapter 7 Design and implementation 15

Key points

<> The process of analysis and design includes activities to design the
system architecture, identify entities in the system, describe the
design using different models and document the component
Interfaces.

< Software analysis is a creative activity in which you identify
software processes, entities (objects) and their relationships.

< Software design refines analytical models with implementation
detalls.

< Software analysis and design are inter-leaved activities.

Chapter 7 Design and implementation 16

Structured vs. Object-Oriented Methods

Lecture 3/Part 2

WRTIS Iy,
& %.,4
@ © Strukturovand analyza systémii
N & by J. Régek

17

Fundamental views of software systems

<> Function oriented view

= System as a set of interacting functions. Functional
transformations based in processes, interconnected with data
and control flows.

<> Data oriented view

» Searches for fundamental data structures in the system.
Functional aspect of the system (i.e. data transformation) is less
significant.

<> Object oriented view

= System as a set of interacting objects, encapsulating both the
data and operations performed on the data.

© Strukturovana analyza systém{

by J. Récek 18

Structured vs. object-oriented analysis

< Structured analysis

= Driven by the function oriented view, in synergy with data
oriented view, through the concept of functional decomposition.

< Object-oriented analysis
= Driven by the object oriented view.

Do they have anything in common?

© Strukturovana analyza systém{
by J. Racek

19

Structured analysis and design

< Divides a project on small, well defined activities and
defines the order and interaction of the activities.

< Using hierarchical graphical techniques, resulting in a
detailed structured specification, which can be
understood by both system engineers and users.

< Effective in project structuring to smaller parts, which
simplifies time and effort estimates, deliverables control
and project management as such.

<> Aimed at increasing system quality.

© Strukturovand analyza systému

by J. Récek 20

Functional decomposition

System
context

f]_ Level O
)

Basic-process
specification

processes

Level 1
processes

| S—

Data
dictionary

© Strukturovand analyza systému
by J. Racek

21

Core notations of structured methods

< Context diagram

* Models system boundary and environment.

< Data flow diagram (DFD)

= Models the system as a network of processes completing
designated functions and accessing system data.

< Entity relationship diagram (ERD)
* Models system’s data.
< State diagram (STD)

= Models system states and actions guarding transitions from one
state to another.

© Strukturovana analyza systém{
by J. Racek

22

E. Yourdon: Modern structured analysis

Environment model Behavioral model Data model

Course —<P
<> Student

Teacher

I—

=

Events: _ —
EL: registered Functional
E2: rolled in decomposition
E3: rolled out
E4: started
E5: ended
AEL 7
} /

‘-7 © Buhnovad, Sochor, Racek 23
g S w\\“?

Context diagram example

Customers BookProduction

orders, orders of
canceled extra prints
orders

invoice, books to store

delivery note

. Accounting

invoice

sell report

Management Account balance

© Buhnova, Sochor, Racek 24

Data flow diagram (DFD) example

<> DFD consists of four types of elements:

Processes

Data flows

Data stores

Terminators

withdraw

Client

command

authorized

Account command

verification

Account
update

transaction
record

updated
account Transactions archive

account
balance

Account

© Buhnova, Sochor, Racek 25

Object-oriented analysis and design

<> Software engineering approach that models a system as
a group of interacting objects.

<> Each object represents some entity of interest Iin the
system being modeled, and is characterized by its class,
Its state (data elements), and its behavior.

< Various models can be created to show the static
structure, dynamic behavior, and run-time deployment of
these collaborating objects.

< There is a number of different methods, defining the
ordering of modeling activities. The modeling notation
uses to be unified (UML).

Chapter 7 Design and implementation 26

UML notation for object-oriented methods

< External perspective
» Use case diagram
<> Structural perspective

= Class diagram, Object diagram, Component diagram, Package
diagram, Deployment diagram, Composite structure diagram

<> Interaction perspective

= Sequence diagram, Communication diagram, Interaction
overview diagram, Timing diagram

<> Behavioral perspective

= Activity diagram, State diagram

Chapter 7 Design and implementation 27

Examplary method (Unified Process,
analysis and design excerpt)

1. Requirements

= System boundary, actors and requirements modelling with Use
Case diagram.
2. Analysis

= |dentification of analysis classes, relationships, inheritance and
polymorphism, and their documentation with a Class diagram.

