Lecture 5

DATA MODELLING AND MANAGEMENT

PBOO7 Software Engineering |
Faculty of Informatics, Masaryk University

Fall 2020

V © Buhnova, Sochor, Racek
%“"2‘,1s?w’_\stg'.(v

’ semmEavILE
l_ ML 200 tHE A

Usermn Procans
St e
P

Motivation

DATA NEVER SLEEPS 6.0

DU ® Howmuchdatais generated every minute?

How much data is generated every minute?
T There's no way around it: big data just keeps getting bigger. The numbers are staggering, but they're not
slowing down. By 2020, it's estimated that for every person on earth, 1.7 MB of data will be created every
second. In our 6th edition of Data Never Sleeps, we once again take a look at how much data is being created all
around us every single minute of the day—and we have a feeling things are just getting started,

COMPUTERS
ARE SOLD

SHIPS'I 'I 'I 'I | —— USERS WATCH
Poackaces _ 4,333,560
— USERS PUBLISH = —— USERS SEND Learn more at

79,740 effz'ﬁy 4§ 47%00 fiihs oo

76220 P 4756

CALLS ARE MADE

ON SKYPE "\ (oT CONNECTIONS
<) ARE MADE

12986,

TEXTS SENT

NEW

BITGOIN
GOOGLE

ald 159362760

EMAILS SENT PER MINUTE

OF INTERNET DATA

© BarboraBihnova 2

The cycle of innovation

© Jan Bosch

—

-

Customer Feedback . . 5
Techniques (CFT): Product R&D organisation Products in the field
Qualitative data: |
. Surveys |
. Interviews |
= Participant] i
observations Selection of i
- Prototypes hypothesis |
= Mock-ups Calack | Selected
Quantitative data*: o? Ce;::Ton : customers
» Feature usage .
» Product data |
= Support data I
» Callcenterdata i :
{
r\

: Deployed
i products

TS SN e e .

New hypotheses based A
on: |
= Business |
strategies H
« Innovation ! v S
initiatives i
» Qualitative Abandon |
customer QCD validation i
feedback cycle I
= Quantitative i
customer
feedback
s Continuous prioritization of hypotheses!

*Loop in which decisions are taken on whether to do more qualitative customer feedback collection.

Outline

<> Data management

< Data modelling
= Entity relationship diagram (ERD)
< Relational database design

= Normalization

© BarboraBihnova 5

Data management

Lecture 5/Part 1

WIS Iy,
& G‘P"q,
v © BarboraBihnova
%“"u5?1’_‘\5‘-&.(v

Data

< Information converted into binary digital form

= information that has been translated into a form that is efficient
for movement and processing

< It can be created, processed, saved, and stored digitally

= This allows data to be transferred
from one computer to another

< Digital information (i.e. data)
In comparison to analog information
does not deteriorate over time or
lose quality after being used
multiple times

Financial

Meteorological

Chapter 4 Requirements engineering Statistical 7

Big data

< A collection of data that is huge in size or growing exponentially
with time

< It's difficult or impossible to process using traditional database and
software tools

< Characteristics — 5 V’s:

Volume — size of the data is enormous

Variety — various sources and
format of data

Variability — data can be inconsistent
and unpredictable

Velocity — data is generated very fast
Veracity — data is validated and verified

Chapter4 Requirements engineering

Volume

Use g
Big data i

Top Big Data Applications

Healthcare @ : Travel

Finance e Education

Retail & Telecom

Media & "‘

g E-commerce
Entertainment

‘-7 Chapter 4 Requirements engineering 9

Database

< An organised collection of data

<> Supports access, storage and manipulation of data

< Typically as rows and columns in a table

<> Most used language is SQL (Structured Query Language)
< Controlled by database management system (DBMS)

]
I

Applications ~ Relational

Database
Hierarchical
Database

DBMS

Other DBMS ~ (e 0, revord, - Storage Area
query, update,

manage data)

