
MLP training – practical issues

114

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
I Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

I layers numbered from 0; the
input layer has number 0
I E.g. three-layer network has

two hidden layers and one
output layer

I Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

I Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

115

MLP – architecture

Notation:
I Denote
I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

116

MLP – learning

Learning:
I Given a training set T of the form{ (

~xk , ~dk

) ∣∣∣ k = 1, . . . ,p
}

Here, every ~xk ∈ R
|X | is an input vector end every ~dk ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input ~xk (the vector ~dk can be written as

(
dkj

)
j∈Y

).

I Error function: E(~w) =
∑p

k=1 Ek (~w)

117

SGD

I weights in ~w(0) are randomly initialized to values close to 0

I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are
computed as follows:

I Choose (randomly) a set of training examples T ⊆ {1, . . . ,p}
I Compute

~w(t+1) = ~w(t) + ∆~w(t)

where

∆~w(t) = −ε(t) ·
∑
k∈T

∇Ek (~w(t))

I 0 < ε(t) ≤ 1 is a learning rate in step t + 1

I ∇Ek (~w(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by
randomly shuffling all data and then choosing minibatches sequentially.

118

MLP – mse gradient

For every wji we have

∂E
∂wji

=
1
p

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z r X we get (for squared error)

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj for j ∈ Z r (Y ∪ X)

(Here all yj are in fact yj(~w, ~xk)).

119

MLP – mse gradient

For every wji we have

∂E
∂wji

=
1
p

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z r X we get (for squared error)

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj for j ∈ Z r (Y ∪ X)

(Here all yj are in fact yj(~w, ~xk)).
119

(Some) error functions

I squared error:

E(~w) =

p∑
k=1

Ek (~w)

where Ek (~w) = 1
2
∑

j∈Y

(
yj(~w, ~xk) − dkj

)2

I mean squared error (mse):

E(~w) =
1
p

p∑
k=1

Ek (~w)

I (categorical) cross entropy:

E(~w) = −
1
p

p∑
k=1

∑
j∈Y

dkj ln(yj)

120

Practical issues of gradient descent

I Training efficiency:
I What size of a minibatch?
I How to choose the learning rate ε(t) and control SGD ?
I How to pre-process the inputs?
I How to initialize weights?
I How to choose desired output values of the network?

I Quality of the resulting model:
I When to stop training?
I Regularization techniques.
I How large network?

For simplicity, I will illustrate the reasoning on MLP + mse.
Later we will see other topologies and error functions with
different but always somewhat related issues.

121

Practical issues of gradient descent

I Training efficiency:
I What size of a minibatch?
I How to choose the learning rate ε(t) and control SGD ?
I How to pre-process the inputs?
I How to initialize weights?
I How to choose desired output values of the network?

I Quality of the resulting model:
I When to stop training?
I Regularization techniques.
I How large network?

For simplicity, I will illustrate the reasoning on MLP + mse.
Later we will see other topologies and error functions with
different but always somewhat related issues.

121

Issues in gradient descent
I Small networks: Lots of local minima where the descent

gets stuck.
I The model identifiability problem: Swapping incoming

weights of neurons i and j leaves the same network
topology – weight space symmetry.

I Recent studies show that for sufficiently large networks all
local minima have low values of the error function.

Saddle points
One can show (by a combinatorial
argument) that larger networks
have exponentially more saddle
points than local minima.

122

Issues in gradient descent
I Small networks: Lots of local minima where the descent

gets stuck.
I The model identifiability problem: Swapping incoming

weights of neurons i and j leaves the same network
topology – weight space symmetry.

I Recent studies show that for sufficiently large networks all
local minima have low values of the error function.

Saddle points
One can show (by a combinatorial
argument) that larger networks
have exponentially more saddle
points than local minima.

122

Issues in gradient descent – too slow descent

I flat regions
E.g. if the inner potentials are too large (in abs. value), then their
derivative is extremely small.

123

Issues in gradient descent – too fast descent

I steep cliffs: the gradient is extremely large, descent skips
important weight vectors

124

Issues in gradient descent – local vs global
structure

What if we initialize on the left?

125

Gradient Descent in Large Networks

Theorem
Assume (roughly),

I activation functions: "smooth" ReLU (softplus)

σ(z) = log(1 + exp(z))

In general: Smooth, non-polynomial, analytic, Lipschitzs.

I inputs ~xk of Euclidean norm equal to 1, desired values dk
satisfying |dk | ∈ O(1),

I the number of hidden neurons per layer sufficiently large
(polynomial in certain numerical characteristics of inputs roughly
measuring their similarity, and exponential in the depth of the network),

I the learning rate constant and sufficiently small.

The gradient descent converges (with high probability) to a global
minimum with zero error at linear rate.

Later we get to a special type of networks called ResNet where the above
result demands only polynomially many neurons per layer (w.r.t. depth). 126

Issues in computing the gradient

I vanishing and exploding gradients

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj for j ∈ Z r (Y ∪ X)

I inexact gradient computation:
I Minibatch gradient is only an estimate of the true gradient.
I Note that the variance of the estimate is (roughly) σ/

√
m

where m is the size of the minibatch and σ is the variance
of the gradient estimate for a single training example.
(E.g. minibatch size 10 000 means 100 times more computation
than the size 100 but gives only 10 times less variance.)

127

Issues in computing the gradient

I vanishing and exploding gradients

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj for j ∈ Z r (Y ∪ X)

I inexact gradient computation:
I Minibatch gradient is only an estimate of the true gradient.
I Note that the variance of the estimate is (roughly) σ/

√
m

where m is the size of the minibatch and σ is the variance
of the gradient estimate for a single training example.
(E.g. minibatch size 10 000 means 100 times more computation
than the size 100 but gives only 10 times less variance.)

127

Minibatch size

I Larger batches provide a more accurate estimate of the
gradient, but with less than linear returns.

I Multicore architectures are usually underutilized by extremely
small batches.

I If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups this is the limiting factor in
batch size.

I It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. Typical power of 2 batch sizes
range from 32 to 256, with 16 sometimes being attempted for
large models.

I Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger batch
there is a degradation in the quality of the model, as measured
by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima". Keskar et al, ICLR’17)

128

Minibatch size

I Larger batches provide a more accurate estimate of the
gradient, but with less than linear returns.

I Multicore architectures are usually underutilized by extremely
small batches.

I If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups this is the limiting factor in
batch size.

I It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. Typical power of 2 batch sizes
range from 32 to 256, with 16 sometimes being attempted for
large models.

I Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger batch
there is a degradation in the quality of the model, as measured
by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima". Keskar et al, ICLR’17)

128

Minibatch size

I Larger batches provide a more accurate estimate of the
gradient, but with less than linear returns.

I Multicore architectures are usually underutilized by extremely
small batches.

I If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups this is the limiting factor in
batch size.

I It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. Typical power of 2 batch sizes
range from 32 to 256, with 16 sometimes being attempted for
large models.

I Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger batch
there is a degradation in the quality of the model, as measured
by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima". Keskar et al, ICLR’17)

128

Minibatch size

I Larger batches provide a more accurate estimate of the
gradient, but with less than linear returns.

I Multicore architectures are usually underutilized by extremely
small batches.

I If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups this is the limiting factor in
batch size.

I It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. Typical power of 2 batch sizes
range from 32 to 256, with 16 sometimes being attempted for
large models.

I Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger batch
there is a degradation in the quality of the model, as measured
by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima". Keskar et al, ICLR’17)

128

Minibatch size

I Larger batches provide a more accurate estimate of the
gradient, but with less than linear returns.

I Multicore architectures are usually underutilized by extremely
small batches.

I If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups this is the limiting factor in
batch size.

I It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. Typical power of 2 batch sizes
range from 32 to 256, with 16 sometimes being attempted for
large models.

I Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger batch
there is a degradation in the quality of the model, as measured
by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima". Keskar et al, ICLR’17)
128

Momentum

Issue in the gradient descent:
I ∇E(~w(t)) constantly changes direction (but the error

steadily decreases).

Solution: In every step add the change made in the previous
step (weighted by a factor α):

∆~w(t) = −ε(t) ·
∑
k∈T

∇Ek (~w(t)) + α ·∆w(t−1)
ji

where 0 < α < 1.