= Use Case realization with Interaction and Activity diagrams.

3. Design

= Design classes, interfaces and components, resulting in refined
Class diagrams and Component diagrams.

= Detalled Use Case realization with Interaction and State
diagrams.

Chapter 7 Design and implementation 28

Key points

<> Structured methods

= System as a set of nested processes accessing system data.

<> Object-oriented methods

= System as a set of interacting objects (functions and data).

_ Structured analysis Object-oriented analysis

System boundary Context diagram Use case diagram
Functionality Data flow diagram Activity diagram

Interaction diagrams
Data Entity-relationship diagram Class and Object diagram
Control State diagram State diagram

© Strukturovana analyza systém{

by J. Racek 29

Object-Oriented Analysis in UML

Lecture 3/Part 3

v © Clear View Training 2010 v2.6

30

Analysis objects and classes

What are objects?

< Objects consist of data and function packaged together
In a reusable unit. Objects encapsulate data.

< Every object is an instance of some class which defines
the common set of features (attributes and operations)
shared by all of its instances.

operations
<> Objects have: attribute values w
= Attribute values — the data part i
owner ="Jim Erl"
balance =300

= Operations — the behaviour part

Bank Account
Object

© Clear View Training2010v2.6 31

All objects have

< Identity: Each object has its own unique identity and can
be accessed by a unique handle

= Distinguish two cars of the same type and one car referenced
from two places.

< State: This Is the actual data values stored in an object
at any point in time

= On and off for a light bulb (one attribute).
= On + busy, on + idle, off for a printer (two attributes).

< Behaviour: The set of operations that an object can
perform

© Clear View Training2010v2.6 32

Messaging

< In OO systems, objects send messages to each other over links

< These messages cause an object to invoke an operation

bank object account object
message

/

account.withdraw(150);

the bank object sends the the account object responds by
message “withdraw 150" to an invoking its withdraw() operation.
account object. This operation decrements the

account balance by 150.

© Clear View Training2010v2.6 33

UML Object Syntax

variants
object class (N.B. we've omitted the attribute compartment)
object identifier name name
(must be underlined) object and . _
p N —A class name [iImsAccount : Account
name . _
compartment { ImsAccount : Account
. object name | ..
accountNumber : String = "1234567" onjly iImsAccount
attribute owner : String = "Jim Arlow"
compartment balance : double = 300.00
\ AN)\) class name : Account
Y Y Y only -
attribute attribute attribute
name type value an anonymous object

< All objects of a particular class have the same set of operations. They are not shown
on the object diagram, they are shown on the class diagram (see later)

< Attribute types are often omitted to simplify the diagram

<> Naming: object and attribute names in lowerCamelCase, class names in UpperCamelCase

© Clear View Training2010v2.6 34

What are classes?

< Every object is an instance of one class - the class describes the
"type" of the object

< Classes allow us to model sets of objects that have the same set of
features - a class acts as a template for objects:

= The class determines the structure (set of features) of all objects of that
class

= All objects of a class must have the same set of operations, must have
the same attributes, but may have different attribute values

< Classification is one of the most important ways we have of
organising our view of the world

class

<> Think of classes as being like:

= Rubber stamps
= Cookie cutters @)
= object

© Clear View Training2010v2.6 35

semmraviiLe

Exercise - how many classes? ’h‘

© Clear View Training2010v2.6 36

Classes and objects

<> Objects are instances of classes.

< Instantiation is the creation of Account
new instances of model elements. class | accountNumber : String

owner : String
balance : double

<> Most classes provide special

. withdraw()
operations called constructors deposit()
to create instances of
that class.

. JimsAccount: Account fabsAccount: Account ilasAccount: Account
< These operations
accountNumber : "801" accountNumber : "802" accountNumber : "803"
have CIaSS-SCOpe owner : "Jim" owner : "Fab" owner : "lla"
i. e. th ey b eI on g to balance : 300.00 balance : 1000.00 balance : 310.00
the class itself rather
objects

than to objects of the classs.

