Recurrent Neural Networks - LSTM
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QuUTPUT
> Input:
)_() = (X1 ..... XM)
— » Hidden:
HIDDEN A= (hi,..., hn)
» QOutput:
}7 = (y1 ----- yN)

INPUT
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Activation function:

1 &0
0(5)_{0 £<0

1140 4% N4+ (-1)-0 =0
04 v(=2) A% (=a\a 4 N0=-2
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Activation function:

1 ezo0
G(‘S)_{o E<0

U S S
o=1(0,0) hy=(1,1) ho=(1,0) h3=(0,1)
X1 =(0,0) Xo=(1,0) Xz3=(1,1)
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RNN - formally

> Minputs: X = (Xq,...,Xm)
> H hidden neurons: h = (hy,..., hy)
» N output neurons: y = (y1,..., ¥n)

> Weights:

> U from input xi to hidden hg
» Wi from hidden hy to hidden hg
> Vi from hidden hy. to output yk
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=2 =2
> Input sequence: X = Xy,...,XT

Xt = (Xt1, .-, Xtm)
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RNN - formally
> Input sequence: X = Xy,..., X1

)_()t:(xth---,XtM)

> Hidden sequence: h = Fro, FH,...,F)T
At = (he1, - .., hy)

We have hy = (0,...,0) and

M H

,
hx =0 Z Uk Xtkr + Wik h(t-1)k-
k=1 k=1
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RNN - formally
> Input sequence: X = Xy,..., X1

)_()t:(xth---/XtM)

> Hidden sequence: h = Fro, FH,...,F)T
e = (1, ..., )
We have ﬁo =(0,...,0)and
B M H
hy =0 Z Uik Xtk + Z Wik ht-1)k
k=1 k=1
» Output sequence: y = yi,..., YT
Vi = (Vt1, -, YiN)
_ H
Where }/tk =0 (Zk':‘l ka/ htk/).
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» Input sequence: X = Xi,..., Xt

221



» Input sequence: X = Xi,..., Xt
. > o -
» Hidden sequence: h = hg, hy, ..., ht where

and

At = o(U; + Why_y)
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RNN — in matrix form

=2 =2
> Input sequence: X = X1,..., XT
. - o —>
» Hidden sequence: h = hg, hy, ..., ht where

ho = (0,...,0)
and

At = o(USe + Why_q)

» Output sequence: y = i, ..., Yt where

yt = o(Vhy)
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RNN - Comments

>

>

F)t is the memory of the network, captures what happened
in all previous steps (with decaying quality).

RNN shares weights U, V, W along the sequence.

Note the similarity to convolutional networks where the weights were
shared spatially over images, here they are shared temporally over
sequences.

RNN can deal with sequences of variable length.
Compare with MLP which accepts only fixed-dimension vectors on
input.

222



RNN - training

Training set
T ={(x1,d1),..., (Xp, ¥p)}
here
> each X; = X1,..., X7, is an input sequence,

» eachd;, = 351, ey 3”{ is an expected output sequence.

Here each X;t = (X¢t1,. .., Xetm) iS @an input vector and each
3“ = (dgt1,--.,den) is an expected output vector.
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Error function

In what follows | will consider a training set with a single
element (x,d). l.e. drop the index £ and have

> X = Xi,..., X7 where Xt = (X¢1,..., Xm)
- - -
» d=d,...,dr where d; = (di,...,di)

The squared error of (x,d) is defined by

.
:ZZ (Vi — du)?

t=1 k=1

—_

Recall that we have a sequence of network outputs
Y = V1,...,y7 and thus yy is the k-th component of y;



Gradient descent (single training example)

Consider a single training example (x, d).

The algorithm computes a sequence of weight matrices as
follows:
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Consider a single training example (x, d).

The algorithm computes a sequence of weight matrices as
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» Initialize all weights randomly close to 0.

225



Gradient descent (single training example)

Consider a single training example (x, d).
The algorithm computes a sequence of weight matrices as
follows:

» Initialize all weights randomly close to 0.

