
What about classification?

Binary classification: Desired outputs 0 and 1.

Ideally, capture the probability distribution of classes.
14

What about classification?

Binary classification: Desired outputs 0 and 1.

... does not capture probability well (it is not a probability at all)
14

What about classification?

Binary classification: Desired outputs 0 and 1.

... logistic sigmoid 1
1+e−(~w·~x)

is much better!
14

Logistic regression

x1 x2 xn

· · ·

y

~x0 = 1
w0

w1 w2 wn

~w = (w0,w1, . . . ,wn) and ~x = (x0, x1, . . . , xn) where x0 = 1.

Activity:
I inner potential: ξ = w0 +

∑n
i=1 wixi =

∑n
i=0 wixi = ~w · ~x

I activation function: σ(ξ) = 1
1+e−ξ

I network function: y[~w](~x) = σ(ξ) = 1
1+e−(~w·~x)

Intuition: The output y is now interpreted as the probability of the class 1
given the input ~x.

15

But what is the meaning of the sigmoid?

The model gives a probability y of the class 1 given an input ~x.
But why we model such a probability using 1/(1 + e−~w·~x) ??

16

But what is the meaning of the sigmoid?

The model gives a probability y of the class 1 given an input ~x.
But why we model such a probability using 1/(1 + e−~w·~x) ??

Let ŷ be the "true" probability of the class 1 to be modeled.
What about odds of the class 1?

odds(ŷ) = ŷ/1 − ŷ

Resembles an exponential function ...
16

But what is the meaning of the sigmoid?

The model gives a probability y of the class 1 given an input ~x.
But why we model such a probability using 1/(1 + e−~w·~x) ??

Let ŷ be the "true" probability of the class 1 to be modeled.
What about log odds (aka logit) of the class 1?

logit(ŷ) = log(ŷ/(1 − ŷ))

Looks almost linear ...
16

But what is the meaning of the sigmoid?

Assume that ŷ is the probability of the class 1. Put

log(ŷ/(1 − ŷ)) = ~w · ~x

Then

log((1 − ŷ)/ŷ) = −~w · ~x

and

(1 − ŷ)/ŷ = e−~w·~x

and

ŷ =
1

1 + e−~w·~x

That is, if we model log odds using a linear function, the probability is
obtained by applying the logistic sigmoid on the result of the linear function.

17

But what is the meaning of the sigmoid?

Assume that ŷ is the probability of the class 1. Put

log(ŷ/(1 − ŷ)) = ~w · ~x

Then

log((1 − ŷ)/ŷ) = −~w · ~x

and

(1 − ŷ)/ŷ = e−~w·~x

and

ŷ =
1

1 + e−~w·~x

That is, if we model log odds using a linear function, the probability is
obtained by applying the logistic sigmoid on the result of the linear function.

17

But what is the meaning of the sigmoid?

Assume that ŷ is the probability of the class 1. Put

log(ŷ/(1 − ŷ)) = ~w · ~x

Then

log((1 − ŷ)/ŷ) = −~w · ~x

and

(1 − ŷ)/ŷ = e−~w·~x

and

ŷ =
1

1 + e−~w·~x

That is, if we model log odds using a linear function, the probability is
obtained by applying the logistic sigmoid on the result of the linear function.

17

But what is the meaning of the sigmoid?

Assume that ŷ is the probability of the class 1. Put

log(ŷ/(1 − ŷ)) = ~w · ~x

Then

log((1 − ŷ)/ŷ) = −~w · ~x

and

(1 − ŷ)/ŷ = e−~w·~x

and

ŷ =
1

1 + e−~w·~x

That is, if we model log odds using a linear function, the probability is
obtained by applying the logistic sigmoid on the result of the linear function.

17

Logistic regression

Learning:
I Given a training dataset

T =
{(
~x1,d1

)
,
(
~x2,d2

)
, . . . ,

(
~xp ,dp

)}
Here ~xk = (xk0, xk1 . . . , xkn) ∈ Rn+1, xk0 = 1, is the k -th
input, and dk ∈ {0,1} is the expected output.

What error function?

(Binary) cross-entropy:

E(~w) =

p∑
k=1

−(dk log(yk) + (1 − dk) log(1 − yk))

What?!?

18

Logistic regression

Learning:
I Given a training dataset

T =
{(
~x1,d1

)
,
(
~x2,d2

)
, . . . ,

(
~xp ,dp

)}
Here ~xk = (xk0, xk1 . . . , xkn) ∈ Rn+1, xk0 = 1, is the k -th
input, and dk ∈ {0,1} is the expected output.