129

Momentum

Issue in the gradient descent:
I ∇E(~w(t)) constantly changes direction (but the error

steadily decreases).

Solution: In every step add the change made in the previous
step (weighted by a factor α):

∆~w(t) = −ε(t) ·
∑
k∈T

∇Ek (~w(t)) + α ·∆w(t−1)
ji

where 0 < α < 1.
129

Momentum – illustration

130

SGD with momentum

I weights in ~w(0) are randomly initialized to values close to 0

I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are
computed as follows:
I Choose (randomly) a set of training examples T ⊆ {1, . . . ,p}
I Compute

~w(t+1) = ~w(t) + ∆~w(t)

where

∆~w(t) = −ε(t) ·
∑
k∈T

∇Ek (~w(t)) + α∆~w(t−1)

I 0 < ε(t) ≤ 1 is a learning rate in step t + 1

I 0 < α < 1 measures the "influence" of the momentum

I ∇Ek (~w(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by
randomly shuffling all data and then choosing minibatches sequentially.

131

Learning rate

132

Search for the learning rate

I Use settings from a successful solution of a similar problem as a
baseline.

I Search for the learning rate using the learning monitoring:

I Search through values from small (e.g. 0.001) to (0.1),
possibly multiplying by 2.

I Train for several epochs, observe the learning curves (see
cross-validation later).

133

Adaptive learning rate

I Power scheduling: Set ε(t) = ε0/(1 + t/s) where ε0 is an initial
learning rate and s a number of steps
(after s steps the learning rate is ε0/2, after 2s it is ε0/3 etc.)

I Exponential scheduling: Set ε(t) = ε0 · 0.1t/s .
(the learning rate decays faster than in the power scheduling)

I Piecewise constant scheduling: A constant learning rate for a
number of steps/epochs, then a smaller learning rate, and so on.

I 1cycle scheduling: Start by increasing the initial learning rate
from ε0 linearly to ε1 (approx. ε1 = 10ε0) halfway through
training. Then decrease from ε1 linearly to ε0. Finish by dropping
the learning rate by several orders of magnitude (still linearly).
According to a 2018 paper by Leslie Smith this may converge much
faster (100 epochs vs 800 epochs on CIFAR10 dataset).

For comparison of some methods see: AN EMPIRICAL STUDY OF LEARNING RATES IN DEEP NEURAL

NETWORKS FOR SPEECH RECOGNITION, Senior et al

134

Adaptive learning rate

I Power scheduling: Set ε(t) = ε0/(1 + t/s) where ε0 is an initial
learning rate and s a number of steps
(after s steps the learning rate is ε0/2, after 2s it is ε0/3 etc.)

I Exponential scheduling: Set ε(t) = ε0 · 0.1t/s .
(the learning rate decays faster than in the power scheduling)

I Piecewise constant scheduling: A constant learning rate for a
number of steps/epochs, then a smaller learning rate, and so on.

I 1cycle scheduling: Start by increasing the initial learning rate
from ε0 linearly to ε1 (approx. ε1 = 10ε0) halfway through
training. Then decrease from ε1 linearly to ε0. Finish by dropping
the learning rate by several orders of magnitude (still linearly).
According to a 2018 paper by Leslie Smith this may converge much
faster (100 epochs vs 800 epochs on CIFAR10 dataset).

For comparison of some methods see: AN EMPIRICAL STUDY OF LEARNING RATES IN DEEP NEURAL

NETWORKS FOR SPEECH RECOGNITION, Senior et al

134

Adaptive learning rate

I Power scheduling: Set ε(t) = ε0/(1 + t/s) where ε0 is an initial
learning rate and s a number of steps
(after s steps the learning rate is ε0/2, after 2s it is ε0/3 etc.)

I Exponential scheduling: Set ε(t) = ε0 · 0.1t/s .
(the learning rate decays faster than in the power scheduling)

I Piecewise constant scheduling: A constant learning rate for a
number of steps/epochs, then a smaller learning rate, and so on.

I 1cycle scheduling: Start by increasing the initial learning rate
from ε0 linearly to ε1 (approx. ε1 = 10ε0) halfway through
training. Then decrease from ε1 linearly to ε0. Finish by dropping
the learning rate by several orders of magnitude (still linearly).
According to a 2018 paper by Leslie Smith this may converge much
faster (100 epochs vs 800 epochs on CIFAR10 dataset).

For comparison of some methods see: AN EMPIRICAL STUDY OF LEARNING RATES IN DEEP NEURAL

NETWORKS FOR SPEECH RECOGNITION, Senior et al

134

Adaptive learning rate

I Power scheduling: Set ε(t) = ε0/(1 + t/s) where ε0 is an initial
learning rate and s a number of steps
(after s steps the learning rate is ε0/2, after 2s it is ε0/3 etc.)

I Exponential scheduling: Set ε(t) = ε0 · 0.1t/s .
(the learning rate decays faster than in the power scheduling)

I Piecewise constant scheduling: A constant learning rate for a
number of steps/epochs, then a smaller learning rate, and so on.

I 1cycle scheduling: Start by increasing the initial learning rate
from ε0 linearly to ε1 (approx. ε1 = 10ε0) halfway through
training. Then decrease from ε1 linearly to ε0. Finish by dropping
the learning rate by several orders of magnitude (still linearly).
According to a 2018 paper by Leslie Smith this may converge much
faster (100 epochs vs 800 epochs on CIFAR10 dataset).

For comparison of some methods see: AN EMPIRICAL STUDY OF LEARNING RATES IN DEEP NEURAL

NETWORKS FOR SPEECH RECOGNITION, Senior et al

134

AdaGrad

So far we have considered fixed schedules for learning rates.

It is better to have
I larger rates for weights with smaller updates,
I smaller rates for weights with larger updates.

AdaGrad uses individually adapting learning rate for each
weight.

135

SGD with AdaGrad

I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), compute ~w(t+1) :
I Choose (randomly) a minibatch T ⊆ {1, . . . ,p}
I Compute

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −

η√
r (t)ji + δ

·

∑
k∈T

∂Ek

∂wji
(~w(t))

and

r (t)ji = r (t−1)
ji +

∑
k∈T

∂Ek

∂wji
(~w(t))


2

I η is a constant expressing the influence of the learning rate,
typically 0.01.

I δ > 0 is a smoothing term (typically 1e-8) avoiding division by 0.

136

SGD with AdaGrad

I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), compute ~w(t+1) :
I Choose (randomly) a minibatch T ⊆ {1, . . . ,p}
I Compute

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −

η√
r (t)ji + δ

·

∑
k∈T

∂Ek

∂wji
(~w(t))

and

r (t)ji = r (t−1)
ji +

∑
k∈T

∂Ek

∂wji
(~w(t))


2

I η is a constant expressing the influence of the learning rate,
typically 0.01.

I δ > 0 is a smoothing term (typically 1e-8) avoiding division by 0.
136

RMSProp

The main disadvantage of AdaGrad is the accumulation of the
gradient throughout the whole learning process.

In case the learning needs to get over several "hills" before
settling in a deep "valley", the weight updates get far too small
before getting to it.

RMSProp uses an exponentially decaying average to discard
history from the extreme past so that it can converge rapidly
after finding a convex bowl, as if it were an instance of the
AdaGrad algorithm initialized within that bowl.

137

SGD with RMSProp
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), compute ~w(t+1) :
I Choose (randomly) a minibatch T ⊆ {1, . . . ,p}
I Compute

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −

η√
r (t)ji + δ

·

∑
k∈T

∂Ek

∂wji
(~w(t))

and

r (t)ji = ρr (t−1)
ji + (1 − ρ)

∑
k∈T

∂Ek

∂wji
(~w(t))


2

I η is a constant expressing the influence of the learning rate
(Hinton suggests ρ = 0.9 and η = 0.001).

I δ > 0 is a smoothing term (typically 1e-8) avoiding division by 0.

138

SGD with RMSProp
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), compute ~w(t+1) :
I Choose (randomly) a minibatch T ⊆ {1, . . . ,p}
I Compute

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −

η√
r (t)ji + δ

·

∑
k∈T

∂Ek

∂wji
(~w(t))

and

r (t)ji = ρr (t−1)
ji + (1 − ρ)

∑
k∈T

∂Ek

∂wji
(~w(t))


2

I η is a constant expressing the influence of the learning rate
(Hinton suggests ρ = 0.9 and η = 0.001).