» Inthestep{+ 1 (here { =0,1,2,...) compute "new"
weights U1, v W) from the "old" weights
U, v W as follows:

OE
(e+1) 40 (x.d)
Ukk' - Ukk/ —e&(l) - 5Urr
OE,
(e+1) /() (x.d)
Vi~ = Vi —€(0)- Vi
0E(xa)

(t+1) _ w0
Wi ™ = Wy —e(0)- W
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Gradient descent (single training example)

Consider a single training example (x, d).
The algorithm computes a sequence of weight matrices as
follows:

» Initialize all weights randomly close to 0.

» Inthestep{+ 1 (here { =0,1,2,...) compute "new"
weights U1, v W) from the "old" weights
U, v W as follows:

=
(e+1) 40 (x.d)
Uge " = Ugo —e(0) - 5Urr
OE,
(t+1) /(0 (xd)
Vi~ = Vi —€(0)- Vi
OE,
(e4+1) (0 (xd)
Wi " = Wao =) S

The above is THE learning algorithm that modifies weights!
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Computes the derivatives of E, no weights are modified!
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Backpropagation

Computes the derivatives of E, no weights are modified!

0Exd) v OExd)

= co’ Xy kI:1,...,M
OUnk ; Ohi t
= _ZT:(SE“.) ) o Y
Vi &= Oyw T
OExd)

! , k' =1,...,H

oWir tz: o’ - hi-1yk



Backpropagation

) ~ . . T
?ﬂﬁ (= D’(V'K\LM) Computes the derivatives of £, no weights are modified!

% 0Ewa) _ v OExa) ,
\ \V U -y She 0 i K'=1,...,M
W t=1
OE LY
w /g _________\X_/__'————;ﬁ —/%. (x’d) = Z (x’d) 'O-,'htk' k/ = 1/~~-/H
ﬂ/ j]'_”\_,_}, 1 YAYN \)(J OVik = Oy
6( ux —+ \}Uﬂ‘/i/"fl\ O’(uyﬂﬁ ﬂ\/b) 5E(x,d) B i 5E(x,d) o' h K 1 H
b Wi L ohi (1)K =l
t=1
v |/ g Backpropagation:
0E(x,d) .
| 5y = Y — du (assuming squared error)
- _ th
a A N H
%/L A 7\/1} L+ 0E(x,a) _ 0E(x,a) o Ve + Z (xd) Wi
' Ohy = oy = Ny
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Long-term dependencies

OExd) v~ 6E(xd

> Unless Y, o’ - Wk ~ 1, the gradient either vanishes, or
explodes.

> For alarge T (long-term dependency), the gradient
"deeper” in the past tends to be too small (large).

> A solution: LSTM
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LSTM
(2, 4)o(%,1) < (23, 4°1)%,3)

Et = 5 o Gh(ét) OUtpUt

51290@ 1+1toCt memory

Ci = on(Wg-hiy + Ug-%)  new memory contents
Ot = ag(W, - At + Us - Xt) output gate

? og(Ws - ht 1+ Us-xt) forget gate

it =

og(W;- ht 1+ Ui xt) input gate

> o is the component-wise product of vectors
> . is the matrix-vector product |

> op hyperbolic tangents (applied component-wise)
> og logistic sigmoid (aplied component-wise) ’___QC
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>

E:
)
ﬂ@'—ﬂ

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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— -
t = Gt oon(Ct)
-

h
. o, - - > ~
to1 R ' = Ct = ft [e} Ct—1 —|— It [¢] Ct

X @ »

Ct = on(We - iy + Uc - %)
Ot = og(Wo - Ht—1 + U )?t)

fi = og(W; - hiot + Us - xt)
it = og(Wi- by + U - %)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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2 ¢ v.008 -

rowoy,

C,L-q : (S/(; 6}

(4’\-(%]4;0_};00@0'! ht = 6t 0 an(Ct)
é ?oCt 1 -|—ItoCt
: Ct = on(We - By + Ug - %)
hs S
Ot = 0g(Wo - hi_1 + Uy - Xt)

Te

= f= (Wf'ﬁt1+Uf'>5)
;; GQ(W ht 1+ Ui Xt)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

230



hy = 6t00h(5t)
ét:ﬁ‘oét—1 +7;°ét
= &t = on(We - h1 + Uc - %)

