Binary classification: Desired outputs 0 and 1.

SV SRS PR S—

|

L £ 1 TEE VRNV IR VRN VIV

Ideally, capture the probability distribution of classes.

Binary classification: Desired outputs 0 and 1.

'

- I N VI I VRN VAV

... does not capture probability well (it is not a probability at all)

Binary classification: Desired outputs 0 and 1.

!

e e

B R Y S PRV EVENIE S NV YRRV

. . . . 1 . '
... logistic sigmoid o 18 much better!

Logistic regression

y

5 Wo

ol N\

Xq Xo Xn

w = (wo, Wy,..., W) and X = (xo, X1, ..., Xn) where xg = 1.
Activity:
> inner potential: & = wp + L[L, wiX; = YL WiXi = W - X

> activation function: o(&) = 71=

> network function: y[w](X) = o(&) = m

Intuition: The output y is now interpreted as the probability of the class 1
given the input X.

But what is the meaning of the sigmoid?

The model gives a probability y of the class 1 given an input X.
But why we model such a probability using 1/(1 + e™"*) ??

But what is the meaning of the sigmoid?

The model gives a probability y of the class 1 given an input X.
But why we model such a probability using 1/(1 + e™"*) ??

Let y be the "true" probability of the class 1 to be modeled.
What about odds of the class 17?

odds(y) = y/1 -y

~ odds

S S Cy

Resembles an exponential function ...

But what is the meaning of the sigmoid?

The model gives a probability y of the class 1 given an input X
But why we model such a probability using 1/(1 + e™"*) ??

Let y be the "true" probability of the class 1 to be modeled.
What about log odds (aka logit) of the class 17?

logit(y) = log(y/(1 - 7))

logit

Looks almost linear ...

Assume that y is the probability of the class 1. Put

log(y/(1-9)) =w-X

Assume that y is the probability of the class 1. Put
log(y/(1-9)) =w-X
Then

log((1 - §)/§) =-w-X

But what is the meaning of the sigmoid?
Assume that y is the probability of the class 1. Put
log(y/(1-9)) =W %
Then
log((1-9)/9) =-w-X

and

But what is the meaning of the sigmoid?

Assume that y is the probability of the class 1. Put

-

log(§/(1-9)) =w-X

Then

log(1-§)/y) =-w-X
and

(1-9)/y=e
and

o 1

=3 + eWX

That is, if we model log odds using a linear function, the probability is

obtained by applying the logistic sigmoid on the result of the linear function.

T*‘f(xﬂ\\ | %:6(5\; ?’: AT ‘ a/‘i o’(/h@’)z Logistic regression

E /3 ('4 MID) Learning:

= _0(/@96{/\0)— (/] ——i/ ﬂe@/ﬁ Ja\ro) > Given a training dataset

O,L ~ /’ . a E ,aw /{ } T = {()_()1, d1),()_()2, dg) ()_()p, dp)}
= - d X = Here Xx = (Xko, Xk1 - - -, Xkn) € R™1 | x40 = 1, is the k-th
@ N a (\D/ ’\b, input, and dk € {0, 1} is the expected output.

PO X)

e [(% }dl]i vb - @'G { AT \ 5 i(f) 6({/ (/}45@) Logistic regression

- Learning:
- Q_ vb Pfa » Given a training dataset

5 /- D/) % T ={(%1, 1), (%, &), ..., (%, db)}
(Na 6{) Cj [(D i (Here Xx = (Xko, Xk1 - - -, Xkn) € R™1 | x40 = 1, is the k-th

DC input, and di € {0, 1} is the expected output.
Mg A=1,m~0 =25 ~ 0

What error function?

@ W
d=0, pot = 52
a aN] d.ﬂ 4 W/ = Z dk log yk) —|— 1 dk) |0g(1 yk))

S=-/ "D//_ﬁ What?!? _

E)

(Binary) cross-entropy:

> Let’s have a "coin" (sides 0 and 1).

> Let’s have a "coin" (sides 0 and 1).
> The probability of 1 is y and is unknown!

Log likelihood is your friend!

> Let’s have a "coin" (sides 0 and 1).

» The probability of 1 is y and is unknown!