© Clear View Training2010v2.6 37

UML class notation

tagged values

class name
name Window {author = Jim
compartment ’

attribute
compartment

visibility

adornment \

operation
compartment

N\

status = tested}

T Design class

+size : Area = (100,100)
#visibility : Boolean = false
-colorRGB : Integer [3]
-defaultSize : Rectangle
-maximumsSize : Rectangle
-xptr : XWindow*

——— initial

Analytical class
values

/

Window

size : Area

+create() class scope
+hide() (static) operation

(Dlisplay(location : Point)
-attachXWindow(xwin : XWindow*)

visibility : Boolean

hide()
display()

< Classes are named in UpperCamelCase — avoid abbreviations!

< Use descriptive names that are nouns or noun phrases

© Clear View Training2010v2.6

38

Attribute compartment

Structure

visibility name : type multiplicity = initialValue
H_/

mandatory p
Visibility
+ public attribute
- private compartment
H protected
~ package \

Type
Integer, Real, Boolean, String, Class

Multiplicity
[3] specific number of elements
[0..1] optional
* array, list

Initial values

Window

{author = Jim,
status = tested}

+size : Area = (100,100)
#visibility : Boolean = false
-colorRGB : Integer [3]
-defaultSize : Rectangle
-maximumsSize : Rectangle
-xptr : XWindow*

+create()
+hide()

+display(location : Point)
-attachXWindow(xwin : XWindow*)

© Clear View Training2010v2.6 39

Operation compartment

Operation signature

visibility name (direction parameterName : parameterType = default, ...) : returnType

parameter list

oralistr1,r2,...

Direction
In Input value, default
out repository for system output
inout modifiable input value BankAccount
return operation return value(s) -accountNumber : int
Instance scope defaults . _
class scope underlined +create(aNumber : int)
: +getNumber() : int
operation _
Corg]gsétnrgﬁctzocrsnstructor name or compartment || -incrementCount()
Java/C++ standard . | *getCount() : int

+BankAccount(aNumber : int)

© Clear View Training2010v2.6 40

Key points

< We have looked at objects and classes and examined
the relationship between them

< We have explored the UML syntax for modelling classes
Including:
= Attributes
= Operations

< We have seen that scope controls access

= Class scope attributes are shared by all objects of the class and
are useful as counters

= Attributes and operations are normally instance scope

= \We can use class scope operations for constructor and
destructors

© Clear View Training2010v2.6 41

Finding Analysis Classes

Lecture 3/Part 4

V © Clear View Training2010v2.6

42

What are Analysis classes?

<> Analysis classes represent a crisp
abstraction in the problem domain class name{ BankAccount

/

= They may ultimately be refined

.) name : String
into one or more design classes

attributes < | address
< Analysis classes have: balance : double

= Avery “high level” set of _
attributes. They indicate the deposit()

| _ SN
attributes that the design classes ~ °Perations 3 | withdraw()
might have. _ | calculatelnterest()

\Y4

= QOperations that specify at a high
level the key services that the
class must offer. In Design, they
will become actual,
Implementable, operations.

Specify attribute
types if you know
what they are.

© Clear View Training2010v2.6 43

What makes a good analysis class?

<> Its name reflects its intent
< Itis a crisp abstraction that models one specific
element of the problem domain
= |t maps onto a clearly identifiable feature of the problem domain
< It has high cohesion

= Cohesion is the degree to which a class models a single
abstraction

= Cohesion is the degree to which the responsibilities of the class
are semantically related

< It has low coupling

= Coupling is the degree to which one class depends on others

© Clear View Training2010v2.6 44

Rules of thumb

<> 3 to 5 operations per class

<> Each class collaborates with others
<> Beware many very small classes

<> Beware few but very large classes
< Beware of “functoids”

<> Beware of “omnipotent” classes

<> Avoid deep inheritance trees

© Clear View Training2010v2.6

@

A responsibility is a
contract or obligation

into operations and
attributes

of a class - it resolves

\>,

45

Finding classes

< Perform noun/verb analysis on documents:

= Nouns are candidate classes
= Verbs are candidate responsibilities
W hat documents can be studied?

