
Lecture 3

ANALYSIS AND DESIGN

PB007 Software Engineering I
Faculty of Informatics, Masaryk University

Fall 2020

1© Barbora Bühnová

Outline

 Software analysis and design

 Structured vs. object-oriented methods

 UML Objects and classes, finding analysis classes

 Relationships between objects and classes

▪ Links

▪ Associations

▪ Dependencies

 Inheritance and polymorphism

2Chapter 7 Design and implementation

Software Analysis and Design

Lecture 3/Part 1

3Chapter 7 Design and implementation

Analysis, design and implementation

 Software development

▪ analysis, design and implementation

▪ the stage in the software engineering

process at which an executable

software system is developed

“There are two ways of constructing a

software design: One way is to make it so

simple that there are obviously no

deficiencies, and the other way is to make it

so complicated that there are no obvious

deficiencies.”

– C.A.R. Hoare

4Chapter 7 Design and implementation

PROBLEM

Requirements

System

SOLUTION

Analysis

Design

Implementation

Analysis, design and implementation

 Software analysis, design and implementation are

invariably inter-leaved with blurred border in between.

▪ Software analysis is a creative activity in

which you identify software processes,

entities (objects) and their relationships.

▪ Software design refines analytical models

with implementation details.

▪ Implementation is the process of realizing

the design as a program.

 Where is the line between the problem domain

and the solution domain?

 Why do we distinguish them when the line is blurred anyway?

5Chapter 7 Design and implementation

PROBLEM

Requirements

System

SOLUTION

Analysis

Design

Implementation

Process stages

 There is a variety of different design processes that

depend on the organization using the process.

 Common activities in these processes include:

1. Define the context and modes of use of the system;

2. Draft the system architecture;

3. Identify the principal system processes and entities;

4. Develop design models;

5. Specify component/object interfaces;

6. Finalize system architecture.

 What activities are part of analysis/design/implementation?

6Chapter 7 Design and implementation

1. System context and interactions

 Understanding the relationships between the

software and its external environment is essential for

deciding

▪ how to provide the required system functionality and

▪ how to structure the system to communicate with its

environment.

 Understanding of the context also lets you establish the

boundaries of the system.

▪ Setting the system boundaries helps you decide what features

are implemented in the system being designed and what

features are in other associated systems.

7Chapter 7 Design and implementation

Context and interaction models

 A system context model is a structural model that demonstrates the

users and other systems in the environment of the system being

developed.

 An interaction model is a dynamic model that shows how the

system interacts with its environment as it is used.

 Do we really need visual models for that? What is their role in A&D?

8Chapter 7 Design and implementation

2. Architectural design

 Starts system analysis and/or finishes system design.

▪ Is it the same architecture design in both cases?

 Involves identifying major system components and

their communications.

▪ Represents the link between requirements specification and

analysis/design processes.

▪ E.g. The weather station is composed of independent

subsystems that communicate via (asynchronous) messaging.

 Software architecture gives answers to the most

expensive questions.

– heard from O. Krajíček

9Chapter 6 Architectural design

High-level architecture of the weather

station

10Chapter 7 Design and implementation

Architectural abstraction

 Architecture in the small (analysis) is concerned with

the architecture of individual programs.

▪ At this level, we are concerned with the way that an individual

program is decomposed into components.

 Architecture in the large (design) is concerned with

the architecture of complex enterprise systems that

include other systems, programs, and program

components.

▪ These systems are distributed over different computers, which

may be owned and managed by different companies.

11Chapter 6 Architectural design

Advantages of explicit architecture

 Stakeholder communication and project planning

▪ Architecture may be used to facilitate the discussion by system
stakeholders.

 System analysis

▪ Means that analysis of whether the system can meet its non-
functional requirements is possible.

 System documentation

▪ Via a complete system model that shows the different

components in a system, their interfaces and their connections.

 Large-scale reuse

▪ The architecture may be reusable across a range of systems

▪ Product-line architectures may be developed.

12Chapter 6 Architectural design

3. System analysis

 Identification of system entities (object classes in

object-oriented analysis) playing the key roles in the

system’s problem domain, and their relationships.

 Distillation and documentation of key system

processes.

 System analysis is a difficult creative activity.

