MLP training — theory

26

Architecture — Multilayer Perceptron (MLP)

y1 y2 > Neurons partitioned into layers;
one input layer, one output layer,

possibly several hidden layers
/ \ layers numbered from 0; the
input layer has number 0
> E.g. three-layer network has
two hidden layers and one
Hidden output layer
Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer
Input O O > Architecture of a MLP is typically
1 Xo described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

Output

v

v

27

Notation:
» Denote
> X a set of input neurons
> Y a set of output neurons
> Z asetof allneurons (X, Y C 2)

28

MLP - architecture

Notation:

> Denote
> X a set of input neurons
> Y a set of output neurons
> Z asetof allneurons (X, Y C Z)

» individual neurons denoted by indices i, j etc.
> ¢&; is the inner potential of the neuron j after the computation

stops

28

MLP - architecture

Notation:

> Denote
> X a set of input neurons
> Y a set of output neurons
> Z asetof allneurons (X, Y C Z)

» individual neurons denoted by indices i, j etc.
> ¢&; is the inner potential of the neuron j after the computation

stops

> y; is the output of the neuron j after the computation stops

(define yo = 1 is the value of the formal unit input)

28

MLP - architecture

Notation:

> Denote
> X a set of input neurons
> Y a set of output neurons
> Z asetof allneurons (X, Y C Z)

» individual neurons denoted by indices i, j etc.
> ¢&; is the inner potential of the neuron j after the computation

stops
> y; is the output of the neuron j after the computation stops
(define yp = 1 is the value of the formal unit input)

> wj is the weight of the connection from i to j

(in particular, wj, is the weight of the connection from the formal unit
input, i.e. wjp = —b; where bj is the bias of the neuron j)

28

MLP - architecture

Notation:

> Denote
> X a set of input neurons
> Y a set of output neurons
> Z asetof allneurons (X, Y C Z)

» individual neurons denoted by indices i, j etc.
> ¢&; is the inner potential of the neuron j after the computation

stops
> y; is the output of the neuron j after the computation stops
(define yp = 1 is the value of the formal unit input)

> wj is the weight of the connection from i to j
(in particular, wj, is the weight of the connection from the formal unit
input, i.e. wjp = —b; where bj is the bias of the neuron j)

> j_ is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

28

MLP - architecture

-

Notation: =34,2 N
» Denote [f& [Zg %; /%\ 4
> X a set of input neurons L’ > (\'&\ Fﬁ
> Y a set of output neurons T) .
> Z aset of all neurons (X, Y C 2) 7 \J
» individual neurons denoted by indices i, j etc. 1 2
> ¢&; is the inner potential of the neuron j after the computation
stops

> y; is the output of the neuron j after the computation stops

(define yp = 1 is the value of the formal unit input)
> w; is the weight of the connection from i to j
(in particular, wj, is the weight of the connection from the formal unit
input, i.e. wjp = —b; where bj is the bias of the neuron j)
> j_ is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)
> j~ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

28

Activity:
» inner potential of neuron j:

&= Z Wiy

i€j—

29

MLP - activity

Activity:
> inner potential of neuron j:
&= Z W;iYi

i€j

> activation function o; for neuron j (arbitrary differentiable)
[e.g. logistic sigmoid ¢;(&)]

14V

29

MLP - activity
Activity:
> inner potential of neuron j:

&= Z Wijiyi

i€j
> activation function o; for neuron j (arbitrary differentiable)
[e.g. logistic sigmoid ¢;(&) = e]
» State of non-input neuron j € Z\ X after the computation
stops:
yi = 0i(&))

(y; depends on the configuration w and the input X, so we sometimes
write y;(w, X))

29

MLP - activity
Activity:
> inner potential of neuron j:

&= Z Wijiyi

i€j

> activation function o; for neuron j (arbitrary differentiable)
[e.g. logistic sigmoid ¢;(&)

_ 1
14V]

» State of non-input neuron j € Z\ X after the computation
stops:
yi = 0i(&))

(y; depends on the configuration w and the input X, so we sometimes
write y;(w, X))

> The network computes a function R¥ do R'Y!. Layer-wise computation:
First, all input neurons are assigned values of the input. In the ¢-th step,
all neurons of the ¢-th layer are evaluated.

29

MLP - learning

Learning:
» Given a training set 7~ of the form

() | k=1...p)

Here, every X« € RX!is an input vector end every di € RY!
is the desired network output. For every j € Y, denote by
dx; the desired output of the neuron j for a given network

input X (the vector 67k can be written as (dkj)jey).

