
What about classification?

Binary classification: Desired outputs 0 and 1.

Ideally, capture the probability distribution of classes.
14



What about classification?

Binary classification: Desired outputs 0 and 1.

... does not capture probability well (it is not a probability at all)
14
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Binary classification: Desired outputs 0 and 1.
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1+e−(~w·~x)
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Logistic regression

x1 x2 xn

· · ·

y

~x0 = 1
w0

w1 w2 wn

~w = (w0,w1, . . . ,wn) and ~x = (x0, x1, . . . , xn) where x0 = 1.

Activity:
I inner potential: ξ = w0 +

∑n
i=1 wixi =

∑n
i=0 wixi = ~w · ~x

I activation function: σ(ξ) = 1
1+e−ξ

I network function: y[~w](~x) = σ(ξ) = 1
1+e−(~w·~x)

Intuition: The output y is now interpreted as the probability of the class 1
given the input ~x.

15



But what is the meaning of the sigmoid?

The model gives a probability y of the class 1 given an input ~x.
But why we model such a probability using 1/(1 + e−~w·~x) ??
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But why we model such a probability using 1/(1 + e−~w·~x) ??

Let ŷ be the "true" probability of the class 1 to be modeled.
What about odds of the class 1?
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The model gives a probability y of the class 1 given an input ~x.
But why we model such a probability using 1/(1 + e−~w·~x) ??

Let ŷ be the "true" probability of the class 1 to be modeled.
What about log odds (aka logit) of the class 1?

logit(ŷ) = log(ŷ/(1 − ŷ))
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But what is the meaning of the sigmoid?

Assume that ŷ is the probability of the class 1. Put

log(ŷ/(1 − ŷ)) = ~w · ~x

Then

log((1 − ŷ)/ŷ) = −~w · ~x

and

(1 − ŷ)/ŷ = e−~w·~x

and

ŷ =
1

1 + e−~w·~x

That is, if we model log odds using a linear function, the probability is
obtained by applying the logistic sigmoid on the result of the linear function.
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Logistic regression

Learning:
I Given a training dataset

T =
{(
~x1,d1

)
,
(
~x2,d2

)
, . . . ,

(
~xp ,dp

)}
Here ~xk = (xk0, xk1 . . . , xkn) ∈ Rn+1, xk0 = 1, is the k -th
input, and dk ∈ {0,1} is the expected output.

What error function?

(Binary) cross-entropy:

E(~w) =

p∑
k=1

−(dk log(yk ) + (1 − dk ) log(1 − yk ))

What?!?
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Log likelihood is your friend!

I Let’s have a "coin" (sides 0 and 1).

I The probability of 1 is ŷ and is unknown!
I You have tossed the coin 5 times and got a training

dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Consider this to be a very special case where the input dimension is 0

I What is the best model y of ŷ based on the data?
Answer: The one that generates the data with maximum
probability!
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Log likelihood is your friend!

Keep in mind our dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Assume that the data was generated by independent trials,
then the probability of getting exactly T from our model is

L = y · y · (1 − y) · (1 − y) · y

How to maximize this w.r.t. y?

Maximize

LL = log(L) = log(y)+log(y)+log(1−y)+log(1−y)+log(y)

But then

−LL = −1·log(y)−1·log(y)−(1−0)·log(1−y)−(1−0)·log(1−y)−1·log(y)

i.e. −LL is the cross-entropy.
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Let the coin depend on the input

Consider our model:

y =
1

1 + e−(~w·~x)

The training dataset is now standard:

T =
{(
~x1,d1

)
,
(
~x2,d2

)
, . . . ,

(
~xp ,dp

)}
Here ~xk = (xk0, xk1 . . . , xkn) ∈ Rn+1, xk0 = 1, is the k -th input,
and dk ∈ {0,1} is the expected output.

The likelihood:

L =

p∏
k=1

ydk
k · (1 − yk )(1−dk )

and LL = log(L) =
∑p

k=1(dk log(yk ) + (1 − dk ) log(1 − yk ))
and thus −LL = the cross-entropy.

Minimizing the cross-netropy maximizes the log-likelihood
(and vice versa).
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Normal Distribution

Distribution of continuous random variables.

Density (one dimensional, that is over R):

p(x) =
1

σ
√

2π
exp

{
−

(x − µ)2

2σ2

}
=: N[µ, σ2](x)

µ is the expected value (the mean), σ2 is the variance.
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Maximum Likelihood vs Least Squares (Dim 1)
Fix a training set D =

{
(x1,d1) , (x2,d2) , . . . ,

(
xp ,dp

)}

Assume that each dk has been generated randomly by

dk = (w0 + w1 · xk ) + εk

I w0,w1 are unknown numbers
I εk are normally distributed with mean 0 and an unknown

variance σ2
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Maximum Likelihood vs Least Squares (Dim 1)

Keep in mind:

dk = (w0 + w1 · xk ) + εk

Assume that ε1, . . . , εp were generated independently.