» You have tossed the coin 5 times and got a training
dataset:

7 =1{1,1,0,0,1} = {dy,...,ds}

Consider this to be a very special case where the input dimension is 0

Log likelihood is your friend!

> Let’s have a "coin" (sides 0 and 1).
» The probability of 1 is y and is unknown!

» You have tossed the coin 5 times and got a training
dataset:

7 =1{1,1,0,0,1} = {dy,...,ds}

Consider this to be a very special case where the input dimension is 0
» What is the best model y of y based on the data?

Log likelihood is your friend!

> Let’s have a "coin" (sides 0 and 1).
» The probability of 1 is y and is unknown!

» You have tossed the coin 5 times and got a training
dataset:

7 =1{1,1,0,0,1} = {dy,...,ds}

Consider this to be a very special case where the input dimension is 0
» What is the best model y of y based on the data?
Answer: The one that generates the data with maximum
probability!

Keep in mind our dataset:

T = {1/1101011} — {d1l"'ld5}

20

Log likelihood is your friend!
Keep in mind our dataset:

7 =1{1,1,0,0,1} = {dy,..., ds}

Assume that the data was generated by independent trials,
then the probability of getting exactly 7 from our model is
L=y-y-(=y)-(0-y)-y

How to maximize this w.r.t. y?

20

Log likelihood is your friend!
Keep in mind our dataset:

7 =1{1,1,0,0,1} = {dy,..., ds}

Assume that the data was generated by independent trials,
then the probability of getting exactly 7 from our model is

L=y-y-(1-y)-(1-y)-y
How to maximize this w.r.t. y?

Maximize

LL = log(L) = log(y)+log(y)+log(1-y)+log(1-y)+log(y)

20

Log likelihood is your friend!
Keep in mind our dataset:

7 =1{1,1,0,0,1} = {dy,..., ds}

Assume that the data was generated by independent trials,
then the probability of getting exactly 7 from our model is

L=y-y-(=y)-(0-y)-y
How to maximize this w.r.t. y?
Maximize

LL = log(L) = log(y)+log(y)+log(1-y)+log(1-y)+log(y)
But then

—LL = —1-log(y)—1-log(y)—(1-0)-log(1-y)—(1-0)-log(1-y)—1-log(y)

i.e. —LL is the cross-entropy.
20

Consider our model:
1

T e

21

Let the coin depend on the input
Consider our model:
1
T e
The training dataset is now standard:
T ={(%1, 1), (%, &), ..., (%, o)}

Here Xk = (Xko, Xk1 - - -, Xkn) € R™1, xxo = 1, is the k-th input,
and di € {0, 1} is the expected output.

21

Let the coin depend on the |nput

Consider our model: | ?4 |- X
1 y X

T 1+ e () e M St W

The training dataset is now starid?rd 9 . 9 1
I__;) / o A
T = {(x1,d1),(x2,d2),...,(xp, dp)j 00

Here Xk = (Xko, Xk1 - - -, Xkn) € R™1, xxo = 1, is the k-th input,
and di € {0, 1} is the expected output.

The likelihood:

p
L — H y;(jk Yk) 1 dk
k=1

and LL =log(L) = Z£:1 (dk log(yk) + (1 — dk) log(1 — yk))
and thus —LL = the cross-entropy.

Minimizing the cross-netropy maximizes the log-likelihood
(and vice versa).

Normal Distribution

Distribution of continuous random variables.

Density (one dimensional, that is over R):

o Von exp{‘(xz_og)2}

1 is the expected value (the mean), o2 is the variance.

p(x) N, 0%](x)

22

Fix a training set D = {(xi,d1), (x2, &), ..., (Xp, dp)}

23

Maximum Likelihood vs Least Squares (Dim 1)

Fix a training set D = {(x1, di),(xe,dbo),... ,(xp, dp)}
Assume that each di has been generated randomly by

dk=(W0+W1 'Xk)+€k

> wp, w; are unknown numbers

> ¢, are normally distributed with mean 0 and an unknown

variance ¢

o ¢
U+ /!K

/3

23

Keep in mind:

dx = (Wo + Wy - Xk) + €k

Assume that €4, ..., €p were generated independently.