I δ > 0 is a smoothing term (typically 1e-8) avoiding division by 0.
138

Other optimization methods

There are more methods such as AdaDelta, Adam (roughly
RMSProp combined with momentum), etc.

A natural question: Which algorithm should one choose?

Unfortunately, there is currently no consensus on this point.

According to a recent study, the family of algorithms with
adaptive learning rates (represented by RMSProp and
AdaDelta) performed fairly robustly, no single best algorithm
has emerged.

Currently, the most popular optimization algorithms actively in
use include SGD, SGD with momentum, RMSProp, RMSProp
with momentum, AdaDelta and Adam.

The choice of which algorithm to use, at this point, seems to
depend largely on the user’s familiarity with the algorithm.

139

Other optimization methods

There are more methods such as AdaDelta, Adam (roughly
RMSProp combined with momentum), etc.

A natural question: Which algorithm should one choose?

Unfortunately, there is currently no consensus on this point.

According to a recent study, the family of algorithms with
adaptive learning rates (represented by RMSProp and
AdaDelta) performed fairly robustly, no single best algorithm
has emerged.

Currently, the most popular optimization algorithms actively in
use include SGD, SGD with momentum, RMSProp, RMSProp
with momentum, AdaDelta and Adam.

The choice of which algorithm to use, at this point, seems to
depend largely on the user’s familiarity with the algorithm.

139

Other optimization methods

There are more methods such as AdaDelta, Adam (roughly
RMSProp combined with momentum), etc.

A natural question: Which algorithm should one choose?

Unfortunately, there is currently no consensus on this point.

According to a recent study, the family of algorithms with
adaptive learning rates (represented by RMSProp and
AdaDelta) performed fairly robustly, no single best algorithm
has emerged.

Currently, the most popular optimization algorithms actively in
use include SGD, SGD with momentum, RMSProp, RMSProp
with momentum, AdaDelta and Adam.

The choice of which algorithm to use, at this point, seems to
depend largely on the user’s familiarity with the algorithm.

139

Choice of (hidden) activations

Generic requirements imposed on activation functions:

1. differentiability
(to do gradient descent)

2. non-linearity
(linear multi-layer networks are equivalent to single-layer)

3. monotonicity
(local extrema of activation functions induce local extrema of the error
function)

4. "linearity"
(i.e. preserve as much linearity as possible; linear models are easiest to
fit; find the "minimum" non-linearity needed to solve a given task)

The choice of activation functions is closely related to input
preprocessing and the initial choice of weights. I will illustrate the
reasoning on sigmoidal functions; say few words about other
activation functions later.

140

Activation functions – tanh

σ(ξ) = 1.7159 · tanh(2
3 · ξ), we have limξ→∞ σ(ξ) = 1.7159 and

limξ→−∞ σ(ξ) = −1.7159
141

Activation functions – tanh

σ(ξ) = 1.7159 · tanh(2
3 · ξ) is almost linear on [−1,1]

142

Activation functions – tanh

first derivative: σ(ξ) = 1.7159 · tanh(2
3 · ξ)

143

Input preprocessing
I Some inputs may be much larger than others.

E.g..: Height vs weight of a person, maximum speed of
a car (in km/h) vs its price (in CZK), etc.

I Large inputs have greater influence on the training than the
small ones. In addition, too large inputs may slow down
learning (saturation of activation functions).

I Typical standardization:
I average = 0 (subtract the mean)
I variance = 1 (divide by the standard deviation)

Here the mean and standard deviation may be estimated
from data (the training set).

(illustration of standard deviation)

144

Input preprocessing
I Some inputs may be much larger than others.

E.g..: Height vs weight of a person, maximum speed of
a car (in km/h) vs its price (in CZK), etc.

I Large inputs have greater influence on the training than the
small ones. In addition, too large inputs may slow down
learning (saturation of activation functions).

I Typical standardization:
I average = 0 (subtract the mean)
I variance = 1 (divide by the standard deviation)

Here the mean and standard deviation may be estimated
from data (the training set).

(illustration of standard deviation)

144

Input preprocessing
I Some inputs may be much larger than others.

E.g..: Height vs weight of a person, maximum speed of
a car (in km/h) vs its price (in CZK), etc.

I Large inputs have greater influence on the training than the
small ones. In addition, too large inputs may slow down
learning (saturation of activation functions).

I Typical standardization:
I average = 0 (subtract the mean)
I variance = 1 (divide by the standard deviation)

Here the mean and standard deviation may be estimated
from data (the training set).

(illustration of standard deviation)
144

Initial weights (for tanh)

I Assume weights chosen uniformly in random from
an interval [−w,w] where w depends on the number of
inputs of a given neuron.

I Consider the activation function σ(ξ) = 1.7159 · tanh(2
3 · ξ)

for all neurons.
I σ is almost linear on [−1,1],
I σ saturates out of the interval [−4,4] (i.e. it is close to its

limit values and its derivative is close to 0.
Thus
I for too small w we may get (almost) linear model.
I for too large w (i.e. much larger than 1) the activations may

get saturated and the learning will be very slow.

Hence, we want to choose w so that the inner potentials of
neurons will be roughly in the interval [−1,1].

145

Initial weights (for tanh)

I Assume weights chosen uniformly in random from
an interval [−w,w] where w depends on the number of
inputs of a given neuron.

I Consider the activation function σ(ξ) = 1.7159 · tanh(2
3 · ξ)

for all neurons.
I σ is almost linear on [−1,1],
I σ saturates out of the interval [−4,4] (i.e. it is close to its

limit values and its derivative is close to 0.

Thus
I for too small w we may get (almost) linear model.
I for too large w (i.e. much larger than 1) the activations may

get saturated and the learning will be very slow.

Hence, we want to choose w so that the inner potentials of
neurons will be roughly in the interval [−1,1].

145

Initial weights (for tanh)

I Assume weights chosen uniformly in random from
an interval [−w,w] where w depends on the number of
inputs of a given neuron.

I Consider the activation function σ(ξ) = 1.7159 · tanh(2
3 · ξ)

for all neurons.
I σ is almost linear on [−1,1],
I σ saturates out of the interval [−4,4] (i.e. it is close to its

limit values and its derivative is close to 0.
Thus
I for too small w we may get (almost) linear model.
I for too large w (i.e. much larger than 1) the activations may

get saturated and the learning will be very slow.

Hence, we want to choose w so that the inner potentials of
neurons will be roughly in the interval [−1,1].

145

Initial weights (for tanh)

I Standardization gives mean = 0 and variance = 1 of the input
data.

I Consider a neuron j from the first layer with n inputs. Assume
that its weights are chosen uniformly from [−w,w].

I The rule: choose w so that the standard deviation of ξj (denote
by oj) is close to the border of the interval on which σj is linear.
In our case: oj ≈ 1.

I Our assumptions imply: oj =
√

n
3 · w.

Thus we put w =
√

3
√

n
.

I The same works for higher layers, n corresponds to the number
of neurons in the layer one level lower.

146

Initial weights (for tanh)

I Standardization gives mean = 0 and variance = 1 of the input
data.

I Consider a neuron j from the first layer with n inputs. Assume
that its weights are chosen uniformly from [−w,w].

I The rule: choose w so that the standard deviation of ξj (denote
by oj) is close to the border of the interval on which σj is linear.
In our case: oj ≈ 1.

I Our assumptions imply: oj =
√

n
3 · w.

Thus we put w =
√

3
√

n
.

I The same works for higher layers, n corresponds to the number
of neurons in the layer one level lower.

146

Initial weights (for tanh)

I Standardization gives mean = 0 and variance = 1 of the input
data.

I Consider a neuron j from the first layer with n inputs. Assume
that its weights are chosen uniformly from [−w,w].

I The rule: choose w so that the standard deviation of ξj (denote
by oj) is close to the border of the interval on which σj is linear.
In our case: oj ≈ 1.

I Our assumptions imply: oj =
√

n
3 · w.

Thus we put w =
√

3
√

n
.

I The same works for higher layers, n corresponds to the number
of neurons in the layer one level lower.

146

Initial weights (for tanh)

I Standardization gives mean = 0 and variance = 1 of the input
data.

I Consider a neuron j from the first layer with n inputs. Assume
that its weights are chosen uniformly from [−w,w].