▪ There is no 'magic formula' for good analysis. It relies on the

skill, experience and domain knowledge of system analysts.

 Object/relationships/processes identification is an

iterative process. You are unlikely to get it right first

time.

13Chapter 7 Design and implementation

Weather station object classes

14Chapter 7 Design and implementation

5. Design models

 Design models refine analysis models with the

information required to communicate and document

the intended implementation of the system.

▪ E.g. Dependencies, interfaces, data-access classes, GUI

classes.

 Static models describe the static structure of the system

in terms of system entities and relationships.

▪ Can you list some static UML diagrams?

 Dynamic models describe the dynamic interactions

between entities.

▪ Can you list some dynamic UML diagrams?

15Chapter 7 Design and implementation

Key points

 The process of analysis and design includes activities to design the

system architecture, identify entities in the system, describe the

design using different models and document the component

interfaces.

 Software analysis is a creative activity in which you identify

software processes, entities (objects) and their relationships.

 Software design refines analytical models with implementation

details.

 Software analysis and design are inter-leaved activities.

16Chapter 7 Design and implementation

Structured vs. Object-Oriented Methods

Lecture 3/Part 2

17
© Strukturovaná analýza systémů

by J. Ráček

Fundamental views of software systems

 Function oriented view

▪ System as a set of interacting functions. Functional

transformations based in processes, interconnected with data

and control flows.

 Data oriented view

▪ Searches for fundamental data structures in the system.

Functional aspect of the system (i.e. data transformation) is less

significant.

 Object oriented view

▪ System as a set of interacting objects, encapsulating both the

data and operations performed on the data.

18
© Strukturovaná analýza systémů

by J. Ráček

Structured vs. object-oriented analysis

 Structured analysis

▪ Driven by the function oriented view, in synergy with data

oriented view, through the concept of functional decomposition.

 Object-oriented analysis

▪ Driven by the object oriented view.

Do they have anything in common?

19
© Strukturovaná analýza systémů

by J. Ráček

Structured analysis and design

 Divides a project on small, well defined activities and

defines the order and interaction of the activities.

 Using hierarchical graphical techniques, resulting in a

detailed structured specification, which can be

understood by both system engineers and users.

 Effective in project structuring to smaller parts, which

simplifies time and effort estimates, deliverables control

and project management as such.

 Aimed at increasing system quality.

20
© Strukturovaná analýza systémů

by J. Ráček

Functional decomposition

21

System

context
Level 0

processes

Level 1

processes

Data

dictionary

Basic-process

specification

© Strukturovaná analýza systémů
by J. Ráček

Core notations of structured methods

 Context diagram

▪ Models system boundary and environment.

 Data flow diagram (DFD)

▪ Models the system as a network of processes completing

designated functions and accessing system data.

 Entity relationship diagram (ERD)

▪ Models system’s data.

 State diagram (STD)

▪ Models system states and actions guarding transitions from one

state to another.

22
© Strukturovaná analýza systémů

by J. Ráček

E. Yourdon: Modern structured analysis

23

Environment model Behavioral model

Functional

decomposition

© Bühnová, Sochor, Ráček

Events:

E1: registered

E2: rolled in

E3: rolled out

E4: started

E5: ended

Course

Teacher

Student

Data model

Context diagram example

24© Bühnová, Sochor, Ráček

Customers

orders,

canceled

orders

BookProduction

Accounting

Management

orders of

extra prints

books to store

invoice
sell report

invoice,

delivery note

Book selling

eshop

Account balance

Data flow diagram (DFD) example

 DFD consists of four types of elements:

▪ Processes

▪ Data flows

▪ Data stores

▪ Terminators

25© Bühnová, Sochor, Ráček

Account

update

Account

Account

verificationClient

withdraw

command

authorized

command

account

balance

updated

account

transaction

record

Transactions archive

Object-oriented analysis and design

 Software engineering approach that models a system as

a group of interacting objects.

 Each object represents some entity of interest in the

system being modeled, and is characterized by its class,

its state (data elements), and its behavior.

 Various models can be created to show the static

structure, dynamic behavior, and run-time deployment of

these collaborating objects.

 There is a number of different methods, defining the

ordering of modeling activities. The modeling notation

uses to be unified (UML).

