PV181 Laboratory of security

and applied cryptography

Asymmetric cryptography

CR CS

Centre for Res
Cryptography ar IS

Marek Sys, Zdené&k Riha

1 | Pv181 www.fi.muni.cz/crocs

CR& CS

Public vs private key cryptography

* Private (symmetric)
— both parties share secret (private)
— Pros: fast encryption
— Cons: key distribution requires secure channel
* Public (asymmetric)
— one key is public
— Pros - key distribution — insecure channel is OK
— Cons - slow encryption
* Practice - private + public:
— public used to establish key for private key system

2 | Pv181 www.fi.muni.cz/crocs

CR& CS

Asymmetric cryptography

* Two related keys — created by one party

— different inverse operations (encryption - decryption,
signing — signature verification)

* Properties - hard to compute private from public key
— based on hard mathematical problems

« Hard problems and cryptosystems:
— Integer factorization — RSA, Rabin, ...
— Discrete logarithm problem (DLP): EIGamal, EC, DSA, ...
— Others (DH, decoding,...) — Diffie-Helman, McElliece,...

3 | PV181 www.fi.muni.cz/crocs

CR& CS

Asymmetric cryptosystem

Public key of Bob

0,

Private key of Bob

mO,

Alice Bob
message Encrypted Decrypted
message original
Adapted Source: Network and message

Internetwork Security (Stallings)

4 | PVv181 www.fi.muni.cz/crocs

CR& CS

Asymmetric cryptosystem

* Bob generates both keys:
— Public is sent to Alice
— Private is kept secret

» Alice encrypt message with her public key and
send it to Bob

* Bob decrypt message using his private key

5 | PV181 www.fi.muni.cz/crocs

CR& CS

Digital signature

« Asymmetric cryptography
— Private key — signature generation (usually only hash of
data is signed not data itself)

— Public key — verification procedure
- Data integrity + data origin + non-repudiation:

* Non-repudiation - correct signatures can be
generated only by those having the private key

* The digital signature itself does not give any
guarantees with respect to signing time.

www.fi.muni.cz/crocs

CR& CS

Digital signature scheme

Public key of Alice

Oz,

Private key of Alice

Qzr,

Bob

Alice
message

signed
message

verified

message

Source: Network and
Internetwork Security (Stallings)

7 | PV181 www.fi.muni.cz/crocs

CR& CS

Digital signature

» Alice generates key pair

— Public key is published (sent to Bob) for verification of
signature

 Alice signh a document using her private key
« Bob use public key to verify the digital signature

8 | Pv181 www.fi.muni.cz/crocs

CR& CS

RSA: matematics

1. Secretprimesp,q:. n =7p.q
2. Public exponent e:

ng(e! (p _ 1)) = gcd(e, (q _ 1)) =1
3. Private exponentd : de = 1mod ¢(n)
Encryption (public n, e): E(m)=m®modn=c
Decryption (public n, d): D(c)=c®modn=m

RSA-1024: means n has 1024 bitsand m < n

9 | Pvist www.fi.muni.cz/crocs

CR& CS

RSA example

¢ Intentionally small numbers (not secure).
« We generate parameters: p=17,q=7,n=p.q =119

* Public exponentis selected e = 3,5 (gcd(3,7 — 1) = 3)

* Private exponent computed:
ed =5d =1 (mod 96) to have d=77.

* The public key: (n =119, e =5},
The private key: (n =119, d =77)

« Encryption/decryption:
— Message m='C' =65
— Encryption m’ = 65°% mod 119 = 46.
— Decryption m = 467" mod 119 = 65

10 | PVv181 www.fi.muni.cz/crocs

CR& CS

RSA Padding example (PKCS#1 v1.5)

« Document
—“000102030405060707060504030201”

» Hash of the document (sha-1)

— "b339904cd2a0 10 e6 19 37 eb €5 b5 83 37 8¢ 5d 10
51 95"