What error function?

(Binary) cross-entropy:

E(~w) =

p∑
k=1

−(dk log(yk) + (1 − dk) log(1 − yk))

What?!?

18

Log likelihood is your friend!

I Let’s have a "coin" (sides 0 and 1).

I The probability of 1 is ŷ and is unknown!
I You have tossed the coin 5 times and got a training

dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Consider this to be a very special case where the input dimension is 0

I What is the best model y of ŷ based on the data?
Answer: The one that generates the data with maximum
probability!

19

Log likelihood is your friend!

I Let’s have a "coin" (sides 0 and 1).
I The probability of 1 is ŷ and is unknown!

I You have tossed the coin 5 times and got a training
dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Consider this to be a very special case where the input dimension is 0

I What is the best model y of ŷ based on the data?
Answer: The one that generates the data with maximum
probability!

19

Log likelihood is your friend!

I Let’s have a "coin" (sides 0 and 1).
I The probability of 1 is ŷ and is unknown!
I You have tossed the coin 5 times and got a training

dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Consider this to be a very special case where the input dimension is 0

I What is the best model y of ŷ based on the data?
Answer: The one that generates the data with maximum
probability!

19

Log likelihood is your friend!

I Let’s have a "coin" (sides 0 and 1).
I The probability of 1 is ŷ and is unknown!
I You have tossed the coin 5 times and got a training

dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Consider this to be a very special case where the input dimension is 0

I What is the best model y of ŷ based on the data?

Answer: The one that generates the data with maximum
probability!

19

Log likelihood is your friend!

I Let’s have a "coin" (sides 0 and 1).
I The probability of 1 is ŷ and is unknown!
I You have tossed the coin 5 times and got a training

dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Consider this to be a very special case where the input dimension is 0

I What is the best model y of ŷ based on the data?
Answer: The one that generates the data with maximum
probability!

19

Log likelihood is your friend!

Keep in mind our dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Assume that the data was generated by independent trials,
then the probability of getting exactly T from our model is

L = y · y · (1 − y) · (1 − y) · y

How to maximize this w.r.t. y?

Maximize

LL = log(L) = log(y)+log(y)+log(1−y)+log(1−y)+log(y)

But then

−LL = −1·log(y)−1·log(y)−(1−0)·log(1−y)−(1−0)·log(1−y)−1·log(y)

i.e. −LL is the cross-entropy.

20

Log likelihood is your friend!

Keep in mind our dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Assume that the data was generated by independent trials,
then the probability of getting exactly T from our model is

L = y · y · (1 − y) · (1 − y) · y

How to maximize this w.r.t. y?

Maximize

LL = log(L) = log(y)+log(y)+log(1−y)+log(1−y)+log(y)

But then

−LL = −1·log(y)−1·log(y)−(1−0)·log(1−y)−(1−0)·log(1−y)−1·log(y)

i.e. −LL is the cross-entropy.

20

Log likelihood is your friend!

Keep in mind our dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Assume that the data was generated by independent trials,
then the probability of getting exactly T from our model is

L = y · y · (1 − y) · (1 − y) · y

How to maximize this w.r.t. y?

Maximize

LL = log(L) = log(y)+log(y)+log(1−y)+log(1−y)+log(y)

But then

−LL = −1·log(y)−1·log(y)−(1−0)·log(1−y)−(1−0)·log(1−y)−1·log(y)

i.e. −LL is the cross-entropy.

20

Log likelihood is your friend!

Keep in mind our dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Assume that the data was generated by independent trials,
then the probability of getting exactly T from our model is

L = y · y · (1 − y) · (1 − y) · y

How to maximize this w.r.t. y?

Maximize

LL = log(L) = log(y)+log(y)+log(1−y)+log(1−y)+log(y)

But then

−LL = −1·log(y)−1·log(y)−(1−0)·log(1−y)−(1−0)·log(1−y)−1·log(y)

i.e. −LL is the cross-entropy.
20

Let the coin depend on the input

Consider our model:

y =
1

1 + e−(~w·~x)

The training dataset is now standard:

T =
{(
~x1,d1

)
,
(
~x2,d2

)
, . . . ,

(
~xp ,dp

)}
Here ~xk = (xk0, xk1 . . . , xkn) ∈ Rn+1, xk0 = 1, is the k -th input,
and dk ∈ {0,1} is the expected output.