Flat Files
Database

NoSQL

Objects
Database

o

Chapter4 Requirements engineering 10

Database

SQL NoSQL

Relational Key-Value Column-Family
(i} — @D I
[y — @D
E—

Analytical (OLAP) Graph Document
g Pl =
Lt Jo° |liEE

V Chapter 4 Requirements engineering 11

Relational database

<~ Stores data as a series of two-dimensional tables with rows and
columns with pre-defined relationships between data

< Relationship between tables and field types is called a schema. The
schema must be clearly defined before any information can be
added

<> Each table has its own columns, and every row in atable has the
same set of columns and a unique ID called the key

<> For querying uses structured query language (SQL)

Chapter 4 Requirements engineering 12

Relational database

< Used in:

» Transaction-oriented systems
= Accounting software
= Management tools

1
O)

id int first_name varchar id int
last_name varchar
¢ I . I d . rating int - tag T
Examp eS InC u e user id int = email varchar L_. e it
e~ movie_id int

- POStg reSQL maovie_id int .—-,
= MySQL — e

name varchar

description text

Chapter 4 Requirements engineering 13

NoSQL databases

Key Value Column Based Document Graph

Database Database

* In a key-valve ¢ In Column Based * This NoSQL This No SQL
NoSQL NoSQL Database, Database database IS
Database, all of DB is designed for expands the key- designed for data
the data within storing data tables value stores where whose relations are
consists of an as sections of “documents” well represented as
indexed key and a columns of data, contain more a graph and has
valve rather than as rows complex in that elements which are

of data they contain data interconnected, with

. . . and each document an undetermined
E:‘OMP'“ md::) o Bommeias fncknd s Is assigned o number of relations

Dynamo ' unique key, which is between them
* Cassandra * HBase used to retrieve

* SAP HANA the document * Examples include :

* Polyglot

* Examples include : o Neod)

* MongoDB
* CouchDB

Chapter 4 Requirements engineering

14

Key-value database

<> Nonrelational database that uses a key-value method to store data

< Stores data as a collection of key-value pairs in which a key serves
as a unique identifier

< A data structure more commonly known today as a dictionary or
hash table

< Doesn’t have a query language; it provides a simple way to store,
guery and update data using get, put and delete commands — not
optimized for querying by value

Chapter 4 Requirements engineering 15

Key-value database

¢ USEd in: Keys Values
.) r *\
. Shopplng cart 2398239 > { "name”: "Michat", "Age": "31"}
In e-shops — . /
 E— r ~
= Caching 2398240 > "Lorem ipsum dolor sit amet”
. —_— \ J
= Multi-player games r)
2398241 S { "name”: "Marlon Brando", "Profession": "Actor"}
— \ v
— - 1
<> Examples include: 2398242 > E
, S " J
= Redis

= Apache Cassandra
= Amazon Dynamo DB
= Microsoft Azure Cosmos DB

@ Chapter 4 Requirements engineering 16

Column-family database

<> Nonrelational database that stores data into rows and columns,
conceptually similar to a relational database

<> Columns are divided into groups known as column families. Each
column family holds a set of columns that are logically related
together and are typically retrieved or manipulated as a unit

<> Suited for storing enormous, structured, volatile data because each
row is not required to have the same columns

Chapter 4 Requirements engineering 17

Column-family database

¢ Used In CustomerlD | Column Family: Identity
= Internet of Things o Fast rame: Min
= Security analytics : o
002 First na me.. Ffla nﬁ;ic;
= Stock market Sutfoc
= Bioinformatics 003 First name: Lene
Title: Dr.