< Perform CRC card analysis

= Class, Responsibilities and Collaborators

= Atwo phase brainstorming technique using sticky notes — first
brainstorm and then analyse the dat

Class Name: BankAccount

Responsibilities: | Collaborators:

things the | Maintain balance | Bank things the
class does class works
with

@ © Clear View Training 2010 v2.6

Other sources of classes

< Physical objects

< Paperwork, forms

= Be careful when relying on processes that need to change

<> Known interfaces to the outside world

<> Conceptual entities that form a cohesive abstraction

< With all techniques, beware of spurious classes

= Look for synonyms - different words that mean the same
= Look for hnomonyms - the same word meaning different things

© Clear View Training2010v2.6 47

Key points

< We've looked at what constitutes a well-formed analysis
class

< We have looked at two analysis techniques for finding
analysis classes:

= Noun verb analysis of use cases, requirements, glossary and
other relevant documentation

= CRC analysis

© Clear View Training2010v2.6 48

Relationships Between Objects and Classes

Lecture 3/Part 5

V © Clear View Training 2010 v2.6

49

What is a link?

<> Links are connections between objects

= Think of a link as a telephone line connecting you and a friend.
You can send messages back and forth using this link

< Links are the way that objects communicate

= Objects send messages to each other via links
= Messages invoke operations

< OO programming languages implement links as object
references or pointers

= When an object has a stored reference to another object,
we say that there is a link between the objects

© Clear View Training2010v2.6 50

Object diagrams

BookClub /
<~ Paths in UML chairperson [
diagrams can be fole name rerson
drawn as |
orthogonal Obll'fa“tf] bookClub:Club —>2S"€8Y | ¢ ica-Person
oblique or curved style / >
lines object link member naomi:Person
< We can combine
paths into a tree If BookCIub _
chairperson | . .
each path has the ila:Person
same properties
Shape orthoggg{ahl bookClub-Club secretary erica Person
AN style
| |
Square Circle Triangle preferred ember | naomi:Person

© Clear View Training2010v2.6

51

What Is an association?

association

Club \ 7 Person
N | N

links
instantiate
associations

«instantiate» «instantiate» «instantiate»

| Iinl\ i i
bookClub:Club . chairman iim:Person

<> Associations are relationships between classes

< Associations between classes indicate that there may be links
between objects of those classes, while links indicates that there
must be associations

<> Can there be a communication between objects of two classes that
-, Nave no association between them?

© Clear View Training2010v2.6 52

Association syntax

association ~—~—__ _ reading
name employs B direction
Company 1 > Person
C . O..*/
multplicity navigability
role names
employer — — employee
Company 1 > Person
0..*

< An association can have role names OR

multiplicity: min..max

an association name

0..1 zeroor 1

<> Multiplicity is a constraint that specifies

1 exactly 1

the number of objects that can participate

0..* Zero or more

in a relationship at any point in time

1..% 1 or more

= [f multiplicity is not explicitly stated in the model

1..6 1to 6

© Clear View Training2010v2.6

then it is undecided — there is no default multiplicity

53

Multiplicity exercise

< How many

Employees can a Company have?
Employers can a Person have?
Owners can a BankAccount have?
Operators can a BankAccount have?
BankAccounts can a Person have?
BankAccounts can a Person operate?

© Clear View Training2010v2.6

Company

1

7

employer

employee

Person

owner | 1

1..* | operator

BankAccount

54

U\IL!;\U iHE
Usern Procans
Seoos

Reflexive associations: file system example g @

E
subdirectory
0.* _ 1 0.* _
Directory File
0..1
parent
reflexive association
autoexec
C
config
W indows My Documents Corel To John
Command
N v \ y,
N N
directories files

< If ToJohn was a directory, would it still conform to the class diagram?

© Clear View Training2010v2.6 55

Hierarchies and networks

hierarchy network
0..* 0. *
A B
0..1 0. *
al:A cl:B
| | bl:B T f1.B
bl:A cl:A 1:A /
el:B 1B
el:A f1:A gl:A al:B ql:B

In an association hierarchy, each object
has zero or one object directly above
it.