26Chapter 7 Design and implementation

UML notation for object-oriented methods

 External perspective

▪ Use case diagram

 Structural perspective

▪ Class diagram, Object diagram, Component diagram, Package

diagram, Deployment diagram, Composite structure diagram

 Interaction perspective

▪ Sequence diagram, Communication diagram, Interaction

overview diagram, Timing diagram

 Behavioral perspective

▪ Activity diagram, State diagram

27Chapter 7 Design and implementation

Examplary method (Unified Process,

analysis and design excerpt)

1. Requirements

▪ System boundary, actors and requirements modelling with Use

Case diagram.

2. Analysis

▪ Identification of analysis classes, relationships, inheritance and

polymorphism, and their documentation with a Class diagram.

▪ Use Case realization with Interaction and Activity diagrams.

3. Design

▪ Design classes, interfaces and components, resulting in refined

Class diagrams and Component diagrams.

▪ Detailed Use Case realization with Interaction and State

diagrams.

28Chapter 7 Design and implementation

Key points

29
© Strukturovaná analýza systémů

by J. Ráček

Structured analysis Object-oriented analysis

System boundary Context diagram Use case diagram

Functionality Data flow diagram Activity diagram
Interaction diagrams

Data Entity-relationship diagram Class and Object diagram

Control State diagram State diagram

 Structured methods

▪ System as a set of nested processes accessing system data.

 Object-oriented methods

▪ System as a set of interacting objects (functions and data).

Object-Oriented Analysis in UML

Lecture 3/Part 3

30© Clear View Training 2010 v2.6

© Clear View Training 2010 v2.6 31

Analysis objects and classes

What are objects?

 Objects consist of data and function packaged together

in a reusable unit. Objects encapsulate data.

 Every object is an instance of some class which defines

the common set of features (attributes and operations)

shared by all of its instances.

 Objects have:

▪ Attribute values – the data part

▪ Operations – the behaviour part
number = "1243"

owner = "Jim Erl"

balance = 300

deposit()

withdraw()

getOwner()

setOwner()

Bank Account

Object

attribute values

operations

© Clear View Training 2010 v2.6 32

All objects have

 Identity: Each object has its own unique identity and can

be accessed by a unique handle

▪ Distinguish two cars of the same type and one car referenced

from two places.

 State: This is the actual data values stored in an object

at any point in time

▪ On and off for a light bulb (one attribute).

▪ On + busy, on + idle, off for a printer (two attributes).

 Behaviour: The set of operations that an object can

perform

© Clear View Training 2010 v2.6 33

Messaging

 In OO systems, objects send messages to each other over links

 These messages cause an object to invoke an operation

bank object account object

account.withdraw(150);

the bank object sends the

message “withdraw 150” to an

account object.

the account object responds by

invoking its withdraw() operation.

This operation decrements the

account balance by 150.

message

© Clear View Training 2010 v2.6 34

UML Object Syntax

 All objects of a particular class have the same set of operations. They are not shown
on the object diagram, they are shown on the class diagram (see later)

 Attribute types are often omitted to simplify the diagram

 Naming: object and attribute names in lowerCamelCase, class names in UpperCamelCase

jimsAccount : Account

accountNumber : String = "1234567"

owner : String = "Jim Arlow"

balance : double = 300.00

attribute

name

attribute

compartment

name

compartment

attribute

type

attribute

value

object

name

class

name

jimsAccount : Account

jimsAccount

: Account

object and

class name

object name

only

class name

only

variants

(N.B. we've omitted the attribute compartment)

an anonymous object

object identifier

(must be underlined)

© Clear View Training 2010 v2.6 35

What are classes?

 Every object is an instance of one class - the class describes the
"type" of the object

 Classes allow us to model sets of objects that have the same set of
features - a class acts as a template for objects:

▪ The class determines the structure (set of features) of all objects of that
class

▪ All objects of a class must have the same set of operations, must have
the same attributes, but may have different attribute values

 Classification is one of the most important ways we have of
organising our view of the world

 Think of classes as being like:

▪ Rubber stamps

▪ Cookie cutters

class

object

© Clear View Training 2010 v2.6 36

Exercise - how many classes?

© Clear View Training 2010 v2.6 37

Classes and objects

 Objects are instances of classes.

 Instantiation is the creation of

new instances of model elements.