24

Maximum Likelihood vs Least Squares (Dim 1)
Keep in mind:

dk :(W0+W1 ~Xk)+€k

Assume that €4, ..., €p were generated independently.

Denote by p(di, ..., dp | wo, wy, 6?) the probability density
according to which the values dy, ..., d, were generated
assuming fixed wo, wy, 6%, x1, ..., Xp.

24

Loy 4(dy)~y | f‘ﬁa,f@@’? -
~ { _ CQLLJ wd_mji?l‘k

0o

/

L

Maximum Likelihood vs Least Squares (Dim 1)
Keep in mind:
)1- dk:(Wo+W1'Xk)+€k
S

Assume that €4, ..., ep were generated independently.

Denote by p(di, ..., dp | wo, wy, 6?) the probability density
ccording to which the values d, ..., d, were generated

'Ifhe independence and normality imply

—

/}.,
151 Z — (0{0; (lﬁd‘.w;lxsssuming fixed wy, W1,(72,X1/~--/Xp-
fe=4

p
\Ilr\ﬁﬁ' W@—//\ p(d1,...,dp | Wo, W1,(72) = EN[WO+W1Xk102](dk)
/\ﬁ U\i P 1 (dk — Wp — Wy Xk)2

1 — _
\/Z_HP{ 202 }

24

Maximum Likelihood vs Least Squares

Our goal is to find (wp, w4) that maximizes the likelihood that the
training set D with fixed values d, ..., d, has been generated:

L(WO/ W1,G2) = p(d11---1dp | Wo, W1102)

25

Maximum Likelihood vs Least Squares

Our goal is to find (wp, w4) that maximizes the likelihood that the
training set D with fixed values d, ..., d, has been generated:

L(WO/ W1,G2) = p(d11---1dp | Wo, W1102)

Theorem
(wo, wy) maximizes L(wo, wy, o) for arbitrary o iff (wo, wy)
minimizes squared error E(wp, wq) = 2’2:1 (dk — wo — Wy Xk)2.

25

Maximum Likelihood vs Least Squares

Our goal is to find (wp, w4) that maximizes the likelihood that the
training set D with fixed values d, ..., d, has been generated:

L(WO/ W1,G2) = p(d11---1dp | Wo, W1102)

Theorem
(wo, wy) maximizes L(wo, wy, o) for arbitrary o iff (wo, wy)
minimizes squared error E(wp, wq) = Z’E:1 (dk — wo — Wy Xk)2.

Note that the maximizing/minimizing (wp, wy) does not depend
2
on o-.

25

Maximum Likelihood vs Least Squares

Our goal is to find (wp, w4) that maximizes the likelihood that the
training set D with fixed values d, ..., d, has been generated:

L(WO/ W1,G2) = p(d11---1dp | Wo, W1102)

Theorem
(wo, wy) maximizes L(wo, wy, o) for arbitrary o iff (wo, wy)
minimizes squared error E(wp, wq) = Z’E:1 (dk — wo — Wy Xk)2.

Note that the maximizing/minimizing (wp, wy) does not depend
2
on o-.

Maximizing o2 satisfies 0° = %Zﬁ:1 (dx — wo — wy - x¢)2.

25

MLP training — theory

26

Architecture — Multilayer Perceptron (MLP)

y1 y2 > Neurons partitioned into layers;
one input layer, one output layer,

possibly several hidden layers
/ \ layers numbered from 0; the
input layer has number 0
> E.g. three-layer network has
two hidden layers and one
Hidden output layer
Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer
Input O O > Architecture of a MLP is typically
1 Xo described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

Output

v

v

27

Notation:
» Denote
> X a set of input neurons
> Y a set of output neurons
> Z asetof allneurons (X, Y C 2)

28

MLP - architecture

Notation:

> Denote
> X a set of input neurons
> Y a set of output neurons
> Z asetof allneurons (X, Y C Z)

» individual neurons denoted by indices i, j etc.
> ¢&; is the inner potential of the neuron j after the computation

stops

28

MLP - architecture

Notation:

> Denote
> X a set of input neurons
> Y a set of output neurons
> Z asetof allneurons (X, Y C Z)

