Recurrent Neural Networks - LSTM

216

QuUTPUT
> Input:
)_() = (X1 XM)
— » Hidden:
HIDDEN A= (hi,..., hn)
» QOutput:
}7 = (y1 ----- yN)

INPUT

217

Activation function:

1 &0
0(5)_{0 £<0

1140 4% N4+ (-1)-0 =0
04 v(=2) A% (=a\a 4 N0=-2

218

Activation function:

1 ezo0
G(‘S)_{o E<0

U S S
o=1(0,0) hy=(1,1) ho=(1,0) h3=(0,1)
X1 =(0,0) Xo=(1,0) Xz3=(1,1)

218

2218 %

—~ —~
o o
-
O ——

A &

218

RNN - formally

> Minputs: X = (Xq,...,Xm)
> H hidden neurons: h = (hy,..., hy)
» N output neurons: y = (y1,..., ¥n)

> Weights:

> U from input xi to hidden hg
» Wi from hidden hy to hidden hg
> Vi from hidden hy. to output yk

219

=2 =2
> Input sequence: X = Xy,...,XT

Xt = (Xt1, .-, Xtm)

220

RNN - formally
> Input sequence: X = Xy,..., X1

)_()t:(xth---,XtM)

> Hidden sequence: h = Fro, FH,...,F)T
At = (he1, - .., hy)

We have hy = (0,...,0) and

M H

,
hx =0 Z Uk Xtkr + Wik h(t-1)k-
k=1 k=1

220

RNN - formally
> Input sequence: X = Xy,..., X1

)_()t:(xth---/XtM)

> Hidden sequence: h = Fro, FH,...,F)T
e = (1, ...,)
We have ﬁo =(0,...,0)and
B M H
hy =0 Z Uik Xtk + Z Wik ht-1)k
k=1 k=1
» Output sequence: y = yi,..., YT
Vi = (Vt1, -, YiN)
_ H
Where }/tk =0 (Zk':‘l ka/ htk/).

220

» Input sequence: X = Xi,..., Xt

221

» Input sequence: X = Xi,..., Xt
. > o -
» Hidden sequence: h = hg, hy, ..., ht where

and

At = o(U; + Why_y)

221

RNN — in matrix form

=2 =2
> Input sequence: X = X1,..., XT
. - o —>
» Hidden sequence: h = hg, hy, ..., ht where

ho = (0,...,0)
and

At = o(USe + Why_q)

» Output sequence: y = i, ..., Yt where

yt = o(Vhy)

221

RNN - Comments

>

>

F)t is the memory of the network, captures what happened
in all previous steps (with decaying quality).

RNN shares weights U, V, W along the sequence.

Note the similarity to convolutional networks where the weights were
shared spatially over images, here they are shared temporally over
sequences.

RNN can deal with sequences of variable length.
Compare with MLP which accepts only fixed-dimension vectors on
input.

222

RNN - training

Training set
T ={(x1,d1),..., (Xp, ¥p)}
here
> each X; = X1,..., X7, is an input sequence,

» eachd;, = 351, ey 3”{ is an expected output sequence.

Here each X;t = (X¢t1,. .., Xetm) iS @an input vector and each
3“ = (dgt1,--.,den) is an expected output vector.

223

Error function

In what follows | will consider a training set with a single
element (x,d). l.e. drop the index £ and have

> X = Xi,..., X7 where Xt = (X¢1,..., Xm)
- - -
» d=d,...,dr where d; = (di,...,di)

The squared error of (x,d) is defined by

.
:ZZ (Vi — du)?

t=1 k=1

—_

Recall that we have a sequence of network outputs
Y = V1,...,y7 and thus yy is the k-th component of y;

Gradient descent (single training example)

Consider a single training example (x, d).

The algorithm computes a sequence of weight matrices as
follows:

225

Gradient descent (single training example)

Consider a single training example (x, d).

The algorithm computes a sequence of weight matrices as
follows:

» Initialize all weights randomly close to 0.

225

Gradient descent (single training example)

Consider a single training example (x, d).
The algorithm computes a sequence of weight matrices as
follows:

» Initialize all weights randomly close to 0.

» Inthestep{+ 1 (here { =0,1,2,...) compute "new"
weights U1, v W) from the "old" weights
U, v W as follows:

OE
(e+1) 40 (x.d)
Ukk' - Ukk/ —e&(l) - 5Urr
OE,
(e+1) /() (x.d)
Vi~ = Vi —€(0)- Vi
0E(xa)

(t+1) _ w0
Wi ™ = Wy —e(0)- W

225

Gradient descent (single training example)

Consider a single training example (x, d).
The algorithm computes a sequence of weight matrices as
follows:

» Initialize all weights randomly close to 0.