 Most classes provide special

operations called constructors

to create instances of

that class.

 These operations

have class-scope

i.e. they belong to

the class itself rather

than to objects of the classs.

withdraw()

deposit()

Account

accountNumber : String

owner : String

balance : double

objects

class

ilasAccount:Account

accountNumber : "803"

owner : "Ila"

balance : 310.00

fabsAccount:Account

accountNumber : "802"

owner : "Fab"

balance : 1000.00

JimsAccount:Account

accountNumber : "801"

owner : "Jim"

balance : 300.00

© Clear View Training 2010 v2.6 38

UML class notation

 Classes are named in UpperCamelCase – avoid abbreviations!

 Use descriptive names that are nouns or noun phrases

Window

+size : Area = (100,100)

#visibility : Boolean = false

-colorRGB : Integer [3]

-defaultSize : Rectangle

-maximumSize : Rectangle

-xptr : XWindow*

+create()

+hide()

+display(location : Point)

-attachXWindow(xwin : XWindow*)

{author = Jim,

status = tested}

name

compartment

attribute

compartment

operation

compartment

class name tagged values

initial

values

class scope

(static) operation

visibility

adornment

Window

size : Area

visibility : Boolean

hide()

display()

Analytical class

Design class

© Clear View Training 2010 v2.6 39

Attribute compartment

Structure

visibility name : type multiplicity = initialValue

Visibility
+ public
- private
protected
~ package

Type
Integer, Real, Boolean, String, Class

Multiplicity
[3] specific number of elements
[0..1] optional
* array, list

Initial values

Window

+size : Area = (100,100)

#visibility : Boolean = false

-colorRGB : Integer [3]

-defaultSize : Rectangle

-maximumSize : Rectangle

-xptr : XWindow*

+create()

+hide()

+display(location : Point)

-attachXWindow(xwin : XWindow*)

{author = Jim,

status = tested}
mandatory

attribute

compartment

Operation signature

visibility name (direction parameterName : parameterType = default, ...) : returnType

Direction
in input value, default
out repository for system output
inout modifiable input value
return operation return value(s)

Scope
instance scope defaults
class scope underlined

Constructors
generic constructor name or
Java/C++ standard

+BankAccount(aNumber : int)

© Clear View Training 2010 v2.6 40

Operation compartment

parameter list or a list r1, r2,… rn

BankAccount

-accountNumber : int

-count : int = 0

+create(aNumber : int)

+getNumber() : int

-incrementCount()

+getCount() : int

operation

compartment

© Clear View Training 2010 v2.6 41

Key points

 We have looked at objects and classes and examined
the relationship between them

 We have explored the UML syntax for modelling classes
including:

▪ Attributes

▪ Operations

 We have seen that scope controls access

▪ Class scope attributes are shared by all objects of the class and
are useful as counters

▪ Attributes and operations are normally instance scope

▪ We can use class scope operations for constructor and
destructors

Finding Analysis Classes

Lecture 3/Part 4

42© Clear View Training 2010 v2.6

© Clear View Training 2010 v2.6 43

What are Analysis classes?

 Analysis classes represent a crisp
abstraction in the problem domain

▪ They may ultimately be refined
into one or more design classes

 Analysis classes have:

▪ A very “high level” set of
attributes. They indicate the
attributes that the design classes
might have.

▪ Operations that specify at a high
level the key services that the
class must offer. In Design, they
will become actual,
implementable, operations.

BankAccount

name : String

address

balance : double

deposit()

withdraw()

calculateInterest()

class name

attributes

operations

Specify attribute

types if you know

what they are.

© Clear View Training 2010 v2.6 44

What makes a good analysis class?

 Its name reflects its intent

 It is a crisp abstraction that models one specific

element of the problem domain

▪ It maps onto a clearly identifiable feature of the problem domain

 It has high cohesion

▪ Cohesion is the degree to which a class models a single

abstraction

▪ Cohesion is the degree to which the responsibilities of the class

are semantically related

 It has low coupling

▪ Coupling is the degree to which one class depends on others

© Clear View Training 2010 v2.6 45

Rules of thumb

 3 to 5 operations per class

 Each class collaborates with others

 Beware many very small classes

 Beware few but very large classes

 Beware of “functoids”

 Beware of “omnipotent” classes

 Avoid deep inheritance trees

A responsibility is a

contract or obligation

of a class - it resolves

into operations and

attributes

© Clear View Training 2010 v2.6 46

 Perform noun/verb analysis on documents:

▪ Nouns are candidate classes

▪ Verbs are candidate responsibilities

What documents can be studied?