< Examples include

CustomerlD | Column Family: Contact Info
* HBase . Emall someons@ example com
[Apache ooz Email: vilanova@ contoso.com
Cassandra 003 Phone number: 355-0120

Chapter 4 Requirements engineering 18

Document database

<> Nonrelational database that stores a collection of named fields and
data (known as documents)

<> Stored data can be encoded in different formats, e.g. XML, YAML,
JSON, plain text

<> Does not require that all documents have the same structure —
provides flexibility for storing different data

< Allows querying and filtering documents by value of one or more
fields and in-place modifying values without rewriting the whole
document

Chapter 4 Requirements engineering 19

Document database

< Used in: {

= User profiles "id":"1",

_ _ “name”: "John Smith",
= Real-time big data "isActive": true,
"dob": "1964-30-08"
= Content management }
Document2 |
{ Ilidil: It3!l'
ﬂidlt: "2Iz "ﬂ_l“vawwwavmwwg“:
' “fullName": "Sarah Jones’, {

M Examples include "isActive": false, "first": "Adam”,
n MongoDB }“dob“: "2002-02-18" }"|E|5t": "Stark"
= Google Cloud Firestore "isActive": true,

_ "dob": "2015-04-19"
= Microsoft Azure Cosmos DB }

@g’ Chapter4 Requirements engineering 20
=

4
RETVICS

Graph database

<> Nonrelational database that stores two types of information, nodes
and edges

<> Nodes typically store information about people, places, and things
while edges store information about the relationships between the
nodes

< The relationships allow data in the database to be linked together
directly and retrieved with one operation

< Provides a query language that can be used to traverse a network of
relationships efficiently

Chapter 4 Requirements engineering 21

Graph database

< Used in:
= Social networks NE“’Pf°;E‘Eh
* Fraud detection
] . Reportsto
» Recommendation " :
. mployee
englnes reporsto Mame: Inessa
Department Employee
Mame: Head Office Mame: Alok \Wcrks in
< Examples include: Reports to Department
. T Reports to Mame: Manufacturing
- NeO4J Mame: Max Works in Employee
u Amazon Neptune Mame: John
' Works in / Works in
= Apache Giraph L
Department
Department Name: Marketing
Mame: Sales

Chapter 4 Requirements engineering 22

Data management

< Administrative process that includes acquiring, validating, storing,
protecting, and processing required data to ensure the
accessibility, reliability, and timeliness of the data for its users

<> Encompasses the entire lifecycle of a data asset, from the very
initial creation of the data to the final retirement of the data

<> Some companies are good at collecting data, but they are not
managing it well enough to turn raw data into value

Chapter 4 Requirements engineering 23

Data governance

<>

A set of principles and practices
that ensure high quality through
the complete lifecycle of the data

Includes the people, processes
and technologies needed to
manage and protect the company’s
data assets in order to guarantee
generally understandable,
correct, complete, trustworthy,
secure and discoverable
corporate data

Most relevant in large enterprises
to ensure security, compliance and
Improve business performance

Chapter 4 Requirements engineering

Data

Architecture
Data

Modeling p

& Design

ra

Data Quality

Data Storage
& Operations

Data

. Governance
Data Warehousing

& Business)
Intelligence ~

Data
Security

\

Data ™~

~~ Reference & \.\ Integration &
Ir p

Master Data / \ teroperability
/ Documents \
& Content \

\

24

Key goals of data governance

< Minimize risks
<~ Establish internal rules for data use
Data
< Implement compliance requirements Architecture /-
Data Quality Modelling
<> Improve internal and external &Design

communication

Data Storage
& Operations

<~ Increase the value of data]
ata
. .. . G
< Facilitate the administration Data Warehousing Frernanee
& Business
Of the above Intelligence //’
< Reduce costs \ o
;Efe"e”éet& . \ Integration & _
. aster Data / Inte bility 3
<~ Help to ensure the continued / pocuments \

\

& Content \

existence of the company through risk \

management and optimization

v Chapter 4 Requirements engineering
%, W
s uas

25

Data Lifecycle

< A high-level overview of the stages involved in successful
management and preservation of data for use and reuse

Data Capture / Creation

Data Maintenance

Data Usage Destroy

E— "3

([

Data Publication

Data Archiving

R R R

Data Purging / Destruction

f: /7%; H 4 1
V Chapter4 Requirements engineering 26
W&

Tag ppast

Data modelling

Lecture 5/Part 2

© Buhnova, Sochor, Racek

27

Data modeling

< Defines static data structure, relationships and attributes

< Complementary to the behavior model in structured
analysis; models information not covered by DFDs