I The rule: choose w so that the standard deviation of ξj (denote
by oj) is close to the border of the interval on which σj is linear.
In our case: oj ≈ 1.

I Our assumptions imply: oj =
√

n
3 · w.

Thus we put w =
√

3
√

n
.

I The same works for higher layers, n corresponds to the number
of neurons in the layer one level lower.

146

Initial weights (for tanh)

I Standardization gives mean = 0 and variance = 1 of the input
data.

I Consider a neuron j from the first layer with n inputs. Assume
that its weights are chosen uniformly from [−w,w].

I The rule: choose w so that the standard deviation of ξj (denote
by oj) is close to the border of the interval on which σj is linear.
In our case: oj ≈ 1.

I Our assumptions imply: oj =
√

n
3 · w.

Thus we put w =
√

3
√

n
.

I The same works for higher layers, n corresponds to the number
of neurons in the layer one level lower.

146

Glorot & Bengio initialization
The previous heuristics for weight initialization ignores variance of the
gradient (i.e. it is concerned only with the "size" of activations in the
forward pass).

Glorot & Bengio (2010) presented a normalized initialization by
choosing w uniformly from the interval:−√

6
m + n

,

√
6

m + n

 =

−
√

3
(m + n)/2

,

√
3

(m + n)/2


Here n is the number of inputs to the layer, m is the number of
outputs of the layer (i.e. the number of neurons in the layer).

This is designed to compromise between the goal of initializing all
layers to have the same activation variance and the goal of initializing
all layers to have the same gradient variance.

The formula is derived using the assumption that the network consists only of
a chain of matrix multiplications, with no non-linearities. Real neural networks
obviously violate this assumption, but many strategies designed for the linear
model perform reasonably well on its non-linear counterparts.

147

Glorot & Bengio initialization
The previous heuristics for weight initialization ignores variance of the
gradient (i.e. it is concerned only with the "size" of activations in the
forward pass).

Glorot & Bengio (2010) presented a normalized initialization by
choosing w uniformly from the interval:−√

6
m + n

,

√
6

m + n

 =

−
√

3
(m + n)/2

,

√
3

(m + n)/2


Here n is the number of inputs to the layer, m is the number of
outputs of the layer (i.e. the number of neurons in the layer).

This is designed to compromise between the goal of initializing all
layers to have the same activation variance and the goal of initializing
all layers to have the same gradient variance.

The formula is derived using the assumption that the network consists only of
a chain of matrix multiplications, with no non-linearities. Real neural networks
obviously violate this assumption, but many strategies designed for the linear
model perform reasonably well on its non-linear counterparts.

147

Glorot & Bengio initialization
The previous heuristics for weight initialization ignores variance of the
gradient (i.e. it is concerned only with the "size" of activations in the
forward pass).

Glorot & Bengio (2010) presented a normalized initialization by
choosing w uniformly from the interval:−√

6
m + n

,

√
6

m + n

 =

−
√

3
(m + n)/2

,

√
3

(m + n)/2


Here n is the number of inputs to the layer, m is the number of
outputs of the layer (i.e. the number of neurons in the layer).

This is designed to compromise between the goal of initializing all
layers to have the same activation variance and the goal of initializing
all layers to have the same gradient variance.

The formula is derived using the assumption that the network consists only of
a chain of matrix multiplications, with no non-linearities. Real neural networks
obviously violate this assumption, but many strategies designed for the linear
model perform reasonably well on its non-linear counterparts.

147

Modern activation functions
For hidden neurons sigmoidal functions are often substituted with
piece-wise linear activations functions. Most prominent is ReLU:

σ(ξ) = max{0, ξ}

I THE default activation function recommended for use with most
feedforward neural networks.

I As close to linear function as possible; very simple; does not
saturate for large potentials.

I Dead for negative potentials.

148

More modern activation functions

I Leaky ReLU (greenboard):
I Generalizes ReLU, not dead for negative potentials.
I Experimentally not much better than ReLU.

I ELU: "Smoothed" ReLU:

σ(ξ) =

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Here α is a parameter, ELU converges to −α as ξ→ −∞. As
opposed to ReLU: Smooth, always non-zero gradient (but
saturates), slower to compute.

I SELU: Scaled variant of ELU: :

σ(ξ) = λ

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Self-normalizing, i.e. output of each layer will tend to preserve
a mean (close to) 0 and a standard deviation (close to) 1 for
λ ≈ 1.050 and α ≈ 1.673, properly initialized weights (see below)
and normalized inputs (zero mean, standard deviation 1).

149

More modern activation functions

I Leaky ReLU (greenboard):
I Generalizes ReLU, not dead for negative potentials.
I Experimentally not much better than ReLU.

I ELU: "Smoothed" ReLU:

σ(ξ) =

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Here α is a parameter, ELU converges to −α as ξ→ −∞. As
opposed to ReLU: Smooth, always non-zero gradient (but
saturates), slower to compute.

I SELU: Scaled variant of ELU: :

σ(ξ) = λ

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Self-normalizing, i.e. output of each layer will tend to preserve
a mean (close to) 0 and a standard deviation (close to) 1 for
λ ≈ 1.050 and α ≈ 1.673, properly initialized weights (see below)
and normalized inputs (zero mean, standard deviation 1).

149

More modern activation functions

I Leaky ReLU (greenboard):
I Generalizes ReLU, not dead for negative potentials.
I Experimentally not much better than ReLU.

I ELU: "Smoothed" ReLU:

σ(ξ) =

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Here α is a parameter, ELU converges to −α as ξ→ −∞. As
opposed to ReLU: Smooth, always non-zero gradient (but
saturates), slower to compute.

I SELU: Scaled variant of ELU: :

σ(ξ) = λ

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Self-normalizing, i.e. output of each layer will tend to preserve
a mean (close to) 0 and a standard deviation (close to) 1 for
λ ≈ 1.050 and α ≈ 1.673, properly initialized weights (see below)
and normalized inputs (zero mean, standard deviation 1).

149

Initializing with Normal Distribution

Denote by n the number of inputs to the initialized layer, and m
the number of neurons in the layer.
I Glorot & Bengio (2010): Choose weights randomly from

the normal distribution with mean 0 and variance
2/(n + m)

Suitable for activation functions: None, tanh, logistic,
softmax

I He (2015): Choose weights randomly from the normal
distribution with mean 0 and variance 2/n
Designed for ReLU, leaky ReLU

I LeCun (1990): Choose weights randomly from the normal
distribution with mean 0 and variance 1/n
Suitable for SELU

150

Initializing with Normal Distribution

Denote by n the number of inputs to the initialized layer, and m
the number of neurons in the layer.
I Glorot & Bengio (2010): Choose weights randomly from

the normal distribution with mean 0 and variance
2/(n + m)

Suitable for activation functions: None, tanh, logistic,
softmax

I He (2015): Choose weights randomly from the normal
distribution with mean 0 and variance 2/n
Designed for ReLU, leaky ReLU

I LeCun (1990): Choose weights randomly from the normal
distribution with mean 0 and variance 1/n
Suitable for SELU

150

Initializing with Normal Distribution

Denote by n the number of inputs to the initialized layer, and m
the number of neurons in the layer.
I Glorot & Bengio (2010): Choose weights randomly from

the normal distribution with mean 0 and variance
2/(n + m)

Suitable for activation functions: None, tanh, logistic,
softmax

I He (2015): Choose weights randomly from the normal
distribution with mean 0 and variance 2/n
Designed for ReLU, leaky ReLU

I LeCun (1990): Choose weights randomly from the normal
distribution with mean 0 and variance 1/n
Suitable for SELU

150

How to choose activation of hidden neurons

I Default is ReLU.
I According to Aurélien Géron:

SELU > ELU > leakyReLU > ReLU > tanh > logistic

For discussion see: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and

Techniques to Build Intelligent Systems, Aurélien Géron

151

Output neurons
The choice of activation functions for output units depends on the
concrete applications.

For regression (function approximation) the output is typically linear.

For classification, the current activation functions of choice are

I logistic sigmoid – binary classification

I softmax: Given an output neuron j ∈ Y

yj = σj(ξj) =
eξj∑

i∈Y eξi

for multi-class classification.

The error function used with softmax (assuming that the target values
dkj are from {0,1}) is typically cross-entropy:

−
1
p

p∑
k=1

∑
j∈Y

dkj ln(yj)

... which somewhat corresponds to the maximum likelihood principle.