In an association network, each object
has zero or many objects directly

above it.

i‘? © Clear View Training2010v2.6

56

Navigability

< Navigability indicates that it
IS possible to traverse from
an object of the source
class to objects of the target
class

< Can there be a
communication in a direction
not supported by the
navigability?

< Are some of the cases on
the right equivalent?

An Order object stores a list of Products
Navigable

Order

0.*

source

Not navigable
A Product object does not store a list of Orders

A

> navigability
0.*
> Product
| target

N
7~

B

\4

A

\4

A

© Clear View Training2010v2.6

A to B is navigable
B to Ais navigable

A to B is navigable
B to Ais not navigable

A to B is navigable
B to Ais undefined

A to B is undefined
B to Ais undefined

57

Associations and attributes
House address . Address — House
1 1 address:Address
House
address:Address pseudo-attribute attribute

<> An association is (through its role name) a representation of an attribute

< Use associations when:

= The target classis an important part of the model
= The target classis a class that you have designed yourself

< Use attributes when:

= The target classis not important, e.g. a primitive type such as number, string

= The target classis just an implementation detail such as a bought-in component or
a library component e.g. Java.util.Vector (from the Java standard libraries)

© Clear View Training2010v2.6 58

Assoclation classes

0.* employment 0..*
Company Person

< Where do we record the Person’s salary?

< We model the association itself as an association class. Exactly one
instance of this class exists for each link between a Person and a Company.

< We can place the salary and any other attributes or operations which are
really features of the association into this class

0.* 0.*
Company ; Person
1
1
Job the association class
consists of the class,
. — salary:double the association and the
association class

dashed line
© Clear View Training2010v2.6 59

Using association classes

If we use an association class, c 0..* 0_* 5
then a particular Person can ompany erson

have only one Job with a
particular Company

Job

salary:double

If, however a particular
Person can have multiple

jobs with the same 1 0.* Job 0* 1
Company, then we must | Company . - Person
use a reified association salary:double

‘-7 © Clear View Training 2010 v2.6 60

Dependencies

< "A dependency is a relationship between two elements where a
change to one element (the supplier) may affect or supply
information needed by the other element (the client)".

* In other words, the client depends in some way on the supplier

= \Weaker type of relationship than association
= Can there be both association and dependency between two classes?

< Three types of dependency:

= Usage - the client uses some of the services made available by the
supplier to implement its own behavior — this is the most commonly
used type of dependency

= Abstraction - a shift in the level of abstraction. The supplier is more
abstract than the client

= Permission - the supplier grants some sort of permission for the client
to access its contents — this is a way for the supplier to control and limit
access to its contents

© Clear View Training2010v2.6 61

Usage dependencies

< Stereotypes

= «use» - the client makes use of the supplier to implement its behaviour
= «call» - the client operation invokes the supplier operation
= «parameter» - the supplier is a parameter of the client operation

= «send» - the client (an operation) sends the supplier (a signal) to some
unspecified target

» «instantiate» - the client is an instance of the supplier

A __— the stereotype is often omitted A :: doSomething() {
«use» B myB = new B();
""""""""""" > B }
foo(b:B)
bar() : B

A «use» dependency is generated between A and B when B is

doSomethin
90 used in A as a parameter, return value or inside method body

© Clear View Training2010v2.6 62

Abstraction and permission dependencies

< Abstraction dependencies

«trace» - the client and the supplier represent the same concept but at different
points in development

«substitute» - the client may be substituted for the supplier at runtime. The
client and supplier must realize a common contract. Use in environments that
don't support specialization/generalization

«refine» - the client represents a fuller specification of the supplier

«derive» - the client may be derived from the supplier. The client is logically
redundant, but may appear for implementation reasons

<> Permission dependencies

«access» the public contents of the supplier package are added as private
elements to the namespace of the client package

«import» the public contents of the supplier package are added as public
elements to the namespace of the client package

«permit» the client element has access to the supplier element despite the
declared visibility of the supplier
© Clear View Training2010v2.6 63

Key points

<> Links — relationships between objects

<> Associations — relationships between classes
= role names
= multiplicity
= npavigability
= association classes

< Dependencies — relationships between model elements
" usage
= abstraction
" permission