The likelihood:

L =

p∏
k=1

ydk
k · (1 − yk)(1−dk)

and LL = log(L) =
∑p

k=1(dk log(yk) + (1 − dk) log(1 − yk))
and thus −LL = the cross-entropy.

Minimizing the cross-netropy maximizes the log-likelihood
(and vice versa).

21

Let the coin depend on the input

Consider our model:

y =
1

1 + e−(~w·~x)

The training dataset is now standard:

T =
{(
~x1,d1

)
,
(
~x2,d2

)
, . . . ,

(
~xp ,dp

)}
Here ~xk = (xk0, xk1 . . . , xkn) ∈ Rn+1, xk0 = 1, is the k -th input,
and dk ∈ {0,1} is the expected output.

The likelihood:

L =

p∏
k=1

ydk
k · (1 − yk)(1−dk)

and LL = log(L) =
∑p

k=1(dk log(yk) + (1 − dk) log(1 − yk))
and thus −LL = the cross-entropy.

Minimizing the cross-netropy maximizes the log-likelihood
(and vice versa).

21

Let the coin depend on the input

Consider our model:

y =
1

1 + e−(~w·~x)

The training dataset is now standard:

T =
{(
~x1,d1

)
,
(
~x2,d2

)
, . . . ,

(
~xp ,dp

)}
Here ~xk = (xk0, xk1 . . . , xkn) ∈ Rn+1, xk0 = 1, is the k -th input,
and dk ∈ {0,1} is the expected output.

The likelihood:

L =

p∏
k=1

ydk
k · (1 − yk)(1−dk)

and LL = log(L) =
∑p

k=1(dk log(yk) + (1 − dk) log(1 − yk))
and thus −LL = the cross-entropy.

Minimizing the cross-netropy maximizes the log-likelihood
(and vice versa). 21

Normal Distribution

Distribution of continuous random variables.

Density (one dimensional, that is over R):

p(x) =
1

σ
√

2π
exp

{
−

(x − µ)2

2σ2

}
=: N[µ, σ2](x)

µ is the expected value (the mean), σ2 is the variance.

22

Maximum Likelihood vs Least Squares (Dim 1)
Fix a training set D =

{
(x1,d1) , (x2,d2) , . . . ,

(
xp ,dp

)}

Assume that each dk has been generated randomly by

dk = (w0 + w1 · xk) + εk

I w0,w1 are unknown numbers
I εk are normally distributed with mean 0 and an unknown

variance σ2

23

Maximum Likelihood vs Least Squares (Dim 1)
Fix a training set D =

{
(x1,d1) , (x2,d2) , . . . ,

(
xp ,dp

)}
Assume that each dk has been generated randomly by

dk = (w0 + w1 · xk) + εk

I w0,w1 are unknown numbers
I εk are normally distributed with mean 0 and an unknown

variance σ2

23

Maximum Likelihood vs Least Squares (Dim 1)

Keep in mind:

dk = (w0 + w1 · xk) + εk

Assume that ε1, . . . , εp were generated independently.

Denote by p(d1, . . . ,dp | w0,w1, σ2) the probability density
according to which the values d1, . . . ,dn were generated
assuming fixed w0,w1, σ2, x1, . . . , xp.
The independence and normality imply

p(d1, . . . ,dp | w0,w1, σ
2) =

p∏
k=1

N[w0 + w1xk , σ
2](dk)

=

p∏
k=1

1

σ
√

2π
exp

{
−
(dk − w0 − w1xk)

2

2σ2

}

24

Maximum Likelihood vs Least Squares (Dim 1)

Keep in mind:

dk = (w0 + w1 · xk) + εk

Assume that ε1, . . . , εp were generated independently.

Denote by p(d1, . . . ,dp | w0,w1, σ2) the probability density
according to which the values d1, . . . ,dn were generated
assuming fixed w0,w1, σ2, x1, . . . , xp.

The independence and normality imply

p(d1, . . . ,dp | w0,w1, σ
2) =

p∏
k=1

N[w0 + w1xk , σ
2](dk)

=

p∏
k=1

1

σ
√

2π
exp

{
−
(dk − w0 − w1xk)

2

2σ2

}

24

Maximum Likelihood vs Least Squares (Dim 1)

Keep in mind:

dk = (w0 + w1 · xk) + εk

Assume that ε1, . . . , εp were generated independently.