152

Output neurons
The choice of activation functions for output units depends on the
concrete applications.

For regression (function approximation) the output is typically linear.

For classification, the current activation functions of choice are

I logistic sigmoid – binary classification

I softmax: Given an output neuron j ∈ Y

yj = σj(ξj) =
eξj∑

i∈Y eξi

for multi-class classification.

The error function used with softmax (assuming that the target values
dkj are from {0,1}) is typically cross-entropy:

−
1
p

p∑
k=1

∑
j∈Y

dkj ln(yj)

... which somewhat corresponds to the maximum likelihood principle.

152

Output neurons
The choice of activation functions for output units depends on the
concrete applications.

For regression (function approximation) the output is typically linear.

For classification, the current activation functions of choice are

I logistic sigmoid – binary classification

I softmax: Given an output neuron j ∈ Y

yj = σj(ξj) =
eξj∑

i∈Y eξi

for multi-class classification.

The error function used with softmax (assuming that the target values
dkj are from {0,1}) is typically cross-entropy:

−
1
p

p∑
k=1

∑
j∈Y

dkj ln(yj)

... which somewhat corresponds to the maximum likelihood principle.
152

Sigmoidal outputs with cross-entropy – in detail

Consider
I Binary classification, two classes {0,1}
I One output neuron j, its activation logistic sigmoid

σj(ξj) =
1

1 + e−ξj

The output of the network is y = σj(ξj).

I For a training set

T =
{ (
~xk ,dk

) ∣∣∣ k = 1, . . . ,p
}

(here ~xk ∈ R
|X | and dk ∈ R), the cross-entropy looks like

this:

Ecross = −
1
p

p∑
k=1

[dk ln(yk) + (1 − dk) ln(1 − yk)]

where yk is the output of the network for the k -th training
input ~xk , and dk is the k -th desired output.

153

Sigmoidal outputs with cross-entropy – in detail

Consider
I Binary classification, two classes {0,1}
I One output neuron j, its activation logistic sigmoid

σj(ξj) =
1

1 + e−ξj

The output of the network is y = σj(ξj).
I For a training set

T =
{ (
~xk ,dk

) ∣∣∣ k = 1, . . . ,p
}

(here ~xk ∈ R
|X | and dk ∈ R), the cross-entropy looks like

this:

Ecross = −
1
p

p∑
k=1

[dk ln(yk) + (1 − dk) ln(1 − yk)]

where yk is the output of the network for the k -th training
input ~xk , and dk is the k -th desired output.

153

Generalization

Intuition: Generalization = ability to cope with new unseen
instances.

Data are mostly noisy, so it is not good idea to fit exactly.

In case of function approximation, the network should not
return exact results as in the training set.

More formally: It is typically assumed that the training set has
been generated as follows:

dkj = gj(~xk) + Θkj

where gj is the "underlying" function corresponding to
the output neuron j ∈ Y and Θkj is random noise.
The network should fit gj not the noise.

Methods improving generalization are called regularization
methods.

154

Generalization

Intuition: Generalization = ability to cope with new unseen
instances.

Data are mostly noisy, so it is not good idea to fit exactly.

In case of function approximation, the network should not
return exact results as in the training set.

More formally: It is typically assumed that the training set has
been generated as follows:

dkj = gj(~xk) + Θkj

where gj is the "underlying" function corresponding to
the output neuron j ∈ Y and Θkj is random noise.
The network should fit gj not the noise.

Methods improving generalization are called regularization
methods.

154

Regularization

Regularization is a big issue in neural networks, as they
typically use a huge amount of parameters and thus are very
susceptible to overfitting.

von Neumann: "With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk."

... and I ask you prof. Neumann:

What can you fit with 40GB of parameters??

155

Regularization

Regularization is a big issue in neural networks, as they
typically use a huge amount of parameters and thus are very
susceptible to overfitting.

von Neumann: "With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk."

... and I ask you prof. Neumann:

What can you fit with 40GB of parameters??

155

Early stopping

Early stopping means that we stop learning before it reaches
a minimum of the error E.

When to stop?

In many applications the error function is not the main thing we
want to optimize.
E.g. in the case of a trading system, we typically want to maximize our profit
not to minimize (strange) error functions designed to be easily differentiable.

Also, as noted before, minimizing E completely is not good for
generalization.

For start: We may employ standard approach of training on one
set and stopping on another one.

156

Early stopping

Early stopping means that we stop learning before it reaches
a minimum of the error E.

When to stop?

In many applications the error function is not the main thing we
want to optimize.
E.g. in the case of a trading system, we typically want to maximize our profit
not to minimize (strange) error functions designed to be easily differentiable.

Also, as noted before, minimizing E completely is not good for
generalization.

For start: We may employ standard approach of training on one
set and stopping on another one.

156

Early stopping

Divide your dataset into several subsets:
I training set (e.g. 60%) – train the network here
I validation set (e.g. 20%) – use to stop the training
I (possibly) test set (e.g. 20%) – use to compare trained

models
What to use as a stopping rule?

You may observe E (or any other function of interest) on the
validation set, if it does not improve for last k steps, stop.

Alternatively, you may observe the gradient, if it is small for
some time, stop.
(recent studies shown that this traditional rule is not too good: it may happen
that the gradient is larger close to minimum values; on the other hand, E
does not have to be evaluated which saves time.

To compare models you may use ML techniques such as
various types of cross-validation etc.

157

Early stopping

Divide your dataset into several subsets:
I training set (e.g. 60%) – train the network here
I validation set (e.g. 20%) – use to stop the training
I (possibly) test set (e.g. 20%) – use to compare trained

models
What to use as a stopping rule?

You may observe E (or any other function of interest) on the
validation set, if it does not improve for last k steps, stop.

Alternatively, you may observe the gradient, if it is small for
some time, stop.
(recent studies shown that this traditional rule is not too good: it may happen
that the gradient is larger close to minimum values; on the other hand, E
does not have to be evaluated which saves time.

To compare models you may use ML techniques such as
various types of cross-validation etc.

157

Size of the network

Similar problem as in the case of the training duration:
I Too small network is not able to capture intrinsic properties

of the training set.
I Large networks overfit faster.

Solution: Optimal number of neurons :-)

I there are some (useless) theoretical bounds
I there are algorithms dynamically adding/removing neurons

(not much use nowadays)
I In practice:
I start using a rule of thumb: the number of neurons ≈ ten

times less than the number of training instances.
I experiment, experiment, experiment.

158

Size of the network

Similar problem as in the case of the training duration:
I Too small network is not able to capture intrinsic properties

of the training set.
I Large networks overfit faster.

Solution: Optimal number of neurons :-)
I there are some (useless) theoretical bounds
I there are algorithms dynamically adding/removing neurons

(not much use nowadays)
I In practice:
I start using a rule of thumb: the number of neurons ≈ ten

times less than the number of training instances.
I experiment, experiment, experiment.

158

Feature extraction

Consider a two layer network. Hidden neurons are supposed to
represent "patterns" in the inputs.

Example: Network 64-2-3 for letter classification:

159

Ensemble methods

Techniques for reducing generalization error by combining
several models.
The reason that ensemble methods work is that different models will usually
not make all the same errors on the test set.

Idea: Train several different models separately, then have all of
the models vote on the output for test examples.

Bagging:
I Generate k training sets T1, ...,Tk by sampling from T

uniformly with replacement.
If the number of samples is |T |, then on average |Ti | = (1 − 1/e)|T |.

I For each i, train a model Mi on Ti .
I Combine outputs of the models: for regression by

averaging, for classification by (majority) voting.

160

Ensemble methods

Techniques for reducing generalization error by combining
several models.
The reason that ensemble methods work is that different models will usually
not make all the same errors on the test set.

Idea: Train several different models separately, then have all of
the models vote on the output for test examples.

Bagging:
I Generate k training sets T1, ...,Tk by sampling from T

uniformly with replacement.
If the number of samples is |T |, then on average |Ti | = (1 − 1/e)|T |.

I For each i, train a model Mi on Ti .
I Combine outputs of the models: for regression by

averaging, for classification by (majority) voting.

160

Dropout

The algorithm: In every step of the gradient descent

I choose randomly a set N of neurons, each neuron is included in
N independently with probability 1/2,
(in practice, different probabilities are used as well).