Denote by p(d1, . . . ,dp | w0,w1, σ2) the probability density
according to which the values d1, . . . ,dn were generated
assuming fixed w0,w1, σ2, x1, . . . , xp.
The independence and normality imply

p(d1, . . . ,dp | w0,w1, σ
2) =

p∏
k=1

N[w0 + w1xk , σ
2](dk )

=

p∏
k=1

1

σ
√

2π
exp

{
−
(dk − w0 − w1xk )

2

2σ2

}
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Maximum Likelihood vs Least Squares

Our goal is to find (w0,w1) that maximizes the likelihood that the
training set D with fixed values d1, . . . ,dn has been generated:

L(w0,w1, σ
2) := p(d1, . . . ,dp | w0,w1, σ

2)

Theorem
(w0,w1) maximizes L(w0,w1, σ2) for arbitrary σ2 iff (w0,w1)
minimizes squared error E(w0,w1) =

∑p
k=1(dk − w0 − w1xk )2.

Note that the maximizing/minimizing (w0,w1) does not depend
on σ2.

Maximizing σ2 satisfies σ2 = 1
p
∑p

k=1(dk − w0 − w1 · xk )2.
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MLP training – theory

26



Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
I Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

I layers numbered from 0; the
input layer has number 0
I E.g. three-layer network has

two hidden layers and one
output layer

I Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

I Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)
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MLP – architecture

Notation:
I Denote

I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)
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MLP – activity

Activity:
I inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

I activation function σj for neuron j (arbitrary differentiable)
[ e.g. logistic sigmoid σj(ξ) = 1

1+e−λjξ
]

I State of non-input neuron j ∈ Z \ X after the computation
stops:

yj = σj(ξj)

(yj depends on the configuration ~w and the input ~x, so we sometimes
write yj(~w, ~x) )

I The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the `-th step,
all neurons of the `-th layer are evaluated.
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[ e.g. logistic sigmoid σj(ξ) = 1

1+e−λjξ
]

I State of non-input neuron j ∈ Z \ X after the computation
stops:

yj = σj(ξj)

(yj depends on the configuration ~w and the input ~x, so we sometimes
write yj(~w, ~x) )
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MLP – learning

Learning:
I Given a training set T of the form{ (

~xk , ~dk

) ∣∣∣ k = 1, . . . ,p
}

Here, every ~xk ∈ R
|X | is an input vector end every ~dk ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input ~xk (the vector ~dk can be written as

(
dkj

)
j∈Y

).

I Error function:

E(~w) =

p∑
k=1

Ek (~w)

where

Ek (~w) =
1
2

∑
j∈Y

(
yj(~w, ~xk ) − dkj

)2
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MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2), . . ..
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂E
∂wji

(~w(t))

is a weight update of wji in step t + 1 and 0 < ε(t) ≤ 1 is
a learning rate in step t + 1.

Note that ∂E
∂wji

(~w(t)) is a component of the gradient ∇E, i.e. the weight update
can be written as ~w(t+1) = ~w(t)

− ε(t) · ∇E(~w(t)).
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MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z r X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr ) · wrj for j ∈ Z r (Y ∪ X)

(Here all yj are in fact yj(~w, ~xk )).
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MLP – error function gradient

I If σj(ξ) = 1
1+e−λjξ

for all j ∈ Z , then

σ′j (ξj) = λjyj(1 − yj)

and thus for all j ∈ Z r X :

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· λryr (1 − yr ) · wrj for j ∈ Z r (Y ∪ X)

I If σj(ξ) = a · tanh(b · ξj) for all j ∈ Z , then

σ′j (ξj) =
b
a

(a − yj)(a + yj)
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MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(~w, ~xk ) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji + ∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.
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MLP – backpropagation

Compute ∂Ek
∂yj

for all j ∈ Z as follows:

I if j ∈ Y , then ∂Ek
∂yj

= yj − dkj

I if j ∈ Z r Y ∪ X , then assuming that j is in the `-th layer and
assuming that ∂Ek

∂yr
has already been computed for all

neurons in the ` + 1-st layer, compute

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr ) · wrj

(This works because all neurons of r ∈ j→ belong to the `+ 1-st layer.)
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Complexity of the batch algorithm

Computation of ∂E
∂wji

(~w(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr )

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(~w, ~xk )

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...
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Illustration of the gradient descent – XOR

Source: Pattern Classification (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork
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MLP – learning algorithm

Online algorithm:

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2), . . ..
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂Ek

∂wji
(w(t)

ji )

is the weight update of wji in the step t + 1 and 0 < ε(t) ≤ 1
is the learning rate in the step t + 1.

There are other variants determined by selection of the training examples
used for the error computation (more on this later).
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SGD

I weights in ~w(0) are randomly initialized to values close to 0

I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are
computed as follows:

I Choose (randomly) a set of training examples T ⊆ {1, . . . ,p}
I Compute

~w(t+1) = ~w(t) + ∆~w(t)

where

∆~w(t) = −ε(t) ·
∑
k∈T

∇Ek (~w(t))

I 0 < ε(t) ≤ 1 is a learning rate in step t + 1

I ∇Ek (~w(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by
randomly shuffling all data and then choosing minibatches sequentially.
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