 Padded hash

— “00 O ff ff ff ff ff ff ff ff ff ff £f ff ff ff £ff £f £f ff ff ff £f £f £f ff ff ff OO
3021 30 09 06 05 0500 04 14 b3 39 90 4c
d2a010e6 19 37 eb €5 b5 83 37 8¢ 5d 10 51 95"

www.fi.muni.cz/crocs

CR& CS

RSA in practice: Padding

* u(M)=06bbb ... bbba || Hash(M) || 3x cc

where x = 3 for SHA-1, 1 for RIPEMD-160
— ANSI X9.31

. u(M) =00 01 ff ... ff 00 || HashAlIgID || Hash(M)
— PKCS #1 v1.5

c u(M)=00 || H || G(H) @ [salt || 00 ... 00]
where H = Hash(salt, M), salt is random, and G is a
mask generation function

— Probabilistic Signature Scheme (PSS)

www.fi.muni.cz/crocs

CR& CS

Hard problems

* Integer factorization
— for n find divisor p of n

* Discrete logarithm problem:
— in Z,, Elliptic curves (EC)
fory=g+g*--xg=g*findx
+ represents operation (, +) for given domain (integers, EC)
— Domain parameters:
* g, n = ord(g) - n should be large
* params defining algebraic structure: Z,, or EC

13 | PV181 www.fi.muni.cz/crocs

CR& CS

DLP for integers

For g,p,y find integer x such that
y=g*modp
g=2p=31
g* mod p: 2,4,8,16,1 = 3° mod 31 (order = 5)

g=3p=31

g* mod p: 3,9,27,19, ...,33° mod 31 =1
full order = 30, 3 is generator (all numbers)

14 | Pv181 www.fi.muni.cz/crocs

CR& CS

Digital Signature Standard (DSS)

Si | G T Si | Verificati
Messaige/Data Message/Data
Hash Function Hash Function
Message Digest Message Digest
Private Public
Key Slgnatu_re Key — ™ Si(_:_jr_latu_re __» Valid or
Generation Verification Invalid
—*Signature —»
Figure 1: Digital Signature Processes

15 | PVv181 www.fi.muni.cz/crocs

CR& CS

Digital Signature Standard (DSS)
« Signing:

— Hash H(m) of message m is computed

— H(m) is signed (E(H(m))) with private key
 Verification:

— Public key is applied to E(H(m)) to get H(m) of original m

— m’ (obtained along with signature) is hashed to H(m’)

— if H(m) is equal to H(m’) signature is verified

16 | PVv181 www.fi.muni.cz/crocs

CR& CS

Digital Signature Algorithm (DSA)

Proposed in 1991 by NIST

In 1994 the selection procedure for Digital Signature Standard
(DSS) was concluded — DSA (Digital Signature Algorithm) was
selected.

Modified version of EIGamal algorithm, based on discrete
logarithm in Z,,.

Became FIPS standard FIPS 186 in 1993.
Slightly modified in 1996 as FIPS 186-1.
Extended in 2000 as FIPS 186-2.

Updated in 2009 as FIPS 186-3 (new key sizes).

Now NIST FIPS 186-3 supports RSA & DSA & ECDSA.

www.fi.muni.cz/crocs

CR& CS

DSS

« Selection of Parameter Sizes and Hash Functions
« Domain Parameter Generation
- only for DSA, ECDSA

« Signature Generation

« Signature Verification and Validation

18 | PVv181 www.fi.muni.cz/crocs

CR& CS

DSA: mathematics

» Key generation — domain parameters

— Decide on a key length L and N, e.g. (1024,160).
* N must be less than or equal to the hash output length

— Choose an N-bit prime q. [‘order of g w.r.t p”]

— Choose an L-bit prime modulus p such that p—1 is a multiple
of g.

— Choose g, a number whose multiplicative order modulo p is q,
e.g. g = h*-1a mod p for some arbitrary h (1 < h < p-1).
[‘generator’]

— Domain parameters (p, g, g) may be shared between different
users of the DSA system.

www.fi.muni.cz/crocs

CR& CS

DSA: mathematics Il

« Key generation
— Choose random x, such that 0 < x <q.
— Calculate y = g* mod p.