I do forward and backward propagations only using the selected
neurons
(i.e. leave weights of the other neurons unchanged)

Dropout resembles bagging: Large ensemble of neural networks is
trained "at once" on parts of the data.

Dropout is not exactly the same as bagging: The models share
parameters, with each model inheriting a different subset of
parameters from the parent neural network. This parameter sharing
makes it possible to represent an exponential number of models with
a tractable amount of memory.
In the case of bagging, each model is trained to convergence on its respective
training set. This would be infeasible for large networks/training sets.

161

Dropout

The algorithm: In every step of the gradient descent

I choose randomly a set N of neurons, each neuron is included in
N independently with probability 1/2,
(in practice, different probabilities are used as well).

I do forward and backward propagations only using the selected
neurons
(i.e. leave weights of the other neurons unchanged)

Dropout resembles bagging: Large ensemble of neural networks is
trained "at once" on parts of the data.

Dropout is not exactly the same as bagging: The models share
parameters, with each model inheriting a different subset of
parameters from the parent neural network. This parameter sharing
makes it possible to represent an exponential number of models with
a tractable amount of memory.
In the case of bagging, each model is trained to convergence on its respective
training set. This would be infeasible for large networks/training sets.

161

Weight decay and L2 regularization

Generalization can be improved by removing "unimportant"
weights.

Penalising large weights gives stronger indication about their
importance.

In every step we decrease weights (multiplicatively) as follows:

w(t+1)
ji = (1 − ζ)(w(t)

ji + ∆w(t)
ji)

Intuition: Unimportant weights will be pushed to 0, important
weights will survive the decay.

Weight decay is equivalent to the gradient descent with a
constant learning rate ε and the following error function:

E′(~w) = E(~w) +
2ζ
ε

(~w · ~w)

Here 2ζ
ε (~w · ~w) is the L2 regularization that penalizes large

weights.

162

Weight decay and L2 regularization

Generalization can be improved by removing "unimportant"
weights.

Penalising large weights gives stronger indication about their
importance.

In every step we decrease weights (multiplicatively) as follows:

w(t+1)
ji = (1 − ζ)(w(t)

ji + ∆w(t)
ji)

Intuition: Unimportant weights will be pushed to 0, important
weights will survive the decay.

Weight decay is equivalent to the gradient descent with a
constant learning rate ε and the following error function:

E′(~w) = E(~w) +
2ζ
ε

(~w · ~w)

Here 2ζ
ε (~w · ~w) is the L2 regularization that penalizes large

weights.

162

Weight decay and L2 regularization

Generalization can be improved by removing "unimportant"
weights.

Penalising large weights gives stronger indication about their
importance.

In every step we decrease weights (multiplicatively) as follows:

w(t+1)
ji = (1 − ζ)(w(t)

ji + ∆w(t)
ji)

Intuition: Unimportant weights will be pushed to 0, important
weights will survive the decay.

Weight decay is equivalent to the gradient descent with a
constant learning rate ε and the following error function:

E′(~w) = E(~w) +
2ζ
ε

(~w · ~w)

Here 2ζ
ε (~w · ~w) is the L2 regularization that penalizes large

weights.
162

More optimization, regularization ...

There are many more practical tips, optimization methods,
regularization methods, etc.

For a very nice survey see

http://www.deeplearningbook.org/

... and also all other infinitely many urls concerned with deep
learning.

163

http://www.deeplearningbook.org/

Some applications

164

ALVINN (history)

165

ALVINN

Architecture:
I MLP, 960 − 4 − 30 (also 960 − 5 − 30)
I inputs correspond to pixels

Activity:
I activation functions: logistic sigmoid
I Steering wheel position determined by "center of mass" of

neuron values.

166

ALVINN

Architecture:
I MLP, 960 − 4 − 30 (also 960 − 5 − 30)
I inputs correspond to pixels

Activity:
I activation functions: logistic sigmoid
I Steering wheel position determined by "center of mass" of

neuron values.

166

ALVINN

Learning: Trained during (live) drive.
I Front window view captured by a camera, 25 images per

second.
I Training samples of the form (~xk , ~dk) where
I ~xk = image of the road
I ~dk = corresponding position of the steering wheel

I position of the steering wheel "blurred" by Gaussian
distribution:

dki = e−D2
i /10

where Di is the distance of the i-th output from the one
which corresponds to the correct position of the wheel.

(The authors claim that this was better than the binary
output.)

167

ALVINN – Selection of training samples

Naive approach: take images directly from the camera and
adapt accordingly.

Problems:
I If the driver is gentle enough, the car never learns how to

get out of dangerous situations. A solution may be
I turn off learning for a moment, then suddenly switch on,

and let the net catch on,
I let the driver drive as if being insane (dangerous, possibly

expensive).
I The real view out of the front window is repetitive and

boring, the net would overfit on few examples.

168

ALVINN – Selection of training samples

Naive approach: take images directly from the camera and
adapt accordingly.

Problems:
I If the driver is gentle enough, the car never learns how to

get out of dangerous situations. A solution may be
I turn off learning for a moment, then suddenly switch on,

and let the net catch on,
I let the driver drive as if being insane (dangerous, possibly

expensive).
I The real view out of the front window is repetitive and

boring, the net would overfit on few examples.

168

ALVINN – Selection of training examples
Problem with a "good" driver is solved as follows:

I 15 distorted copies of each image:

I desired output generated for each copy

"Boring" images solved as follows:
I a buffer of 200 images (including 15 copies of the original), in

every step the system trains on the buffer
I after several updates a new image is captured, 15 copies are

made and they will substitute 15 images in the buffer (5 chosen
randomly, 10 with the smallest error).

169

ALVINN – Selection of training examples
Problem with a "good" driver is solved as follows:
I 15 distorted copies of each image:

I desired output generated for each copy

"Boring" images solved as follows:
I a buffer of 200 images (including 15 copies of the original), in

every step the system trains on the buffer
I after several updates a new image is captured, 15 copies are

made and they will substitute 15 images in the buffer (5 chosen
randomly, 10 with the smallest error).

169

ALVINN – Selection of training examples
Problem with a "good" driver is solved as follows:
I 15 distorted copies of each image:

I desired output generated for each copy

"Boring" images solved as follows:
I a buffer of 200 images (including 15 copies of the original), in

every step the system trains on the buffer
I after several updates a new image is captured, 15 copies are

made and they will substitute 15 images in the buffer (5 chosen
randomly, 10 with the smallest error).

169

ALVINN - learning

I pure backpropagation
I constant learning rate
I momentum, slowly increasing.

Results:
I Trained for 5 minutes, speed 4 miles per hour.
I ALVINN was able to drive well on a new road it has never

seen (in different weather conditions).

I The maximum speed was limited by the hydraulic controller
of the steering wheel, not the learning algorithm.

170

ALVINN - learning

I pure backpropagation
I constant learning rate
I momentum, slowly increasing.

Results:
I Trained for 5 minutes, speed 4 miles per hour.
I ALVINN was able to drive well on a new road it has never

seen (in different weather conditions).
I The maximum speed was limited by the hydraulic controller

of the steering wheel, not the learning algorithm.

170

ALVINN - weight development

round 0

round 10

round 20

round 50

h1 h2 h3 h4 h5

Here h1, . . . ,h5 are hidden neurons.
171

MNIST – handwritten digits recognition

I Database of labelled images of
handwritten digits: 60 000
training examples, 10 000 testing.

I Dimensions: 28 x 28, digits are
centered to the "center of gravity"
of pixel values and normalized to
fixed size.

I More at http:
//yann.lecun.com/exdb/mnist/

The database is used as a standard benchmark in lots of publications.

Allows comparison of various methods.

172

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

MNIST – handwritten digits recognition

I Database of labelled images of
handwritten digits: 60 000
training examples, 10 000 testing.

I Dimensions: 28 x 28, digits are
centered to the "center of gravity"
of pixel values and normalized to
fixed size.

I More at http:
//yann.lecun.com/exdb/mnist/

The database is used as a standard benchmark in lots of publications.

Allows comparison of various methods.

172

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

MNIST

One of the best "old" results is the following:

6-layer NN 784-2500-2000-1500-1000-500-10 (on GPU)
(Ciresan et al. 2010)

Abstract: Good old on-line back-propagation for plain multi-layer
perceptrons yields a very low 0.35 error rate on the famous MNIST
handwritten digits benchmark. All we need to achieve this best result so far
are many hidden layers, many neurons per layer, numerous deformed
training images, and graphics cards to greatly speed up learning.