Denote by p(d1, . . . ,dp | w0,w1, σ2) the probability density
according to which the values d1, . . . ,dn were generated
assuming fixed w0,w1, σ2, x1, . . . , xp.
The independence and normality imply

p(d1, . . . ,dp | w0,w1, σ
2) =

p∏
k=1

N[w0 + w1xk , σ
2](dk)

=

p∏
k=1

1

σ
√

2π
exp

{
−
(dk − w0 − w1xk)

2

2σ2

}

24

Maximum Likelihood vs Least Squares

Our goal is to find (w0,w1) that maximizes the likelihood that the
training set D with fixed values d1, . . . ,dn has been generated:

L(w0,w1, σ
2) := p(d1, . . . ,dp | w0,w1, σ

2)

Theorem
(w0,w1) maximizes L(w0,w1, σ2) for arbitrary σ2 iff (w0,w1)
minimizes squared error E(w0,w1) =

∑p
k=1(dk − w0 − w1xk)2.

Note that the maximizing/minimizing (w0,w1) does not depend
on σ2.

Maximizing σ2 satisfies σ2 = 1
p
∑p

k=1(dk − w0 − w1 · xk)2.

25

Maximum Likelihood vs Least Squares

Our goal is to find (w0,w1) that maximizes the likelihood that the
training set D with fixed values d1, . . . ,dn has been generated:

L(w0,w1, σ
2) := p(d1, . . . ,dp | w0,w1, σ

2)

Theorem
(w0,w1) maximizes L(w0,w1, σ2) for arbitrary σ2 iff (w0,w1)
minimizes squared error E(w0,w1) =

∑p
k=1(dk − w0 − w1xk)2.

Note that the maximizing/minimizing (w0,w1) does not depend
on σ2.

Maximizing σ2 satisfies σ2 = 1
p
∑p

k=1(dk − w0 − w1 · xk)2.

25

Maximum Likelihood vs Least Squares

Our goal is to find (w0,w1) that maximizes the likelihood that the
training set D with fixed values d1, . . . ,dn has been generated:

L(w0,w1, σ
2) := p(d1, . . . ,dp | w0,w1, σ

2)

Theorem
(w0,w1) maximizes L(w0,w1, σ2) for arbitrary σ2 iff (w0,w1)
minimizes squared error E(w0,w1) =

∑p
k=1(dk − w0 − w1xk)2.

Note that the maximizing/minimizing (w0,w1) does not depend
on σ2.

Maximizing σ2 satisfies σ2 = 1
p
∑p

k=1(dk − w0 − w1 · xk)2.

25

Maximum Likelihood vs Least Squares

Our goal is to find (w0,w1) that maximizes the likelihood that the
training set D with fixed values d1, . . . ,dn has been generated:

L(w0,w1, σ
2) := p(d1, . . . ,dp | w0,w1, σ

2)

Theorem
(w0,w1) maximizes L(w0,w1, σ2) for arbitrary σ2 iff (w0,w1)
minimizes squared error E(w0,w1) =

∑p
k=1(dk − w0 − w1xk)2.

Note that the maximizing/minimizing (w0,w1) does not depend
on σ2.

Maximizing σ2 satisfies σ2 = 1
p
∑p

k=1(dk − w0 − w1 · xk)2.

25

MLP training – theory

26

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
I Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

I layers numbered from 0; the
input layer has number 0
I E.g. three-layer network has

two hidden layers and one
output layer

I Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

I Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

27

MLP – architecture

Notation:
I Denote

I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

28

MLP – architecture

Notation:
I Denote

I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops

I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

28

MLP – architecture

Notation:
I Denote

I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)

I wji is the weight of the connection from i to j
(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

28

MLP – architecture

Notation:
I Denote

I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

28

MLP – architecture

Notation:
I Denote

I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

28

MLP – architecture

Notation:
I Denote

I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

28

MLP – activity

Activity:
I inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

I activation function σj for neuron j (arbitrary differentiable)
[e.g. logistic sigmoid σj(ξ) = 1

1+e−λjξ
]

I State of non-input neuron j ∈ Z \ X after the computation
stops:

yj = σj(ξj)

(yj depends on the configuration ~w and the input ~x, so we sometimes
write yj(~w, ~x))

I The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the `-th step,
all neurons of the `-th layer are evaluated.