* Private key: x.
* Public key: y & (p, g, 9).

www.fi.muni.cz/crocs

CR& CS

DSA: mathematics lli

« Signature generation
— Generate a random per-message value k such that 0 <k < q.
— Calculate r = (gk mod p) mod q
— Calculate s = (k"'(H(m) + x*r)) mod g
— The signature is (r, s).

 Signature verification
—w=(s)""mod q
— u1 = (H(m)*w) mod g
— u2 = (rw) mod q
— v = ((g"™y") mod p) mod g
— The signature is validifv=r

 For DSA (1024,160) the signature size will be 2x160 bits.

CR& CS

DSA: Padding

* Decide on lengths L and N, e.g. (1024,160).
— N must be less than or equal to the hash output length

« E.g. for (1024,160) sha-1 is typically used,
sha-256 would be ok as well and only first 160 bits would be
used

— s = (k"(H(m) + x*r)) mod q

+ “lItis recommended that the security strength of the (L, N) pair and the security strength of the hash
function used for the generation of digital signatures be the same unless an agreement has been
made between participating entities to use a stronger hash function. When the length of the output of
the hash function is greater than N (i.e., the bit length of q), then the leftmost N bits of the hash
function output block shall be used in any calculation using the hash function output during the
generation or verification of a digital signature. A hash function that provides a lower security
strength than the (L, N) pair ordinarily should not be used, since this would reduce the security
strength of the digital signature process to a level no greater than that provided by the hash
function.” [FIPS 186-3]

www.fi.muni.cz/crocs

CR& CS

Elliptic curve DSA (ECDSA)

* Elliptic curves invented by Koblitz & Miller in 1985.
« ECDSA proposed in 1992 by Vanstone

« Became ISO standard (ISO 14888-3) in 1998

« Became ANSI standard (ANSI X9.62) in 1999

- ECDSA is a version of DSA based on elliptic
curves.

www.fi.muni.cz/crocs

CR& CS

ECDSA: Elliptic curve domain parameters

« (field,a,b,G,n,h)
— Finite field
* pforF,
* m, bases (trinomial, pentanomial) for F,m
— Coefficients a, b: y? = x3 + ax +b
— Group generator: G
— Order of the G: n
— Optional cofactor: h
* (h = number of elements in field / order n)

— The base point G generates a cyclic subgroup of order nin
the field.

www.fi.muni.cz/crocs

CR& CS

ECDSA: Keys

* Generating key pair
— Select a random integer d from [1,n — 1]
— Compute P = d*G;

* Private key: d

* Public key: P

* For 256-bit curve

— the private key d will be approx. 256-bit long

— the public key P is a point on the curve — will be approx
512-bit long

www.fi.muni.cz/crocs

CR& CS

ECDSA Signatures
Generate signature
— Select a random integer k from [1,n — 1]
— (x4,y4) = K°G
— Calculate r = x, (mod n)
— Calculate s = k(M + r*d) (mod n)
— Signature is (r,s).
 Signature verification
— Calculate w = s™1 (mod n)
— Calculate uy; = z*w (mod n) & u, = r*'w (mod n)
— Calculate (x;,y4) =u,*G + u,"P
— The signature is valid if r = x, (mod n).

* For 256-bit curve the signature length will be approx.
512 bits

www.fi.muni.cz/crocs

CR& CS

ECDSA: Padding

 Rules are same as for DSA

« ‘It is recommended that the security strength associated with the bit length of
n and the security strength of the hash function be the same unless an
agreement has been made between participating entities to use a stronger
hash function. When the length of the output of the hash function is greater
than the bit length of n, then the leftmost n bits of the hash function output
block shall be used in any calculation using the hash function output during
the generation or verification of a digital signature. A hash function that
provides a lower security strength than the security strength associated with
the bit length of n ordinarily should not be used, since this would reduce the
security strength of the digital signature process to a level no greater than that
provided by the hash function.” [FIPS 186-3]

www.fi.muni.cz/crocs

CR& CS

Digital certificate

28 | pv1s1 www.fi.muni.cz/crocs

CR& CS

Digital certificate

* used to prove ownership of the public key
 binds public key to identity (identity, email,...)