6t = Ug(Wo : Ht—1 + U )?t)
fi = ag(Ws - ey + Us - %)

= it =ag(Wi- hi—1 + U; - Xp)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Ci—1

A = 8¢ o on(Cy)

- -
< :>Ct—ftOCt1+ItOCt

— )

%»e-)

= Cr=on(We - hi_1 + Ug - %)

6t = O'g(Wo ht 1+ Uo Xt)
fi= og(Ws - R4+ U - %)

>

=
=i = g(V\/i'Et—1+Ui‘)a)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Cy, =(1,2,1)
ia
o

Bl
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= (0, 13) by

= Fl)t = 6[ o O'h(ét)
ét:ﬁ‘oét—1 +7;°ét
Ct = on(We - By + Ug - %)

fi = og(W; - hi_1 + Us- X))
it = ag(Wi - Pe_y + Uy~ %)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM - summary

» LSTM (almost) solves the vanishing gradient problem w.r.t.
the "internal" state of the network.

> Learns to control its own memory (via forget gate).
» Revolution in machine translation and text processing.
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convolution + max pooling
nonlinearity

convolution + pooling layers fully connected layers  Nx binary classification
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Colorectal cancer outcome prediction

The problem: Predict 5-year survival probability from an image
of a small region of tumour tissue (1 mm diameter).
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Colorectal cancer outcome prediction

The problem: Predict 5-year survival probability from an image
of a small region of tumour tissue (1 mm diameter).

Input: Digitized haematoxylin-eosin-stained
tumour tissue microarray samples.
Output: Estimated survival probability.

Data:

» Training set: 420 patients of Helsinki University Centre
Hospital, diagnosed with colorectal cancer, underwent
primary surgery.

> Test set: 182 patients

» Follow-up time and outcome known for each patient.

Human expert comparison:
> Histological grade assessed at the time of diagnosis.
> Visual Risk Score: Three pathologists classified to
high/low-risk categories (by majority vote).

Source: D. Bychkov et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Scientific
Reports, Nature, 2018.
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Probability
of 5-year DSS

Layer 1: 264 Istm cells
Layer 2: 128 Istm cells

\ Layer 3: 64 Istm cells
Probability of 5-year DSS
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Data & workflow

» Input images: 3500 px x 3500 px
> Cut into tiles: 224 px x 224 px = 256 tiles
» Each tile pased to a convolutional network (CNN)
» Ouptut of CNN: 4096 dimensional vector.
> A "string" of 256 vectors (each of the dimension 4096)
pased into a LSTM.

> LSTM outputs the probability of 5-year survival.
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Data & workflow

> Input images: 3500 px x 3500 px
> Cut into tiles: 224 px x 224 px = 256 tiles

» Each tile pased to a convolutional network (CNN)
» Ouptut of CNN: 4096 dimensional vector.

> A "string" of 256 vectors (each of the dimension 4096)
pased into a LSTM.

> LSTM outputs the probability of 5-year survival.

The authors also tried to substitute the LSTM on top of CNN
with

> logistic regression

> naive Bayes

» support vector machines

235



(None, 14, 14, 512)

(Pre)trained on ImageNet (cats, dogs, chairs, etc.)
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» LSTM has three layers (264, 128, 64 cells)

sl dl sl (]
+ + + '
® — ® - 0 — - O Layer 1: 264 Istm cells
+ + + |
@ - 0 - 0 —

cee — @ Layer 2: 128 Istm cells

. - . - . - - . Layer 3: 64 Istm cells

= 8B

Probability of 5-year DSS
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LSTM - training

v

L1 regularization (0.005) at each hidden layer of LSTM
i.e. 0.005 times the sum of absolute values of weights added to the error

L2 regularization (0.005) at each hidden layer of LSTM

i.e. 0.005 times the sum of squared values of weights added to the error

Dropout 5% at the input and the last hidden layers of LSTM

\4

v

v

Datasets:
> Training: 220 samples,
> Validation 60 samples,
> Test 140 samples.
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@ LST™

® SWM

® Visual Risk Score on TMA Spots

@ Logistic Regression @ Naive Bayes ® Histological Grade on Whole-Slides
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Source: D. Bychkov et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Scientific

Reports, Nature, 2018.
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