30

MLP - learning

Learning:
» Given a training set 7~ of the form

() | k=1...p)

Here, every X« € RX!is an input vector end every di € RY!
is the desired network output. For every j € Y, denote by
dx; the desired output of the neuron j for a given network

input X (the vector 67k can be written as (dkj)jey).
» Error function: L % {
ror function To{(4,¢), Ga?)]
E(W)=Y E(W) .~ |
;; &= (:fr RS)
where T — _ 1 7\-
ﬁ\ L’:—T = 1 (6(F\-t\ é)
| 3

MLP - learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
w©), w, W, ..
» weights in w(%) are randomly initialized to values close to 0
» inthe step t + 1 (here t =0,1,2...), weights w(t+1) are
computed as follows:

D

()] (1)
i =W AW

J

31

MLP - learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
w©), w, W, ..
» weights in w(%) are randomly initialized to values close to 0
» inthe step t + 1 (here t =0,1,2...), weights w(t+1) are
computed as follows:

(t+1)

(1) (1)
le —Wj’. +ijl.
where
M _ JE w®
Aw;” = e(t) - 3 ﬂ()

is a weight update of wjinstept+1and 0 < e(t) <1is
a learning rate in step t 4 1.

31

MLP - learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
w©), w, W, ..
» weights in w(%) are randomly initialized to values close to 0
» inthe step t + 1 (here t =0,1,2...), weights w(t+1) are
computed as follows:

(t+1) (1) (1)
le. = Wji +ijl.
where
M _ JE w®
Aw;” = e(t) - 3 ﬂ()

is a weight update of wjinstept+1and 0 < e(t) <1is
a learning rate in step t 4 1.

Note that aE (() is a component of the gradient VE, i.e. the weight update
can be wrltten as Wit = W — ¢(t) - VE(w®).
31

For every w; we have

32

For every w;; we have

where for every k = 1,...,p holds
JEx JEk

awy ~ ay WY

32

T 9€Y aEQ . @[;L_(Z /<®’1‘6Qf(.}b)l MLP — error function gradient
N ———neY T T

a M ’D. 8 = 9 _ﬁqﬁzg For every w; we have
Lk OF _ O
wj = o

/%’L fa% aé&— Z a&ﬁk a”'bﬁ &?/t where forevery k = 1,..., p holds
O %,y nep T > O e W 05, Dﬁbz, B OB

&—Wﬁ_ Y /(&) - ¥
= Z acﬁg @x (§ ~and for every j € Z\ X we get
- o)
&6'3 3@1 %If/k_y’ dj forjeY
j

_b, - J @G

Sh
—a—?—h\ a(%:é e n}yﬂ’h o”) = ('5)%7
V?f'a o™ 5

32

95 9% Odwy 0f, 5¢&_
0. O o3 0Mha Owy,

ot Ingy D (5,G5,))
o5, ag
_#ié. a(mcﬁ Wyn e) fbA

Oryn

(ge)' on
-5, (¢,)

MLP - error function gradient
For every w;; we have
L "
Iwji =t I
where for every k = 1

JEx 8Ek
aVVj, ayj (é])

..... p holds

and for every j € Z \ X we get

JEk ,
— =y — dkj f Y
2, Yj — dyj orje
JE, 8Ek .
E ar(&r) - Wy forje Z\(YUX)
7= '

(Here all y; are in fact y;(w, X)).

32

> If gj(&) = 1+;—_Mg for all j € Z, then

ai(&) = Ayi(1 - y)

33

MLP - error function gradient
> If 0;(&) = 1-1—61—_/\/5 for all j € Z, then

o7(&) = Ayi(1 = ¥)
and thus for all j € Z \ X:

9E.

=y — Oy forjeyY
) Yj — dj orje

JE JE .
8yj-(Z K Aryr(1=yr)-wy forje Z\ (Y UX)

rej~

33

MLP - error function gradient
(&) = 1 i
> Ifoj(&) = e forall j € Z, then
and thus for all j € Z \ X: '
JdEx .
8_y,-:yj_dkj forjeY

JE, JE .
8yj-(Z k Aryr(1=yr)-wy forje Z\ (Y UX)

rej~
> If gj(&) = a-tanh(b - &j) for all j € Z, then

ol(&) = 2(a-y)(a+)

33

Compute 2€ = yP 2
JE _ E,
o Ykt awf,- as follows:

34

JE _ yvp 9E .
Compute 7o = Y\ 5y, as follows:

Initialize &; := 0
(By the end of the computation: &; = 59_@)

34

JE _ yvp 9E .
Compute 7o = Y\ 5y, as follows:

Initialize &; := 0
(By the end of the computation: &; = g—v’;)

Forevery k =1,...,p do:

34

MLP - computing the gradient

JE _ yp 9E .
Compute 5o = Y., _; Gy, as follows:

Initialize &; := 0
(By the end of the computation: &; = ;_“Z)

Forevery k =1,...,p do:

1. forward pass: compute y; = y;(W, %) for all j € Z

34

MLP - computing the gradient

OE _ yp 9E
Compute 5o = Y., _; Gy, as follows:

Initialize &; := 0
(By the end of the computation: &; = j—@)

Forevery k =1,...,p do:
1. forward pass: compute y; = y;(W, %) for all j € Z

2. backward pass: compute %= for all j € Z using
backpropagation (see the next slide!)