< More stable and essential information comparing to DFD

< Entity-Relationship modeling

= |dentify system entities — both abstract (lecture) and concrete
(student)

= For each entity examine — the purpose of the entity, its
constituents (attributes) and relationships among entities

= Check model consistency and include data details

© Buhnova, Sochor, Racek 28

Entity Relationship Diagram (ERD)

< Entities and their types Crow’s Foot notation

{- Relationships and their types (implementation level descript.)
< Attributes and their domains Teacher | Lecture
_ ¥ glvesm/
Not a UML diagram! name i >N name
- (1,2) (0,8)
contact date
: length
Chen's notation plage
(concept level description)

L1 N
Teacher D) @ (0g)| Lecture ~

V © Biihnova, Sochor, Racek 29
iy —".@??
As MASD

Entities and Entity types

< An Entity Is anything about which we want to store data

= |dentifiable — entities can be distinguished by their identity
= Needed — has significant role in the designed system
= Described by attributes shared by all entities of the same type

< An Entity set Is a set of entities of the same Entity type.

You Student
Your neighbor Student Teacher
Me Teacher
This PBO07 lecture Lecture

Lecture

© Buhnova, Sochor, Racek 30

Relationships and Relationship types

< Entities take part in Relationships (among possibly
more than two entities), that can often be identified from

verbs or verb phrases.

= You are attending this PB0OO7 lecture.
= | am giving this PB0O07 lecture.

< A Relationship set is a set of relationships of the same

Relationship type.

= A student attends a lecture.

Lecture

= Ateacher gives a lecture.

Student @

© Buhnova, Sochor, Racek

>

Teacher

31

Attributes and Attribute domains

< An Attribute Is a fact, aspect, property, or detail about
either an entity type or a relationship type.

= E.g. alecture might have attributes: time, date, length, place.

< An Attribute type is a type domain of the attribute. If the
domain is complex (domain of an attribute address), the
attribute may be an entity type instead.

Teacher @ Lecture

© Buhnova, Sochor, Racek 32

Attributes or entities?

<> To decide whether a concept be modeled as an attribute
or an entity type:

= Do we wish to store any information about this concept (other
than an identifying name)?

» |s it single-valued?

= E.g. objectives of a course — are they more than one? If just
one, how complex information do we want to store about it?

<> General guidelines:

= Entities can have attributes but attributes have no smaller parts.

= Entities can have relationships between them, but an attribute
belongs to a single entity.

© Buhnova, Sochor, Racek 33

Relationship-type degree

)

Manager leads Department

{

Every manager leads exactly one department.
Every department is led by exactly one manager.

5

Edition plan contains N Book title

{

Every edition plan contains one or more book titles.
Every book title is part of exactly one edition plan.

)

M N

Producer W Product

Every producer produces one or more products.
Every product is produced by one or more producers.

© Buhnova, Sochor, Racek 34

Relationship-type degree

Mandatory relationship

Painter

1

)

Optional relationship

Employee

M

drew

)

works on

(0.M)

Recursive relationship

Module

1

N

onsists o

0 <

© Buhnova, Sochor, Racek

N Painting
N :
0N Project

35

Cardinality ratio

< Cardinality ratio of a relationship type describes the
number of entities that can participate in the relationship.

<> One to one 1:1
= Each lecturer has a unique office.
< One to many 1:N

= Alecturer may tutor many students, but each student has just
one tutor.

< Many to many M:N

= Each student takes several modules, and each module is taken
by several students.

© Buhnova, Sochor, Racek 36

More relationships between two entities

M \/ N
Product Supplier
M @ N

< Relationship offers has attributes:

= payment conditions, due date.

< Relationship delivered has attributes:

= delivery note details.