29

MLP – activity

Activity:
I inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

I activation function σj for neuron j (arbitrary differentiable)
[e.g. logistic sigmoid σj(ξ) = 1

1+e−λjξ
]

I State of non-input neuron j ∈ Z \ X after the computation
stops:

yj = σj(ξj)

(yj depends on the configuration ~w and the input ~x, so we sometimes
write yj(~w, ~x))

I The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the `-th step,
all neurons of the `-th layer are evaluated.

29

MLP – activity

Activity:
I inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

I activation function σj for neuron j (arbitrary differentiable)
[e.g. logistic sigmoid σj(ξ) = 1

1+e−λjξ
]

I State of non-input neuron j ∈ Z \ X after the computation
stops:

yj = σj(ξj)

(yj depends on the configuration ~w and the input ~x, so we sometimes
write yj(~w, ~x))

I The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the `-th step,
all neurons of the `-th layer are evaluated.

29

MLP – activity

Activity:
I inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

I activation function σj for neuron j (arbitrary differentiable)
[e.g. logistic sigmoid σj(ξ) = 1

1+e−λjξ
]

I State of non-input neuron j ∈ Z \ X after the computation
stops:

yj = σj(ξj)

(yj depends on the configuration ~w and the input ~x, so we sometimes
write yj(~w, ~x))

I The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the `-th step,
all neurons of the `-th layer are evaluated.

29

MLP – learning

Learning:
I Given a training set T of the form{ (

~xk , ~dk

) ∣∣∣ k = 1, . . . ,p
}

Here, every ~xk ∈ R
|X | is an input vector end every ~dk ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input ~xk (the vector ~dk can be written as

(
dkj

)
j∈Y

).

I Error function:

E(~w) =

p∑
k=1

Ek (~w)

where

Ek (~w) =
1
2

∑
j∈Y

(
yj(~w, ~xk) − dkj

)2

30

MLP – learning

Learning:
I Given a training set T of the form{ (

~xk , ~dk

) ∣∣∣ k = 1, . . . ,p
}

Here, every ~xk ∈ R
|X | is an input vector end every ~dk ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input ~xk (the vector ~dk can be written as

(
dkj

)
j∈Y

).

I Error function:

E(~w) =

p∑
k=1

Ek (~w)

where

Ek (~w) =
1
2

∑
j∈Y

(
yj(~w, ~xk) − dkj

)2

30

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2),
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂E
∂wji

(~w(t))

is a weight update of wji in step t + 1 and 0 < ε(t) ≤ 1 is
a learning rate in step t + 1.

Note that ∂E
∂wji

(~w(t)) is a component of the gradient ∇E, i.e. the weight update
can be written as ~w(t+1) = ~w(t)

− ε(t) · ∇E(~w(t)).

31

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2),
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂E
∂wji

(~w(t))

is a weight update of wji in step t + 1 and 0 < ε(t) ≤ 1 is
a learning rate in step t + 1.

Note that ∂E
∂wji

(~w(t)) is a component of the gradient ∇E, i.e. the weight update
can be written as ~w(t+1) = ~w(t)

− ε(t) · ∇E(~w(t)).

31

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2),
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂E
∂wji

(~w(t))

is a weight update of wji in step t + 1 and 0 < ε(t) ≤ 1 is
a learning rate in step t + 1.

Note that ∂E
∂wji

(~w(t)) is a component of the gradient ∇E, i.e. the weight update
can be written as ~w(t+1) = ~w(t)

− ε(t) · ∇E(~w(t)).
31

MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z r X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj for j ∈ Z r (Y ∪ X)

(Here all yj are in fact yj(~w, ~xk)).

32

MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z r X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj for j ∈ Z r (Y ∪ X)

(Here all yj are in fact yj(~w, ~xk)).

32

MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z r X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj for j ∈ Z r (Y ∪ X)

(Here all yj are in fact yj(~w, ~xk)).