» individual neurons denoted by indices i, j etc.
> ¢&; is the inner potential of the neuron j after the computation

stops

> y; is the output of the neuron j after the computation stops

(define yo = 1 is the value of the formal unit input)

28

MLP - architecture

Notation:

> Denote
> X a set of input neurons
> Y a set of output neurons
> Z asetof allneurons (X, Y C Z)

» individual neurons denoted by indices i, j etc.
> ¢&; is the inner potential of the neuron j after the computation

stops
> y; is the output of the neuron j after the computation stops
(define yp = 1 is the value of the formal unit input)

> wj is the weight of the connection from i to j

(in particular, wj, is the weight of the connection from the formal unit
input, i.e. wjp = —b; where bj is the bias of the neuron j)

28

MLP - architecture

Notation:

> Denote
> X a set of input neurons
> Y a set of output neurons
> Z asetof allneurons (X, Y C Z)

» individual neurons denoted by indices i, j etc.
> ¢&; is the inner potential of the neuron j after the computation

stops
> y; is the output of the neuron j after the computation stops
(define yp = 1 is the value of the formal unit input)

> wj is the weight of the connection from i to j
(in particular, wj, is the weight of the connection from the formal unit
input, i.e. wjp = —b; where bj is the bias of the neuron j)

> j_ is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

28

MLP - architecture

Notation:

> Denote
> X a set of input neurons
> Y a set of output neurons
> Z asetof allneurons (X, Y C Z)

» individual neurons denoted by indices i, j etc.
> ¢&; is the inner potential of the neuron j after the computation

stops
> y; is the output of the neuron j after the computation stops
(define yp = 1 is the value of the formal unit input)

> w; is the weight of the connection from i to j
(in particular, wj, is the weight of the connection from the formal unit
input, i.e. wjp = —b; where bj is the bias of the neuron j)
> j_ is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)
> j~ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

28

Activity:
» inner potential of neuron j:

&= Z Wiy

i€j—

29

MLP - activity

Activity:
> inner potential of neuron j:
&= Z W;iYi

i€j

> activation function o; for neuron j (arbitrary differentiable)
[e.g. logistic sigmoid ¢;(&)]

14V

29

MLP - activity
Activity:
> inner potential of neuron j:

&= Z Wijiyi

i€j
> activation function o; for neuron j (arbitrary differentiable)
[e.g. logistic sigmoid ¢;(&) = e]
» State of non-input neuron j € Z\ X after the computation
stops:
yi = 0i(&))

(y; depends on the configuration w and the input X, so we sometimes
write y;(w, X))

29

MLP - activity
Activity:
> inner potential of neuron j:

&= Z Wijiyi

i€j

> activation function o; for neuron j (arbitrary differentiable)
[e.g. logistic sigmoid ¢;(&)

_ 1
14V]

» State of non-input neuron j € Z\ X after the computation
stops:
yi = 0i(&))

(y; depends on the configuration w and the input X, so we sometimes
write y;(w, X))

> The network computes a function R¥ do R'Y!. Layer-wise computation:
First, all input neurons are assigned values of the input. In the ¢-th step,
all neurons of the ¢-th layer are evaluated.

29

MLP - learning

Learning:
» Given a training set 7~ of the form

() | k=1...p)

Here, every X« € RX!is an input vector end every di € RY!
is the desired network output. For every j € Y, denote by
dx; the desired output of the neuron j for a given network

input X (the vector 67k can be written as (dkj)jey).

30

MLP - learning

Learning:
» Given a training set 7~ of the form

() | k=1...p)

Here, every X« € RX!is an input vector end every di € RY!
is the desired network output. For every j € Y, denote by
dx; the desired output of the neuron j for a given network

input X (the vector 67k can be written as (dkj)jey).

» Error function:

30

MLP - learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
w©), w, W, ..
» weights in w(%) are randomly initialized to values close to 0
» inthe step t + 1 (here t =0,1,2...), weights w(t+1) are
computed as follows:

D

()] (1)
i =W AW

J

31

MLP - learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
w©), w, W, ..
» weights in w(%) are randomly initialized to values close to 0
» inthe step t + 1 (here t =0,1,2...), weights w(t+1) are
computed as follows:

(t+1)

(1) (1)
le —Wj’. +ijl.
where
M _ JE w®
Aw;” = e(t) - 3 ﬂ()

is a weight update of wjinstept+1and 0 < e(t) <1is
a learning rate in step t 4 1.