» Inthestep{+ 1 (here { =0,1,2,...) compute "new"
weights U1, v W) from the "old" weights
U, v W as follows:

=
(e+1) 40 (x.d)
Uge " = Ugo —e(0) - 5Urr
OE,
(t+1) /(0 (xd)
Vi~ = Vi —€(0)- Vi
OE,
(e4+1) (0 (xd)
Wi " = Wao =) S

The above is THE learning algorithm that modifies weights!
225

Computes the derivatives of E, no weights are modified!

226

Backpropagation

Computes the derivatives of E, no weights are modified!

0Exd) v OExd)

= co’ Xy kI:1,...,M
OUnk ; Ohi t
= _ZT:(SE“.)) o Y
Vi &= Oyw T
OExd)

! , k' =1,...,H

oWir tz: o’ - hi-1yk

Backpropagation

) ~ . . T
?ﬂﬁ (= D’(V'K\LM) Computes the derivatives of £, no weights are modified!

% 0Ewa) _ v OExa) ,
\ \V U -y She 0 i K'=1,...,M
W t=1
OE LY
w /g _________\X_/__'————;ﬁ —/%. (x’d) = Z (x’d) 'O-,'htk' k/ = 1/~~-/H
ﬂ/ j]'_”_,_}, 1 YAYN \)(J OVik = Oy
6(ux —+ \}Uﬂ‘/i/"fl\ O’(uyﬂﬁ ﬂ\/b) 5E(x,d) B i 5E(x,d) o' h K 1 H
b Wi L ohi (1)K =l
t=1
v |/ g Backpropagation:
0E(x,d) .
| 5y = Y — du (assuming squared error)
- _ th
a A N H
%/L A 7\/1} L+ 0E(x,a) _ 0E(x,a) o Ve + Z (xd) Wi
' Ohy = oy = Ny

226

Long-term dependencies

OExd) v~ 6E(xd

> Unless Y, o’ - Wk ~ 1, the gradient either vanishes, or
explodes.

> For alarge T (long-term dependency), the gradient
"deeper” in the past tends to be too small (large).

> A solution: LSTM

227

LSTM
(2, 4)o(%,1) < (23, 4°1)%,3)

Et = 5 o Gh(ét) OUtpUt

51290@ 1+1toCt memory

Ci = on(Wg-hiy + Ug-%) new memory contents
Ot = ag(W, - At + Us - Xt) output gate

? og(Ws - ht 1+ Us-xt) forget gate

it =

og(W;- ht 1+ Ui xt) input gate

> o is the component-wise product of vectors
> . is the matrix-vector product |

> op hyperbolic tangents (applied component-wise)
> og logistic sigmoid (aplied component-wise) ’___QC
228

>

E:
)
ﬂ@'—ﬂ

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

229

— -
t = Gt oon(Ct)
-

h
. o, - - > ~
to1 R ' = Ct = ft [e} Ct—1 —|— It [¢] Ct

X @ »

Ct = on(We - iy + Uc - %)
Ot = og(Wo - Ht—1 + U)?t)

fi = og(W; - hiot + Us - xt)
it = og(Wi- by + U - %)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

230

2 ¢ v.008 -

rowoy,

C,L-q : (S/(; 6}

(4’\-(%]4;0_};00@0'! ht = 6t 0 an(Ct)
é ?oCt 1 -|—ItoCt
: Ct = on(We - By + Ug - %)
hs S
Ot = 0g(Wo - hi_1 + Uy - Xt)

Te

= f= (Wf'ﬁt1+Uf'>5)
;; GQ(W ht 1+ Ui Xt)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

230

hy = 6t00h(5t)
ét:ﬁ‘oét—1 +7;°ét
= &t = on(We - h1 + Uc - %)

6t = Ug(Wo : Ht—1 + U)?t)
fi = ag(Ws - ey + Us - %)

= it =ag(Wi- hi—1 + U; - Xp)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

230

Ci—1

A = 8¢ o on(Cy)

- -
< :>Ct—ftOCt1+ItOCt

—)

%»e-)

= Cr=on(We - hi_1 + Ug - %)

6t = O'g(Wo ht 1+ Uo Xt)
fi= og(Ws - R4+ U - %)

>

=
=i = g(V\/i'Et—1+Ui‘)a)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

230

hey

=

=

L -

Cy, =(1,2,1)
ia
o

Bl
L}

-y

-

= (0, 13) by

= Fl)t = 6[o O'h(ét)
ét:ﬁ‘oét—1 +7;°ét
Ct = on(We - By + Ug - %)

fi = og(W; - hi_1 + Us- X))
it = ag(Wi - Pe_y + Uy~ %)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

230

LSTM - summary

» LSTM (almost) solves the vanishing gradient problem w.r.t.
the "internal" state of the network.