A famous application of a learning convolutional network LeNet-1 in
1998.

173

MNIST – LeNet1

174

MNIST – LeNet1

Interpretation of output:
I the output neuron with the highest value identifies the digit.
I the same, but if the two largest neuron values are too close

together, the input is rejected (i.e. no answer).
Learning:
Inputs:
I training on 7291 samples, tested on 2007 samples

Results:
I error on test set without rejection: 5%
I error on test set with rejection: 1% (12% rejected)

I compare with dense MLP with 40 hidden neurons: error
1% (19.4% rejected)

175

Modern convolutional networks

The rest of the lecture is based on the online book Neural
Networks and Deep Learning by Michael Nielsen.
http://neuralnetworksanddeeplearning.com/index.html

I Convolutional networks are currently the best networks for
image classification.

I Their common ancestor is LeNet-5 (and other LeNets)
from nineties.
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 1998

176

http://neuralnetworksanddeeplearning.com/index.html

AlexNet

In 2012 this network made a breakthrough in ILVSCR
competition, taking the classification error from around 28% to
16%:

A convolutional network, trained on two GPUs.

177

Convolutional networks - local receptive fields

Every neuron is connected with a field of k × k (in this case
5 × 5) neurons in the lower layer (this filed is receptive field).

Neuron is "standard": Computes a weighted sum of its inputs,
applies an activation function.

178

Convolutional networks - stride length

Then we slide the local receptive field over by one pixel to the right
(i.e., by one neuron), to connect to a second hidden neuron:

The "size" of the slide is
called stride length.

The group of all such
neurons is feature map.
all these neurons share
weights and biases!

179

Feature maps

Each feature map represents a property of the input that is
supposed to be spatially invariant.

Typically, we consider several feature maps in a single layer.

180

Pooling

Neurons in the pooling layer compute functions of their
receptive fields:
I Max-pooling : maximum of inputs
I L2-pooling : square root of the sum of squres
I Average-pooling : mean
I · · ·

181

Trained feature maps

(20 feature maps, receptive fields 5 × 5)

182

Trained feature maps

183

Simple convolutional network

28 × 28 input image, 3 feature maps, each feature map has its
own max-pooling (field 5 × 5, stride = 1), 10 output neurons.

Each neuron in the output layer gets input from each neuron in
the pooling layer.

Trained using backprop, which can be easily adapted to
convolutional networks.

184

Convolutional network

185

Simple convolutional network vs MNIST

two convolutional-pooling layers, one 20, second 40 feature
maps, two dense (MLP) layers (1000-1000), outputs (10)
I Activation functions of the feature maps and dense layers:

ReLU
I max-pooling
I output layer: soft-max

I Error function: negative log-likelihood (= cross-entropy)

I Training: SGD, mini-batch size 10
I learning rate 0.03
I L2 regularization with "weight" λ = 0.1 + dropout with prob.

1/2
I training for 40 epochs (i.e. every training example is

considered 40 times)

I Expanded dataset: displacement by one pixel to an
arbitrary direction.

I Committee voting of 5 networks. 186

MNIST

Out of 10 000 images in the test set, only these 33 have been
incorrectly classified:

187

More complex convolutional networks

Convolutional networks have been used for classification of
images from the ImageNet database (16 million color images,
20 thousand classes)

188

ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC)

Competition in classification over a subset of images from
ImageNet.
Started in 2010, assisted in breakthrough in image recognition.

Training set 1.2 million images, 1000 classes. Validation set: 50
000, test set: 150 000.

Many images contain more than one object⇒ model is allowed
to choose five classes, the correct label must be among the
five. (top-5 criterion).

189

AlexNet

ImageNet classification with deep convolutional neural networks, by Alex
Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton (2012).

Trained on two GPUs (NVIDIA GeForce GTX 580)

Výsledky:
I accuracy 84.7% in top-5 (second best algorithm at the time

73.8%)
I 63.3% "perfect" (top-1) classification

190

ILSVRC 2014

The same set as in 2012, top-5 criterion.

GoogLeNet: deep convolutional network, 22 layers

Results:
I Accuracy 93.33% top-5

191

ILSVRC 2015

I Deep convolutional network
I Various numbers of layers, the winner has

152 layers
I Skip connections implementing residual

learning

I Error 3.57% in top-5.

192

ILSVRC 2016

Trimps-Soushen (The Third Research Institute of Ministry of
Public Security)

There is no new innovative technology or novelty by
Trimps-Soushen.

Ensemble of the pretrained models from Inception-v3,
Inception-v4, Inception-ResNet-v2, Pre-Activation ResNet-200,
and Wide ResNet (WRN-68–2).

Each of the models are strong at classifying some categories,
but also weak at classifying some categories.

Test error: 2.99%

193

Top-k accuracy analyzed

https://towardsdatascience.com/review-trimps-soushen-winner-in-ilsvrc-2016-image-classification-dfbc423111dd

194

Top-20 typical errors

Out of 1458 misclassified images in Top-20:

https://towardsdatascience.com/review-trimps-soushen-winner-in-ilsvrc-2016-image-classification-dfbc423111dd

195

Top-k accuracy analyzed

https://towardsdatascience.com/review-trimps-soushen-winner-in-ilsvrc-2016-image-classification-dfbc423111dd

196

Top-k accuracy analyzed

https://towardsdatascience.com/review-trimps-soushen-winner-in-ilsvrc-2016-image-classification-dfbc423111dd
197

Top-k accuracy analyzed

https://towardsdatascience.com/review-trimps-soushen-winner-in-ilsvrc-2016-image-classification-dfbc423111dd
198

Top-k accuracy analyzed

https://towardsdatascience.com/review-trimps-soushen-winner-in-ilsvrc-2016-image-classification-dfbc423111dd

199

Superhuman convolutional nets?!

Andrej Karpathy: ...the task of labeling images with 5 out of 1000
categories quickly turned out to be extremely challenging, even for some
friends in the lab who have been working on ILSVRC and its classes for a
while. First we thought we would put it up on [Amazon Mechanical Turk].
Then we thought we could recruit paid undergrads. Then I organized a
labeling party of intense labeling effort only among the (expert labelers) in
our lab. Then I developed a modified interface that used GoogLeNet
predictions to prune the number of categories from 1000 to only about 100. It
was still too hard - people kept missing categories and getting up to ranges of
13-15% error rates. In the end I realized that to get anywhere competitively
close to GoogLeNet, it was most efficient if I sat down and went through the
painfully long training process and the subsequent careful annotation process
myself... The labeling happened at a rate of about 1 per minute, but this
decreased over time... Some images are easily recognized, while some
images (such as those of fine-grained breeds of dogs, birds, or monkeys) can
require multiple minutes of concentrated effort. I became very good at
identifying breeds of dogs... Based on the sample of images I worked on, the
GoogLeNet classification error turned out to be 6.8%... My own error in the
end turned out to be 5.1%, approximately 1.7% better.

200

Does it really work?

201

Convolutional networks – theory

202

Convolutional network

203

Convolutional layers

Every neuron is connected with a (typically small) receptive
field of neurons in the lower layer.

Neuron is "standard": Computes a weighted sum of its inputs,
applies an activation function.

204

Convolutional layers

Neurons grouped into
feature maps sharing
weights.

205

Convolutional layers

Each feature map represents a property of the input that is
supposed to be spatially invariant.

Typically, we consider several feature maps in a single layer.

206

Pooling layers

Neurons in the pooling layer compute simple functions of their
receptive fields (the fields are typically disjoint):
I Max-pooling : maximum of inputs
I L2-pooling : square root of the sum of squres
I Average-pooling : mean
I · · ·

207

Convolutional networks – architecture

Neurons organized in layers, L0,L1, . . . ,Ln, connections
(typically) only from Lm to Lm+1.

Several types of layers:
I input layer L0

I dense layer Lm: Each neuron of Lm connected with each
neuron of Lm−1.

I convolutional & pooling layer Lm: Contains two
sub-layers:
I convolutional layer: Neurons organized into disjoint

feature maps, all neurons of a given feature map share
weights (but have different inputs)

I pooling layer: Each (convolutional) feature map F has
a corresponding pooling map P. Neurons of P
I have inputs only from F (typically few of them),
I compute a simple aggregate function (such as max),
I have disjoint inputs.