 Perform CRC card analysis

▪ Class, Responsibilities and Collaborators

▪ A two phase brainstorming technique using sticky notes – first

brainstorm and then analyse the dat

Finding classes

Responsibilities:

Class Name: BankAccount

Collaborators:

Maintain balance Bankthings the

class does

things the

class works

with

© Clear View Training 2010 v2.6 47

Other sources of classes

 Physical objects

 Paperwork, forms

▪ Be careful when relying on processes that need to change

 Known interfaces to the outside world

 Conceptual entities that form a cohesive abstraction

 With all techniques, beware of spurious classes

▪ Look for synonyms - different words that mean the same

▪ Look for homonyms - the same word meaning different things

© Clear View Training 2010 v2.6 48

Key points

 We’ve looked at what constitutes a well-formed analysis

class

 We have looked at two analysis techniques for finding

analysis classes:

▪ Noun verb analysis of use cases, requirements, glossary and

other relevant documentation

▪ CRC analysis

Relationships Between Objects and Classes

Lecture 3/Part 5

49© Clear View Training 2010 v2.6

© Clear View Training 2010 v2.6 50

What is a link?

 Links are connections between objects

▪ Think of a link as a telephone line connecting you and a friend.
You can send messages back and forth using this link

 Links are the way that objects communicate

▪ Objects send messages to each other via links

▪ Messages invoke operations

 OO programming languages implement links as object
references or pointers

▪ When an object has a stored reference to another object,
we say that there is a link between the objects

© Clear View Training 2010 v2.6 51

Object diagrams

 Paths in UML

diagrams can be

drawn as

orthogonal,

oblique or curved

lines

 We can combine

paths into a tree if

each path has the

same properties

bookClub:Club

ila:Person

erica:Person

naomi:Person

chairperson

secretary

member

role name

link

BookClub

bookClub:Club

ila:Person

erica:Person

naomi:Person

chairperson

secretary

member

BookClub

oblique

path

style

orthogonal

path

style

preferred

object

Shape

Square Circle Triangle

© Clear View Training 2010 v2.6 52

What is an association?

 Associations are relationships between classes

 Associations between classes indicate that there may be links

between objects of those classes, while links indicates that there

must be associations

 Can there be a communication between objects of two classes that

have no association between them?

bookClub:Club jim:Person
chairman

Club Person

«instantiate» «instantiate» «instantiate»

link

association

links

instantiate

associations

© Clear View Training 2010 v2.6 53

Association syntax

 An association can have role names OR
an association name

 Multiplicity is a constraint that specifies

the number of objects that can participate

in a relationship at any point in time

▪ If multiplicity is not explicitly stated in the model

then it is undecided – there is no default multiplicity

Company Person
1 0..*

employs

navigability

association

name

multiplicity

Company Person
employer employee

1 0..*

role names

multiplicity: min..max

0..1 zero or 1

1 exactly 1

0..* zero or more

1..* 1 or more

1..6 1 to 6

reading

direction

© Clear View Training 2010 v2.6 54

Multiplicity exercise

 How many

▪ Employees can a Company have?

▪ Employers can a Person have?

▪ Owners can a BankAccount have?

▪ Operators can a BankAccount have?

▪ BankAccounts can a Person have?

▪ BankAccounts can a Person operate?

Company

Person

employee

1

7

employer

BankAccount

0..*

1owner

0..*

1..* operator

© Clear View Training 2010 v2.6 55

Reflexive associations: file system example

Directory File
0..*10..*

0..1

C

Windows My Documents Corel

Command

autoexec

config

To John

directories files

parent

subdirectory

reflexive association

 If ToJohn was a directory, would it still conform to the class diagram?

© Clear View Training 2010 v2.6 56

Hierarchies and networks

A
0..*

0..1

a1:A

b1:A c1:A d1:A

e1:A f1:A g1:A

B
0..*

0..*

a1:B

b1:B

c1:B

d1:Be1:B

f1:B

g1:B

hierarchy network

In an association hierarchy, each object

has zero or one object directly above

it.