34

MLP - computing the gradient

OE _ yp 9E
Compute 5o = Y., _; Gy, as follows:

Initialize &; := 0
(By the end of the computation: &; = f—fﬂ)
Forevery k =1,...,p do:
1. forward pass: compute y; = y;(W, %) for all j € Z

2. backward pass: compute %= for all j € Z using
backpropagation (see the next slide!)

3. compute 72t for all w; using

JEx JEk

w -0;(&)) i

34

MLP - computing the gradient

JE _ yvp 9E
Compute 5o = Y., _; Gy, as follows:

Initialize &; := 0
(By the end of the computation: &; = f—fﬂ)
Forevery k =1,...,p do:
1. forward pass: compute y; = y;(W, %) for all j € Z
2. backward pass: compute "Elk for all j € Z using
backpropagation (see the next slide!)
3. compute 72t for all w; using

JEx JEk

w -0;(&)) i

4. &j:= &+ G

i) 9E
The resulting &; equals TR

34

Compute %iyf for all j € Z as follows:

35

Compute ‘ﬂ for all j € Z as follows:

> ifje Y, then %’f}‘_y, dj

35

MLP - backpropagation

Compute 5 aEk for all j € Z as follows:

IijY then aEk ;= Y~ dyg

> ifjeZ\NYU X then assuming that j is in the ¢-th layer and
assuming that aEk has already been computed for all
neurons in the {’ 1t layer, compute

(9Ek = '
ay/ Z ~op(&r) - er

ij

(This works because all neurons of r € j~ belong to the £ + 1-st layer.)

35

Complexity of the batch algorithm

Computation of g—v’;;i(vT/("”) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of ¢;(&,) for given &,)

36

Complexity of the batch algorithm

Computation of g—v’fﬂ(vT/("”) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of ¢;(&,) for given &,)

Proof sketch: The algorithm does the following p times:

36

Complexity of the batch algorithm
Computation of g—v’fﬂ(vT/("”) stops in time linear in the size of

the network plus the size of the training set.
(assuming unit cost of operations including computation of ¢;(&,) for given &,)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes y;(W, Xk)

36

Complexity of the batch algorithm

Computation of g—v’fﬂ(vT/("”) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of ¢;(&,) for given &,)

Proof sketch: The algorithm does the following p times:

1. forward pass, i.e. computes y;(W, Xk)

2. backpropagation, i.e. computes %

36

Complexity of the batch algorithm

Computation of g—v’fﬂ(vT/("”) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of ¢;(&,) for given &,)

Proof sketch: The algorithm does the following p times:

1. forward pass, i.e. computes y;(W, Xk)

IE,
9y,

3. computes aEk and adds it to &;; (a constant time operation
in the unit cost framework)

2. backpropagation, i.e. computes

36

Complexity of the batch algorithm

Computation of g—v’fﬂ(vT/("”) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of ¢;(&,) for given &,)

Proof sketch: The algorithm does the following p times:

1. forward pass, i.e. computes y;(W, Xk)

IE,
9y,

3. computes aEk and adds it to &;; (a constant time operation
in the unit cost framework)

2. backpropagation, i.e. computes

The steps 1. - 3. take linear time.

36

Complexity of the batch algorithm

Computation of g—v’fﬂ(vT/("”) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of ¢;(&,) for given &,)

Proof sketch: The algorithm does the following p times:

1. forward pass, i.e. computes y;(W, Xk)

IE,
9y,

3. computes aEk and adds it to &;; (a constant time operation
in the unit cost framework)

2. backpropagation, i.e. computes

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

36

mput
representation

hidden
representation

yi

-15 -1 0.5 0 0s 1 15

Source: Pattern Classification (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork

37

MLP - learning algorithm

Online algorithm:
The algorithm computes a sequence of weight vectors
w©), w, W, ..
» weights in w(%) are randomly initialized to values close to 0

> inthestept+1 (heret=0,1,2...), weights w('*") are
computed as follows:

(t+1) (1) (1)
le. = Wj’. +ijl.
where
“ _ . _aEk (1)
Aw; " = e(t) 3 ji(wﬁ)

is the weight update of wj; in the step t + 1 and 0 < ¢(t) < 1
is the learning rate in the step t + 1.

There are other variants determined by selection of the training examples
used for the error computation (more on this later).

38

SGD

» weights in w(©) are randomly initialized to values close to 0

> inthestept+1 (heret=0,1,2...), weights w(*") are
computed as follows:

> Choose (randomly) a set of training examples T C {1,..
» Compute

w1 — w® L Aw®
where

AW = (1) - Y VE(W)

> 0<¢(t) <1isalearning ratein step t + 1
> VE(w®) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by
randomly shuffling all data and then choosing minibatches sequentially.

-/ P}

39