© Clear View Training2010v2.6 64

Inheritance and polymorphism

Lecture 3/Part 6

V © Clear View Training2010v2.6

65

Generalisation

A relationship between a more general element and a more

specific element (with more information)

more general element

Shape

“iskindoff — A

specialisation

Square Circle Triangle

uolresifesaualb

more specific elements

A generalisation hierarchy

‘-/ © Clear View Training 2010 v2.6

parent
superclass
base class
ancestor

child
subclass
descendent

66

Class inheritance

<>

+ %

Subclasses inherit all features of their
superclasses:

= attributes

= Qperations

= relationships

= stereotypes, tags, constraints

Subclasses can add new features

Subclasses can override superclass
operations

We can use a subclass instance
anywhere a superclass instance is
expected

Substitutability
Principle

Shape

origin : Point = (0,0)
width : int {>0}
height : int {>0}

draw(g : Graphics)
getArea() : int
getBoundingArea() : int

/N

Square

Circle

radius : int = width/2

What's wrong with
these subclasses?

© Clear View Training2010v2.6

67

Overriding

Shape

draw(g : Graphics) What's wrong with
getArea() : int _ the superclass?
getBoundingArea() : int

D Square Circle O
draw(g : Graphics) draw(g : Graphics)

width x height getArea() : int getArea() : int 7t X radius?

< Subclasses often need to override superclass behaviour

<> To override a superclass operation, a subclass must provide an
operation with the same signature

= The operation signature is the operation name, return type and types
of all the parameters

© Clear View Training2010v2.6 68

Abstract operations & classes

abstract class Shape
draw(g : Graphics) } abstract
getArea() : int operations
Abstract class and getBoundingArea() : int ~
operation names
must be in italics H Concrefte
operations
Square Circle / /
concrete _ _ /
classes draw(g : Graphics) draw(g : Graphics) /
getArea() : int getArea() : int

< We can’t provide an implementation for
Shape :: draw(g : Graphics) or for
Shape :: getArea() : int
because we don’t know how to draw or calculate the area for a "shape"!

< Operations that lack an implementation are abstract operations

< Aclass with any abstract operations can’t be instantiated and is

=" therefore an abstract class
NS © Clear View Training 2010 v2.6 69

Exercise

Vehicle

/\

what’s wrong
with this model?

JaguarxXJS

© Clear View Training2010v2.6

Truck

70

Polymorphism

< Polymorphism = "many forms"

= A polymorphic operation has
many implementations

= Square and Circle provide
Implementations for the
polymorphic operations
Shape::draw() and
Shape::getArea()

< The operation in Shape
superclass defines a contract
for the subclasses.

A Canvas object has a collection of Shape objects
where each Shape may be a Square or a Circle

polymorphic
operations

{

Canvas
1

shapes | 0..*

Shape

draw(g : Graphics)
getArea() : int
getBoundingArea() : int

/\

abstract
superclass

Square

Circle

draw(g : Graphics)
getArea() : int

draw(g : Graphics)
getArea() : int

© Clear View Training2010v2.6

concrete subclasses

71

What happens?

<> Each class of object has its
own implementation of the
draw() operation

sl:Circle

<> On receipt of the draw()
message, each
object invokes the
draw() operation
specified by its class

s2:Square

:Canvas

< We can say that each object
"decides" how to interpret the
draw() message based on its class

s4:Circle

O
[]
O

© Clear View Training2010v2.6 72

BankAccount example

BankAccount
1 0..* | withdraw()
Bank calculatelnterest()
deposit()
ShareAccount CheckingAccount DepositAccount
withdraw() withdraw() withdraw()

calculatelnterest()
deposit()

calculatelnterest()

calculatelnterest()

< We have overridden the deposit() operation even though it is

not abstract.

AT Iy
s 0
& 2
g 7
B -
Z f g
%, &
L7
KETRTICE

© Clear View Training2010v2.6

73

Key points

<> Generalisation, specialisation, inheritance

< Subclasses

= Inherit all features from their parents including constraints and
relationships

= may add new features, constraints and relationships
= may override superclass operations

< A class that can’t be instantiated is an abstract class

© Clear View Training2010v2.6 74