In an association network, each object

has zero or many objects directly

above it.

© Clear View Training 2010 v2.6 57

Navigability

 Navigability indicates that it
is possible to traverse from
an object of the source
class to objects of the target
class

 Can there be a
communication in a direction
not supported by the
navigability?

 Are some of the cases on
the right equivalent?

Order Product
0..* 0..*

Not navigable
A Product object does not store a list of Orders

An Order object stores a list of Products

Navigable

source target

navigability

A B

A B

A B

A B

A to B is navigable

B to A is navigable

A to B is navigable

B to A is not navigable

A to B is navigable

B to A is undefined

A to B is undefined

B to A is undefined

© Clear View Training 2010 v2.6 58

Associations and attributes

 An association is (through its role name) a representation of an attribute

 Use associations when:

▪ The target class is an important part of the model

▪ The target class is a class that you have designed yourself

 Use attributes when:

▪ The target class is not important, e.g. a primitive type such as number, string

▪ The target class is just an implementation detail such as a bought-in component or

a library component e.g. Java.util.Vector (from the Java standard libraries)

address:Address

House

House Address
1 1

address House

address:Address

pseudo-attribute attribute

=

© Clear View Training 2010 v2.6 59

Association classes

Company Person
0..* 0..*employment

 Where do we record the Person’s salary?

 We model the association itself as an association class. Exactly one

instance of this class exists for each link between a Person and a Company.

 We can place the salary and any other attributes or operations which are

really features of the association into this class

Company Person
0..* 0..*

Job

salary:double

the association class

consists of the class,

the association and the

dashed line
association class

© Clear View Training 2010 v2.6 60

Using association classes

Company Person
0..* 0..*

Job

salary:double

If we use an association class,

then a particular Person can

have only one Job with a

particular Company

If, however a particular

Person can have multiple

jobs with the same

Company, then we must

use a reified association
Company Person

Job

salary:double

0..*0..* 11

© Clear View Training 2010 v2.6 61

Dependencies

 "A dependency is a relationship between two elements where a
change to one element (the supplier) may affect or supply
information needed by the other element (the client)".

▪ In other words, the client depends in some way on the supplier

▪ Weaker type of relationship than association

▪ Can there be both association and dependency between two classes?

 Three types of dependency:

▪ Usage - the client uses some of the services made available by the
supplier to implement its own behavior – this is the most commonly
used type of dependency

▪ Abstraction - a shift in the level of abstraction. The supplier is more
abstract than the client

▪ Permission - the supplier grants some sort of permission for the client
to access its contents – this is a way for the supplier to control and limit
access to its contents

© Clear View Training 2010 v2.6 62

Usage dependencies

 Stereotypes

▪ «use» - the client makes use of the supplier to implement its behaviour

▪ «call» - the client operation invokes the supplier operation

▪ «parameter» - the supplier is a parameter of the client operation

▪ «send» - the client (an operation) sends the supplier (a signal) to some

unspecified target

▪ «instantiate» - the client is an instance of the supplier

A

foo(b : B)

bar() : B

doSomething()

B

A :: doSomething() {

B myB = new B();

}

«use»

A «use» dependency is generated between A and B when B is

used in A as a parameter, return value or inside method body

the stereotype is often omitted

© Clear View Training 2010 v2.6 63

Abstraction and permission dependencies

 Abstraction dependencies

▪ «trace» - the client and the supplier represent the same concept but at different

points in development

▪ «substitute» - the client may be substituted for the supplier at runtime. The

client and supplier must realize a common contract. Use in environments that

don't support specialization/generalization

▪ «refine» - the client represents a fuller specification of the supplier

▪ «derive» - the client may be derived from the supplier. The client is logically

redundant, but may appear for implementation reasons

 Permission dependencies

▪ «access» the public contents of the supplier package are added as private

elements to the namespace of the client package

▪ «import» the public contents of the supplier package are added as public

elements to the namespace of the client package

▪ «permit» the client element has access to the supplier element despite the

declared visibility of the supplier

© Clear View Training 2010 v2.6 64

Key points

 Links – relationships between objects

 Associations – relationships between classes

▪ role names

▪ multiplicity

▪ navigability

▪ association classes

 Dependencies – relationships between model elements

▪ usage

▪ abstraction

▪ permission

© Clear View Training 2010 v2.6 65

Inheritance and polymorphism

Lecture 3/Part 6

© Clear View Training 2010 v2.6 66

Generalisation

Shape

Square Circle Triangle

more general element

more specific elements

parent

superclass

base class

ancestor

child

subclass

descendent

g
e
n

e
ra

lis
a
tio

n

s
p

e
c
ia

lis
a
ti
o
n

A generalisation hierarchy

“is kind of”