32

MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z r X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj for j ∈ Z r (Y ∪ X)

(Here all yj are in fact yj(~w, ~xk)).
32

MLP – error function gradient

I If σj(ξ) = 1
1+e−λjξ

for all j ∈ Z , then

σ′j (ξj) = λjyj(1 − yj)

and thus for all j ∈ Z r X :

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· λryr (1 − yr) · wrj for j ∈ Z r (Y ∪ X)

I If σj(ξ) = a · tanh(b · ξj) for all j ∈ Z , then

σ′j (ξj) =
b
a

(a − yj)(a + yj)

33

MLP – error function gradient

I If σj(ξ) = 1
1+e−λjξ

for all j ∈ Z , then

σ′j (ξj) = λjyj(1 − yj)

and thus for all j ∈ Z r X :

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· λryr (1 − yr) · wrj for j ∈ Z r (Y ∪ X)

I If σj(ξ) = a · tanh(b · ξj) for all j ∈ Z , then

σ′j (ξj) =
b
a

(a − yj)(a + yj)

33

MLP – error function gradient

I If σj(ξ) = 1
1+e−λjξ

for all j ∈ Z , then

σ′j (ξj) = λjyj(1 − yj)

and thus for all j ∈ Z r X :

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· λryr (1 − yr) · wrj for j ∈ Z r (Y ∪ X)

I If σj(ξ) = a · tanh(b · ξj) for all j ∈ Z , then

σ′j (ξj) =
b
a

(a − yj)(a + yj)

33

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(~w, ~xk) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji + ∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

34

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(~w, ~xk) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji + ∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

34

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(~w, ~xk) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji + ∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

34

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(~w, ~xk) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji + ∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

34

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(~w, ~xk) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji + ∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

34

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(~w, ~xk) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji + ∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

34

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(~w, ~xk) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji + ∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.
34

MLP – backpropagation

Compute ∂Ek
∂yj

for all j ∈ Z as follows:

I if j ∈ Y , then ∂Ek
∂yj

= yj − dkj

I if j ∈ Z r Y ∪ X , then assuming that j is in the `-th layer and
assuming that ∂Ek

∂yr
has already been computed for all

neurons in the ` + 1-st layer, compute

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

(This works because all neurons of r ∈ j→ belong to the `+ 1-st layer.)

35

MLP – backpropagation

Compute ∂Ek
∂yj

for all j ∈ Z as follows:

I if j ∈ Y , then ∂Ek
∂yj

= yj − dkj

I if j ∈ Z r Y ∪ X , then assuming that j is in the `-th layer and
assuming that ∂Ek

∂yr
has already been computed for all

neurons in the ` + 1-st layer, compute

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

(This works because all neurons of r ∈ j→ belong to the `+ 1-st layer.)

35

MLP – backpropagation

Compute ∂Ek
∂yj

for all j ∈ Z as follows:

I if j ∈ Y , then ∂Ek
∂yj

= yj − dkj

I if j ∈ Z r Y ∪ X , then assuming that j is in the `-th layer and
assuming that ∂Ek

∂yr
has already been computed for all

neurons in the ` + 1-st layer, compute

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

(This works because all neurons of r ∈ j→ belong to the `+ 1-st layer.)

35

Complexity of the batch algorithm

Computation of ∂E
∂wji

(~w(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(~w, ~xk)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

36

Complexity of the batch algorithm

Computation of ∂E
∂wji

(~w(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:

1. forward pass, i.e. computes yj(~w, ~xk)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

36

Complexity of the batch algorithm

Computation of ∂E
∂wji

(~w(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(~w, ~xk)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

36

Complexity of the batch algorithm

Computation of ∂E
∂wji

(~w(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(~w, ~xk)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

36

Complexity of the batch algorithm

Computation of ∂E
∂wji

(~w(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(~w, ~xk)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

36

Complexity of the batch algorithm

Computation of ∂E
∂wji

(~w(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(~w, ~xk)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

36

Complexity of the batch algorithm

Computation of ∂E
∂wji

(~w(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(~w, ~xk)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

36

Illustration of the gradient descent – XOR

Source: Pattern Classification (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork
37

MLP – learning algorithm

Online algorithm:

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2),
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂Ek

∂wji
(w(t)

ji)

is the weight update of wji in the step t + 1 and 0 < ε(t) ≤ 1
is the learning rate in the step t + 1.

There are other variants determined by selection of the training examples
used for the error computation (more on this later).

38

SGD

I weights in ~w(0) are randomly initialized to values close to 0

I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are
computed as follows:

I Choose (randomly) a set of training examples T ⊆ {1, . . . ,p}
I Compute

~w(t+1) = ~w(t) + ∆~w(t)

where

∆~w(t) = −ε(t) ·
∑
k∈T

∇Ek (~w(t))

I 0 < ε(t) ≤ 1 is a learning rate in step t + 1

I ∇Ek (~w(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by
randomly shuffling all data and then choosing minibatches sequentially.

39

