
Autoencoders

An autoencoder consists of two parts:
I φ : Rn

→ Rm the encoder
I ψ : Rm

→ Rn the decoder
The goal is to find φ, ψ so that ψ ◦ φ is (almost) identity.

The value ~h = φ(~x) is called the latent representation of ~x.
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Autoencoders – training

Assume

T = {~x1, . . . , ~xp}

where ~xi ∈ R
n for all i ∈ {1, . . . ,n}.

Minimize the reconstruction error

E =

p∑
i=1

(~xi − ψ(φ(~xi)))2
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Autoencoders – neural networks

Both φ and ψ can be represented using MLPMφ andMψ,
respectively.

Mφ andMψ can be connected into a single network.

256



Autoencoders – Usage

I Compression – from ~x to ~h.
I Dimensionality reduction – the latent representation ~h has

a smaller dimension.
I Pretraining (next slides)
I Generative versions – (roughly) generate ~h from a known

distribution, letMψ generate realistic inputs ~x
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Autoencoder – compression – historical
implementation

Architecture: MLP 64 − 16 − 64

Activity: activation function: hyperbolic tangens with limits −1
and 1

Data:
I Images 256 × 256, 8 bits per pixel.
I Samples: input and output is a frame 8 × 8, randomly

selected in the image.
I Inputs normalized to [−1,1].

The goal was to compress images to smaller data size.
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Autoencoder – compression – historical
implementation

A frame 8 × 8 passes through the
image 256 × 256 (no overlap)

(A) original

(B) compression

(C) compression + rounding to 6
bits (1.5 bit per pixel)

(D) compression + rounding to 4
bits (1 bit per pixel)
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Dimensionality reduction – compression

New image (trained on the previous
one):

(A) original

(B) compression

(C) compression + rounding to 6
bits (1.5 bit per pixel)

(D) compression + rounding to 4
bits (1 bit per pixel)
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Application – dimensionality reduction

I Dimensionality reduction: A mapping R from Rn to Rm

where
I m < n,
I for every example ~x we have that ~x can be "reconstructed"

from R(~x).

I Standard method: PCA (there are many linear as well as
non-linear variants)
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Reconstruction – PCA

1024 pixels compressed to 100 dimensions (i.e. 100 numbers).
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PCA vs Autoencoders
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Autoencoders – Pretraining

I An autoencoder is (pre)trained on input data ~xi without
desired outputs (unsupervised)
typically much larger datasets of unlabelled data

I the encoderMφ computes a latent representation for
every input vector, it is supposed to extract important
features (controversial)

I A new part of the modelMtop is added on top ofMφ (e.g.
a MLP taking the output ofMφ as an input).

I Subsequently, labels are added and the whole model
(composed ofMφ andMtop) is trained on labelled data.
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Autoencoders – Pretraining
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Deep MLP – dimensionality reduction

Hinton, G. E., Osindero, S. and Teh, Y. (2006)
A fast learning algorithm for deep belief nets.
Neural Computation, 18, pp 1527-1554.

Hinton, G. E. and Salakhutdinov, R. R. (2006)
Reducing the dimensionality of data with neural networks.
Science, Vol. 313. no. 5786, pp. 504 - 507, 28 July 2006.

This basically started all the deep learning craze ...
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Deep MLP – dimensionality reduction
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Images – pretraining

I Data: 165 600 black-white images, 25 × 25, mean intensity
0, variance 1.
Images obtained from Olivetti Faces database of images 64 × 64 using
standard transformations.

I 103 500 training set, 20 700 validation, 41 400 test
I Network: 2000-100-500-30, training using layered RBM.

Notes:
Training of the lowest layer (2000 neurons): Values of pixels distorted
using Gaussian noise, low learning rate: 0.001, 200 iterations
Training all hidden layers: Values of neurons are binary.

Training of output layer: Values computed directly using the sigmoid
activation functions + noise. That is, values of output neurons are
from the interval [0,1].
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Images – fine-tuning

I Stochastic activation substituted with deterministic.
That is the value of hidden neurons is not chosen randomly but directly
computed by application of sigmoid on the inner potential (this gives the
mean activation).

I Backpropagation.
I Error function: cross-entropy

−

∑
i

pi ln p̂i −
∑

i

(1 − pi) ln(1 − p̂i)

here pi is the intensity of i-th pixel of the input and p̂i of
the reconstruction.
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Results

1. Original
2. Reconstruction using deep networks (reduction to 30-dim)
3. Reconstruction using PCA (reduction to 30-dim)
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Generative adversarial networks

Generative adversarial Nets, Goodfellow et al, NIPS 2014

An unsupervised generative model.

Two networks:
I Generator: A network computing a function G : Rk

→ Rn

which takes a random input z with a distribution pz
(e.g. multivariate normal distribution) and returns G(z)
which should follow the target probability distribution.
E.g. G(z) could be realistically looking faces.

I Discriminator: A network computing a function
D : Rn

→ [0,1] that given x ∈ Rn gives a probability D(x)
that x is not "generated" by G.
E.g. x can be an image, D(x) is a probability that it is a true face of an
existing person.

What error function will "motivate" G to generate realistically
and D to discriminate appropriately?
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Generative adversarial networks – error function

Let T = {~x1, . . . , ~xp} be a training multiset (or a minibatch).

Intuition: G should produce outputs similar to elements of T .
D should recognize that its input is not from T .

Generate a multiset of noise samples: F = {~z1, . . . , ~zp} from
the distribution pz .

ET ,F (G,D) = −
1
p

p∑
i=1

(
ln D(~x1) + ln(1 − D(G(~z1)))

)
This is just the binary cross entropy error of D which classifies the input as
either real, or fake.

The problem can be seen as a game: The discriminator wants
to minimize E, the generator wants to maximize E!
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The learning algorithm
Denote by WG and WD the weights of G and D, respectively.

In every iteration of the training, modify weights of the discriminator
and the generator as follows:

For k steps (here k is a hyperparameter) update the discriminator as
follows:
I Sample a minibatch T = {~x1, . . . , ~xm} from the training set T .
I Sample a minibatch F = {~z1, . . . , ~zm} from the distribution pz .
I Update WD using the gradient descent w.r.t. E:

WD := WD − α · ∇WD ET ,F (G,D)

Now update the generator:
I Sample a minibatch F = {~z1, . . . , ~zm} from the distribution pz .
I Update the generator by gradient descent:

WG := WG − α · ∇WG

1
p

p∑
i=1

ln(1 − D(G(~z1)))


(The updates may also use momentum, adaptive learning rate etc.)
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GAN MNIST
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GAN faces

... from the original paper.
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GAN refined

... after some refinements.

... none of these people ever lived.
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