31

MLP - learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
w©), w, W, ..
» weights in w(%) are randomly initialized to values close to 0
» inthe step t + 1 (here t =0,1,2...), weights w(t+1) are
computed as follows:

(t+1) (1) (1)
le. = Wji +ijl.
where
M _ JE w®
Aw;” = e(t) - 3 ﬂ()

is a weight update of wjinstept+1and 0 < e(t) <1is
a learning rate in step t 4 1.

Note that aE (() is a component of the gradient VE, i.e. the weight update
can be wrltten as Wit = W — ¢(t) - VE(w®).
31

For every w; we have

32

For every w;; we have

where for every k = 1,...,p holds
JEx JEk

awy ~ ay WY

32

MLP - error function gradient

For every w;; we have
JE o JE
S = 2t

where for every k = 1,..., p holds
JEx JE« ., ..
aw; 9y a;(&j) - i

and for every j € Z \ X we get

3Ek_ ' ‘
8_yj_yj dgj

forjeY

32

MLP - error function gradient

For every w;; we have

IE <4 9Ex
o~

where for every k = 1,..., p holds

JEc OE ...
aw; 9y a;(&j) - i

and for every j € Z \ X we get

JdEk .

7=k — dii fi Y

3, i — dij orje

JEx JEx ' .

8_yj_ z a—yr-o,(ér)-w,j forje Z\(YUX)

(Here all y; are in fact y;(w, X))-

32

> If gj(&) = 1+;—_Mg for all j € Z, then

ai(&) = Ayi(1 - y)

33

MLP - error function gradient
> If 0;(&) = 1-1—61—_/\/5 for all j € Z, then

o7(&) = Ayi(1 = ¥)
and thus for all j € Z \ X:

9E.

=y — Oy forjeyY
) Yj — dj orje

JE JE .
8yj-(Z K Aryr(1=yr)-wy forje Z\ (Y UX)

rej~

33

MLP - error function gradient
> If 0;(&) = W:—_Ajg for all j € Z, then

o7(&) = Ayi(1 = ¥)
and thus for all j € Z \ X:

= .
— =y —dy f Y
) Yj — dj orje

JE, JE .
8yj-(Z k Aryr(1=yr)-wy forje Z\ (Y UX)

rej~
> If gj(&) = a-tanh(b - &j) for all j € Z, then

ol(&) = 2(a-y)(a+)

33

Compute 2€ = yP 2
JE _ E,
o Ykt awf,- as follows:

34

JE _ yvp 9E .
Compute 7o = Y\ 5y, as follows:

Initialize &; := 0
(By the end of the computation: &; = 59_@)

34

JE _ yvp 9E .
Compute 7o = Y\ 5y, as follows:

Initialize &; := 0
(By the end of the computation: &; = g—v’;)

Forevery k =1,...,p do:

34

MLP - computing the gradient

JE _ yp 9E .
Compute 5o = Y., _; Gy, as follows:

Initialize &; := 0
(By the end of the computation: &; = ;_“Z)

Forevery k =1,...,p do:

1. forward pass: compute y; = y;(W, %) for all j € Z

34

MLP - computing the gradient

OE _ yp 9E
Compute 5o = Y., _; Gy, as follows:

Initialize &; := 0
(By the end of the computation: &; = j—@)

Forevery k =1,...,p do:
1. forward pass: compute y; = y;(W, %) for all j € Z

2. backward pass: compute %= for all j € Z using
backpropagation (see the next slide!)

34

MLP - computing the gradient

OE _ yp 9E
Compute 5o = Y., _; Gy, as follows:

Initialize &; := 0
(By the end of the computation: &; = f—fﬂ)
Forevery k =1,...,p do:
1. forward pass: compute y; = y;(W, %) for all j € Z

2. backward pass: compute %= for all j € Z using
backpropagation (see the next slide!)