© Buhnova, Sochor, Racek 37

Relationships among more than two entities

Buyer

1 i 1
Seller ”egr?é'é’“e Agent

negotiate

Buyer’s lawyer W Seller’s lawyer

© Buhnova, Sochor, Racek 38

Removal of unneeded (redundant) entities

Employee

1

@ |::> Employee

1

Spouse

The Spouse entity Is better suited
as Employee’s attribute.

© Buhnova, Sochor, Racek 39

Relational Database Design

Lecture 5/Part 3

v © Buhnova, Sochor, Racek
74‘25‘, —".@-'(lv\
Tag mash

40

Crow's Foot notation

relationship] _
m Entity
relationship | :
\wj Entity
relationship | _
<] Entity
relationship

o4 Entity

Exactly one occurrence

None or one occurrence

One or more occurrence

None or more occurrences

© Buhnova, Sochor, Racek 41

ERD example — Transport

IS assigned to

employs

Carrier

R

Vehicle

Driver

>

takes part in

N\

License

IS a holder of

© Buhnova, Sochor, Racek

SIS

Journey

42

ERD example — Library

IS reserved
Reservation PO H Book
W ——
()] | | o
entered IS available
—_— _/K
Reader Copy
od Loan P+
has IS on loan

© Buhnova, Sochor, Racek

43

ERD example — Book editing

coauthored by

Handbook P

consists of

reviewed by —+

A\

N\

written by

ld Author

Chapter P

© Buhnova, Sochor, Racek 44

l.l\n.lnu;m_ ; _;”‘
Relational database design based on ERDS e ; fmtSes

< Entity-relationship modeling is a first step towards
database design.

Database design process:
1. Determine the purpose of the database.

2. Find and organize the information required - Create
ERD model of the system. Each entity type becomes a
table, attribute becomes a column, entity becomes a
row in the table. Handle relationships with attributes,
and M:N relationships.

© Buhnova, Sochor, Racek 45

Relationships to entities

1 N
Customer @ Product

Customer WV Product

——04 Purchase

[}

Can the purchase
entity be omitted?

© Buhnova, Sochor, Racek 46

M:N relationships

M N
Teacher Course

N

Teacher Course

——04 Teaching P6—

© Buhnova, Sochor, Racek 47

Database design process (continued)

3. Specify primary keys - Choose each table’s primary
key. The primary key is a column that is used to
uniquely identify each row. An example might be
Product ID or Order ID.

4. Apply the normalization rules - Apply the data
normalization rules to see if tables are structured
correctly. Make adjustments to the tables.

5. Refine the design - Analyze the design for errors.
Create tables and add a few records of sample data.
Check if results come from the tables as expected.
Make adjustments to the design, as needed.

© Buhnova, Sochor, Racek 48

Entities and keys

<> Superkey

= A set of attributes that uniquely identifies each entity.

< Candidate key

= Anon-redundant superkey, I.e. all items of a candidate key are
necessary to identify an entity, no key attribute can be removed.

= There can be more combinations of entity attributes that can be
used as candidate keys.

< Primary key

= The selected candidate key, marked with # symbol.

<> Foreign key

= A set of attributes in one entity that uniquely identifies (i.e. is a
primary key in) another entity.

© Buhnova, Sochor, Racek 49

Data normalization goals by E.F. Codd

< Minimize redundancy and dependency

= Minimize redesign when extending database structure
= Make the data model more informative to users

< Free the database of modification anomalies

= Update anomaly — the same information expressed on multiple
rows — update resulting in logical inconsistencies.

* [nsertion anomaly — certain facts cannot be recorded, because
of their binding with another information into one record.

= Deletion anomaly — deletion of data representing certain facts
necessitating deletion of unrelated data.