A relationship between a more general element and a more
specific element (with more information)

© Clear View Training 2010 v2.6 67

Class inheritance

 Subclasses inherit all features of their
superclasses:

▪ attributes

▪ operations

▪ relationships

▪ stereotypes, tags, constraints

 Subclasses can add new features

 Subclasses can override superclass
operations

 We can use a subclass instance
anywhere a superclass instance is
expected

Substitutability

Principle

Shape

origin : Point = (0,0)

width : int {>0}

height : int {>0}

draw(g : Graphics)

getArea() : int

getBoundingArea() : int

Square Circle

radius : int = width/2

What’s wrong with

these subclasses?

© Clear View Training 2010 v2.6 68

Overriding

 Subclasses often need to override superclass behaviour

 To override a superclass operation, a subclass must provide an
operation with the same signature

▪ The operation signature is the operation name, return type and types
of all the parameters

Shape

draw(g : Graphics)

getArea() : int

getBoundingArea() : int

Square Circle

draw(g : Graphics)

getArea() : int

draw(g : Graphics)

getArea() : intwidth x height p x radius2

What’s wrong with

the superclass?

© Clear View Training 2010 v2.6 69

Abstract operations & classes

 We can’t provide an implementation for
Shape :: draw(g : Graphics) or for
Shape :: getArea() : int
because we don’t know how to draw or calculate the area for a "shape"!

 Operations that lack an implementation are abstract operations

 A class with any abstract operations can’t be instantiated and is
therefore an abstract class

concrete

operations

Shape

draw(g : Graphics)

getArea() : int

getBoundingArea() : int

Square Circle

draw(g : Graphics)

getArea() : int

draw(g : Graphics)

getArea() : int

abstract class

concrete

classes

abstract

operations
Abstract class and

operation names

must be in italics

© Clear View Training 2010 v2.6 70

Exercise

Vehicle

JaguarXJS Truck

what’s wrong

with this model?

© Clear View Training 2010 v2.6 71

Polymorphism

 Polymorphism = "many forms"

▪ A polymorphic operation has
many implementations

▪ Square and Circle provide
implementations for the
polymorphic operations
Shape::draw() and
Shape::getArea()

 The operation in Shape
superclass defines a contract
for the subclasses.

Shape

draw(g : Graphics)

getArea() : int

getBoundingArea() : int

Square Circle

draw(g : Graphics)

getArea() : int

draw(g : Graphics)

getArea() : int

polymorphic

operations

concrete subclasses

abstract

superclass

Canvas

0..*

1

A Canvas object has a collection of Shape objects

where each Shape may be a Square or a Circle

shapes

© Clear View Training 2010 v2.6 72

What happens?

 Each class of object has its
own implementation of the
draw() operation

 On receipt of the draw()
message, each
object invokes the
draw() operation
specified by its class

 We can say that each object
"decides" how to interpret the
draw() message based on its class

:Canvas

s1:Circle

s2:Square

s3:Circle

s4:Circle

1.draw()

2.draw()

3.draw()

4.draw()

© Clear View Training 2010 v2.6 73

BankAccount example

 We have overridden the deposit() operation even though it is

not abstract.

BankAccount

withdraw()

calculateInterest()

deposit()

CheckingAccount DepositAccount

withdraw()

calculateInterest()

withdraw()

calculateInterest()

Bank
0..*1

ShareAccount

withdraw()

calculateInterest()

deposit()

© Clear View Training 2010 v2.6 74

Key points

 Generalisation, specialisation, inheritance

 Subclasses

▪ inherit all features from their parents including constraints and

relationships

▪ may add new features, constraints and relationships

▪ may override superclass operations

 A class that can’t be instantiated is an abstract class