3. compute 72t for all w; using

JEx JEk

w -0;(&)) i

34

MLP - computing the gradient

JE _ yvp 9E
Compute 5o = Y., _; Gy, as follows:

Initialize &; := 0
(By the end of the computation: &; = f—fﬂ)
Forevery k =1,...,p do:
1. forward pass: compute y; = y;(W, %) for all j € Z
2. backward pass: compute "Elk for all j € Z using
backpropagation (see the next slide!)
3. compute 72t for all w; using

JEx JEk

w -0;(&)) i

4. &j:= &+ G

i) 9E
The resulting &; equals TR

34

Compute %iyf for all j € Z as follows:

35

Compute ‘ﬂ for all j € Z as follows:

> ifje Y, then %’f}‘_y, dj

35

MLP - backpropagation

Compute 5 aEk for all j € Z as follows:

IijY then aEk ;= Y~ dyg

> ifjeZ\NYU X then assuming that j is in the ¢-th layer and
assuming that aEk has already been computed for all
neurons in the {’ 1t layer, compute

(9Ek = '
ay/ Z ~op(&r) - er

ij

(This works because all neurons of r € j~ belong to the £ + 1-st layer.)

35

Complexity of the batch algorithm

Computation of g—v’;;i(vT/("”) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of ¢;(&,) for given &,)

36

Complexity of the batch algorithm

Computation of g—v’fﬂ(vT/("”) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of ¢;(&,) for given &,)

Proof sketch: The algorithm does the following p times:

36

Complexity of the batch algorithm
Computation of g—v’fﬂ(vT/("”) stops in time linear in the size of

the network plus the size of the training set.
(assuming unit cost of operations including computation of ¢;(&,) for given &,)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes y;(W, Xk)

36

Complexity of the batch algorithm

Computation of g—v’fﬂ(vT/("”) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of ¢;(&,) for given &,)

Proof sketch: The algorithm does the following p times:

1. forward pass, i.e. computes y;(W, Xk)

2. backpropagation, i.e. computes %

36

Complexity of the batch algorithm

Computation of g—v’fﬂ(vT/("”) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of ¢;(&,) for given &,)

Proof sketch: The algorithm does the following p times:

1. forward pass, i.e. computes y;(W, Xk)

IE,
9y,

3. computes aEk and adds it to &;; (a constant time operation
in the unit cost framework)

2. backpropagation, i.e. computes

36

Complexity of the batch algorithm

Computation of g—v’fﬂ(vT/("”) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of ¢;(&,) for given &,)

Proof sketch: The algorithm does the following p times:

1. forward pass, i.e. computes y;(W, Xk)

IE,
9y,

3. computes aEk and adds it to &;; (a constant time operation
in the unit cost framework)

2. backpropagation, i.e. computes

The steps 1. - 3. take linear time.

36

Complexity of the batch algorithm

Computation of g—v’fﬂ(vT/("”) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of ¢;(&,) for given &,)

Proof sketch: The algorithm does the following p times:

1. forward pass, i.e. computes y;(W, Xk)

IE,
9y,

3. computes aEk and adds it to &;; (a constant time operation
in the unit cost framework)

2. backpropagation, i.e. computes

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

36

mput
representation

hidden
representation

yi

-15 -1 0.5 0 0s 1 15

Source: Pattern Classification (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork

37

MLP - learning algorithm

Online algorithm:
The algorithm computes a sequence of weight vectors
w©), w, W, ..
» weights in w(%) are randomly initialized to values close to 0

> inthestept+1 (heret=0,1,2...), weights w('*") are
computed as follows:

(t+1) (1) (1)
le. = Wj’. +ijl.
where
“ _ . _aEk (1)
Aw; " = e(t) 3 ji(wﬁ)

is the weight update of wj; in the step t + 1 and 0 < ¢(t) < 1
is the learning rate in the step t + 1.

There are other variants determined by selection of the training examples
used for the error computation (more on this later).

38

SGD

» weights in w(©) are randomly initialized to values close to 0

> inthestept+1 (heret=0,1,2...), weights w(*") are
computed as follows:

> Choose (randomly) a set of training examples T C {1,..
» Compute

w1 — w® L Aw®
where

AW = (1) - Y VE(W)

> 0<¢(t) <1isalearning ratein step t + 1
> VE(w®) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by
randomly shuffling all data and then choosing minibatches sequentially.

-/ P}

39