<> Avoid bias towards any particular pattern of querying

© Buhnova, Sochor, Racek 50

1. Normal form — no repeating groups

Def.1NF: Arelation is in 1NF if the domain of each attribute contains
only atomic values, and the value of each attribute contains only a
single value from that domain.

expertise
employee A N
empl# |name [gender | - expert | experience _‘
|

empl# | name [gender | e

——Og empl# |expert# | experience

‘-7 © Buhnovad, Sochor, Racek 51
‘,‘ﬂ_“ - ; \“\\\-\%‘

1. Normal form — normalization example

EntityA

idA

attributel

attribute2

attribute3[1]

attribute3[2]

attribute3[n]
EntityA EntityB
idA i S idB
attributel attribute3
attribute2

© Buhnova, Sochor, Racek 52

Functional dependency

< Functional dependency

= |n a given table, an attribute Y is said to have
a functional dependency on a set of attributes

X if and only if each X value is associated
with precisely one Y value.

< Trivial functional dependency

= Atrivial functional dependency is a functional
dependency of an attribute on a superset of itself.

< Full functional dependency

X1 X2 Y
— 1
X1 | X2

— 1

X1 | X2 Y

= An attribute is fully functionally dependent on
a set of attributes X if it is: functionally dependent

on X, and not functionally dependent on any proper subset of X.

© Buhnova, Sochor, Racek

53

2. Normal form — no partial dependency

Def. 2NF: In INF and no non-prime attribute in the table is
functionally dependent on a proper subset of any candidate key.

Example EMPLOYEE

Is iIn 2NF

empl# | name |salary

project | deadline

Example PROGRAMING

SRS I,
s 0
& 2
§ i
N E
Z f g
%, &
(S g
“Tas mast

developer#

package#

developer name

package name

hours

What anomalies can you identify in this example?

© Buhnova, Sochor, Racek

54

2. Normal form — no partial dependency

not part of anylcandidate key

l \
Def. 2NF: In INF and no non-prime attribute in the table is functionally

dependent on a proper subset of any candidate key.

» Does the “candidate key’ part of the definition make difference?
* When there is only one-item primary key, is 2NF guaranteed?

Example DISHWASHER MODELS

manufacturer | model | model full name# | manufacturer country

© Buhnova, Sochor, Racek 55

2. Normal form — normalization example o

course# | student# | student name | student email | registration date

4

student# | student name | student emall

course# | student# | registration date

‘-7 © Buhnovad, Sochor, Racek 56
"‘f;.,,_l:‘ \,\S\

U\IL 100 1H

3. Normal form — no transitive dependency . =

Def. 3NF: In 2NF and every non-prime attribute is non-transitively
(i.e. only directly) dependent on every candidate key.

Example EMPLOYEE

empl# | name |salary | project | deadline

What anomalies can you identify in this example?

© Buhnova, Sochor, Racek

57

3. Normal form — normalization example

deadline is transitively dependent on empl#

empl# | name |salary | project | deadline

¢ S

empl# | name |salary | project project# | deadline

© Buhnova, Sochor, Racek 58

ERD vs. UML Class Diagram

< Class diagrams

model both structural and behavior features of a system
(attribute and operations),

contain many different types of relationships (association,
aggregation, composition, dependency, generalization), and

are more likely to map into real-world objects.

< Entity relationship models

model only structural data view with a low variety of
relationships (simple relations and rarely generalization), and

are more likely to map into database tables (repetitive records).

They allow us to design primary and foreign entity keys, and
used to be normalized to simplify data manipulation.

© Buhnova 59

ERD vs. UML Class Diagram

< Although there can be one to one mapping between
ERD and Class diagram, it is very common that

= one class is mapped to more than one entity, or

= more classes are mapped to a single entity.

< Furthermore, not all classes need to be persistent and
hence reflected in the ERD model, which uses to be
driven by the database design.

< Summary:

= ERD is data-oriented and persistence-specific

= Class diagram targets also operations and is persistence
Independent

© Buhnova 60

Key points

< Data modeling, and ERD in particular, focuses on
modeling data entities, relationships and attributes.

<> Data normalization focuses on reducing redundancy
and dependency in database design, and on avoiding
bias towards a particular pattern of querying.

= 1NF: no repeating groups
= 2NF: no partial dependency
= 3NF: no transitive dependency

© Biihnova, Racek, Sochor 61