208

Convolutional networks – architecture

Neurons organized in layers, L0,L1, . . . ,Ln, connections
(typically) only from Lm to Lm+1.

Several types of layers:
I input layer L0

I dense layer Lm: Each neuron of Lm connected with each
neuron of Lm−1.

I convolutional & pooling layer Lm: Contains two
sub-layers:
I convolutional layer: Neurons organized into disjoint

feature maps, all neurons of a given feature map share
weights (but have different inputs)

I pooling layer: Each (convolutional) feature map F has
a corresponding pooling map P. Neurons of P
I have inputs only from F (typically few of them),
I compute a simple aggregate function (such as max),
I have disjoint inputs.

208

Convolutional networks – architecture

Neurons organized in layers, L0,L1, . . . ,Ln, connections
(typically) only from Lm to Lm+1.

Several types of layers:
I input layer L0

I dense layer Lm: Each neuron of Lm connected with each
neuron of Lm−1.

I convolutional & pooling layer Lm: Contains two
sub-layers:
I convolutional layer: Neurons organized into disjoint

feature maps, all neurons of a given feature map share
weights (but have different inputs)

I pooling layer: Each (convolutional) feature map F has
a corresponding pooling map P. Neurons of P
I have inputs only from F (typically few of them),
I compute a simple aggregate function (such as max),
I have disjoint inputs.

208

Convolutional networks – architecture

Neurons organized in layers, L0,L1, . . . ,Ln, connections
(typically) only from Lm to Lm+1.

Several types of layers:
I input layer L0

I dense layer Lm: Each neuron of Lm connected with each
neuron of Lm−1.

I convolutional & pooling layer Lm: Contains two
sub-layers:
I convolutional layer: Neurons organized into disjoint

feature maps, all neurons of a given feature map share
weights (but have different inputs)

I pooling layer: Each (convolutional) feature map F has
a corresponding pooling map P. Neurons of P
I have inputs only from F (typically few of them),
I compute a simple aggregate function (such as max),
I have disjoint inputs.

208

Convolutional networks – architecture
I Denote
I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

I [ji] is a set of all connections (i.e. pairs of neurons) sharing
the weight wji . 209

Convolutional networks – activity
I neurons of dense and convolutional layers:
I inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

I activation function σj for neuron j (arbitrary differentiable):

yj = σj(ξj)

I Neurons of pooling layers: Apply the "pooling" function:
I max-pooling:

yj = max
i∈j←

yi

I avg-pooling:

yj =

∑
i∈j← yi

|j←|
A convolutional network is evaluated layer-wise (as MLP), for each j ∈ Y we
have that yj(~w, ~x) is the value of the output neuron j after evaluating the
network with weights ~w and input ~x.

210

Convolutional networks – activity
I neurons of dense and convolutional layers:
I inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

I activation function σj for neuron j (arbitrary differentiable):

yj = σj(ξj)

I Neurons of pooling layers: Apply the "pooling" function:
I max-pooling:

yj = max
i∈j←

yi

I avg-pooling:

yj =

∑
i∈j← yi

|j←|
A convolutional network is evaluated layer-wise (as MLP), for each j ∈ Y we
have that yj(~w, ~x) is the value of the output neuron j after evaluating the
network with weights ~w and input ~x.

210

Convolutional networks – learning

Learning:
I Given a training set T of the form{ (

~xk , ~dk

) ∣∣∣ k = 1, . . . ,p
}

Here, every ~xk ∈ R
|X | is an input vector end every ~dk ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input ~xk (the vector ~dk can be written as

(
dkj

)
j∈Y

).

I Error function – mean squared error (for example):

E(~w) =
1
p

p∑
k=1

Ek (~w)

where

Ek (~w) =
1
2

∑
j∈Y

(
yj(~w, ~xk) − dkj

)2

211

Convolutional networks – SGD

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2),
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:
I Choose (randomly) a set of training examples T ⊆ {1, . . . ,p}
I Compute

~w(t+1) = ~w(t) + ∆~w(t)

where

∆~w(t) = −ε(t) ·
1
|T |

∑
k∈T

∇Ek (~w(t))

Here T is a minibatch (of a fixed size),
I 0 < ε(t) ≤ 1 is a learning rate in step t + 1
I ∇Ek (~w(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented
by randomly shuffling all data and then choosing minibatches
sequentially. Epoch consists of one round through all data. 212

Backprop

Recall that ∇Ek (~w(t)) is a vector of all partial derivatives of
the form ∂Ek

∂wji
.

How to compute ∂Ek
∂wji

?

First, switch from derivatives w.r.t. wji to derivatives w.r.t. yj :
I Recall that for every wji where j is in a dense layer, i.e.

does not share weights:

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

I Now for every wji where j is in a convolutional layer:

∂Ek

∂wji
=

∑
r`∈[ji]

∂Ek

∂yr
· σ′r (ξr) · y`

I Neurons of pooling layers do not have weights.

213

Backprop

Recall that ∇Ek (~w(t)) is a vector of all partial derivatives of
the form ∂Ek

∂wji
.

How to compute ∂Ek
∂wji

?

First, switch from derivatives w.r.t. wji to derivatives w.r.t. yj :
I Recall that for every wji where j is in a dense layer, i.e.

does not share weights:

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

I Now for every wji where j is in a convolutional layer:

∂Ek

∂wji
=

∑
r`∈[ji]

∂Ek

∂yr
· σ′r (ξr) · y`

I Neurons of pooling layers do not have weights.

213

Backprop

Recall that ∇Ek (~w(t)) is a vector of all partial derivatives of
the form ∂Ek

∂wji
.

How to compute ∂Ek
∂wji

?

First, switch from derivatives w.r.t. wji to derivatives w.r.t. yj :
I Recall that for every wji where j is in a dense layer, i.e.

does not share weights:

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

I Now for every wji where j is in a convolutional layer:

∂Ek

∂wji
=

∑
r`∈[ji]

∂Ek

∂yr
· σ′r (ξr) · y`

I Neurons of pooling layers do not have weights.
213

Backprop
Now compute derivatives w.r.t. yj :
I for every j ∈ Y :

∂Ek

∂yj
= yj − dkj

This holds for the squared error, for other error functions the derivative
w.r.t. outputs will be different.

I for every j ∈ Z r Y such that j→ is either a dense layer, or a
convolutional layer:

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

I for every j ∈ Z r Y such that j→ is max-pooling: Then j→ = {i} for
a single "max" neuron and we have

∂Ek

∂yj
=

 ∂Ek
∂yi

if j = arg max r∈i←yr

0 otherwise

I.e. gradient can be propagated from the output layer downwards as in MLP.

214

Backprop
Now compute derivatives w.r.t. yj :
I for every j ∈ Y :

∂Ek

∂yj
= yj − dkj

This holds for the squared error, for other error functions the derivative
w.r.t. outputs will be different.

I for every j ∈ Z r Y such that j→ is either a dense layer, or a
convolutional layer:

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

I for every j ∈ Z r Y such that j→ is max-pooling: Then j→ = {i} for
a single "max" neuron and we have

∂Ek

∂yj
=

 ∂Ek
∂yi

if j = arg max r∈i←yr

0 otherwise

I.e. gradient can be propagated from the output layer downwards as in MLP.

214

Backprop
Now compute derivatives w.r.t. yj :
I for every j ∈ Y :

∂Ek

∂yj
= yj − dkj

This holds for the squared error, for other error functions the derivative
w.r.t. outputs will be different.

I for every j ∈ Z r Y such that j→ is either a dense layer, or a
convolutional layer:

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

I for every j ∈ Z r Y such that j→ is max-pooling: Then j→ = {i} for
a single "max" neuron and we have

∂Ek

∂yj
=

 ∂Ek
∂yi

if j = arg max r∈i←yr

0 otherwise

I.e. gradient can be propagated from the output layer downwards as in MLP.
214

Convolutional networks – summary

I Conv. nets. are nowadays the most used networks in
image processing (and also in other areas where input has
some local, "spatially" invariant properties)

I Typically trained using backpropagation.
I Due to the weight sharing allow (very) deep architectures.
I Typically extended with more adjustments and tricks in

their topologies.

215