> Learns to control its own memory (via forget gate).
» Revolution in machine translation and text processing.

231

convolution + max pooling
nonlinearity

convolution + pooling layers fully connected layers Nx binary classification

(&) ®
—

J
N

232

Colorectal cancer outcome prediction

The problem: Predict 5-year survival probability from an image
of a small region of tumour tissue (1 mm diameter).

233

Colorectal cancer outcome prediction

The problem: Predict 5-year survival probability from an image
of a small region of tumour tissue (1 mm diameter).

Input: Digitized haematoxylin-eosin-stained
tumour tissue microarray samples.
Output: Estimated survival probability.

233

Colorectal cancer outcome prediction

The problem: Predict 5-year survival probability from an image
of a small region of tumour tissue (1 mm diameter).

Input: Digitized haematoxylin-eosin-stained
tumour tissue microarray samples.
Output: Estimated survival probability.

Data:

» Training set: 420 patients of Helsinki University Centre
Hospital, diagnosed with colorectal cancer, underwent
primary surgery.

> Test set: 182 patients

» Follow-up time and outcome known for each patient.

233

Colorectal cancer outcome prediction

The problem: Predict 5-year survival probability from an image
of a small region of tumour tissue (1 mm diameter).

Input: Digitized haematoxylin-eosin-stained
tumour tissue microarray samples.
Output: Estimated survival probability.

Data:

» Training set: 420 patients of Helsinki University Centre
Hospital, diagnosed with colorectal cancer, underwent
primary surgery.

> Test set: 182 patients

» Follow-up time and outcome known for each patient.

Human expert comparison:
> Histological grade assessed at the time of diagnosis.
> Visual Risk Score: Three pathologists classified to
high/low-risk categories (by majority vote).

Source: D. Bychkov et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Scientific
Reports, Nature, 2018.

L

Low High

Probability
of 5-year DSS

234

Probability
of 5-year DSS

Layer 1: 264 Istm cells
Layer 2: 128 Istm cells

\ Layer 3: 64 Istm cells
Probability of 5-year DSS

234

Data & workflow

» Input images: 3500 px x 3500 px
> Cut into tiles: 224 px x 224 px = 256 tiles
» Each tile pased to a convolutional network (CNN)
» Ouptut of CNN: 4096 dimensional vector.
> A "string" of 256 vectors (each of the dimension 4096)
pased into a LSTM.

> LSTM outputs the probability of 5-year survival.

235

Data & workflow

> Input images: 3500 px x 3500 px
> Cut into tiles: 224 px x 224 px = 256 tiles

» Each tile pased to a convolutional network (CNN)
» Ouptut of CNN: 4096 dimensional vector.

> A "string" of 256 vectors (each of the dimension 4096)
pased into a LSTM.

> LSTM outputs the probability of 5-year survival.

The authors also tried to substitute the LSTM on top of CNN
with

> logistic regression

> naive Bayes

» support vector machines

235

(None, 14, 14, 512)

(Pre)trained on ImageNet (cats, dogs, chairs, etc.)

236

» LSTM has three layers (264, 128, 64 cells)

sl dl sl (]
+ + + '
® — ® - 0 — - O Layer 1: 264 Istm cells
+ + + |
@ - 0 - 0 —

cee — @ Layer 2: 128 Istm cells

. - . - . - - . Layer 3: 64 Istm cells

= 8B

Probability of 5-year DSS

237

LSTM - training

v

L1 regularization (0.005) at each hidden layer of LSTM
i.e. 0.005 times the sum of absolute values of weights added to the error

L2 regularization (0.005) at each hidden layer of LSTM

i.e. 0.005 times the sum of squared values of weights added to the error

Dropout 5% at the input and the last hidden layers of LSTM

\4

v

v

Datasets:
> Training: 220 samples,
> Validation 60 samples,
> Test 140 samples.

238

@ LST™

® SWM

® Visual Risk Score on TMA Spots

@ Logistic Regression @ Naive Bayes ® Histological Grade on Whole-Slides

0.70
0.65
0.60
g 055
050
045

0.40

+++}

Medium
Resolution

Low
Resolution Reference

Source: D. Bychkov et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Scientific

Reports, Nature, 2018.

239