* Public key certificate is signed by trusted third
party — Certification Authority (CA)

 two models: centralized and decentralized

www.fi.muni.cz/crocs

CR& CS

Trust models

» Public key infrastructure (PKI)
— centralized — hierarchy of CA’s
— cert signed by party
— used in web browsers
— standard X.509

 \Web of trust

— decentralized model

— signed by many parties
— used in PGP, GPG

— standard OpenPGP

www.fi.muni.cz/crocs

CR& CS

Public key Infrastructure (PKI)

« set of roles and procedures:

- Issue, maintain, administer, revoke, suspend, reinstate, and
renew digital certificates

- create and manage a public key repository

PKI:

 CA - stores, issues, signs certs

* RA - verifies identity

« Central directory— cert requests issued and revoked,
Management system

« Cert policy

www.fi.muni.cz/crocs

CR& CS

X.509 PKI certificate

 Certification Authority — trusted third party

 Certificate revocation lists (CRL) — certificates no
longer be trusted (compromised key, CA,...)

« RFC5280 — defines format and semantics of certs
and CRLs

« X.509 versions 1,2,3

32 | PV181 www.fi.muni.cz/crocs

CR& CS

X.509 PKI certificate content

Serial Number: unique ID of cert

Subject: ID of entity

Signature algorithm:

Signature:

Issuer: verifier of info and issued cert

Valid—From: date cert is first valid from

Valid-To: expiry date

Key-Usage: purpose of PK (signature, cert signing, ...)
Public Key:

Thumbprint algorithm: to compute hash of PK cert
Thumbprint (fingerprint): hash of abbreviated PK cert

www.fi.muni.cz/crocs

CR& CS

Certificate issuing

user CA

CA |
certificate I
[
I

~ Greate G5H
(Certificate signing Reguest)
and Private Key

SR

of CSR signed by CA

|
U Private-key
|
|

I
I
I
J

Certificate
signed by
CA

www.fi.muni.cz/crocs

CR& CS

Certificate issuing

« User:
— creates key pair

— public + info is used to create - certification signing request
— CSR(cert. s. request) is sent to CA

- CA
— cert is created = CSR is signed by private key of CA
— Cert is sent to user

35 | PV181 www.fi.muni.cz/crocs

CR& CS

Certificate verification

Checking single cert:

« current date against validity period
 current validity of CA public key
 signature of CA on cert

 check whether certificate is revoked
— CRL or OCSP

* policies

www.fi.muni.cz/crocs

CR& CS

Certificates hierarchy

* root CA (trust anchor) - self-signed certificate
* Intermediate CA’s
* End entity — user certificate

Intermediate Intermediate
CA CA
[1
Leaf CA l Leaf CA

Li I 1] i

]
End-entity End-entity End-entity End-entity End-entity End-entity
certificate certificate certificate certificate certificate certificate

www.fi.muni.cz/crocs

CR& CS

Certificates hierarchy

* root CA (trust anchor) - self-signed certificate
* Intermediate CA’s
* End entity — user certificate

* Tree structure
— root = root CA
— nodes = intermediate CA's
— leaves = end user certificates

www.fi.muni.cz/crocs

CR& CS

Chain of trust

* Trust transfer — to lower CA’s

 Root cert, intermediate certs, end-user cert.
 Chain:
— end-user cert — signed by CA1

— CA1 cert — signed by CAZ2...
— root CA cert — signed by itself

Server — sends all certs up to root cert to browser

39 | Pv181 www.fi.muni.cz/crocs

CR& CS

Chain of trust

Erd-entity Certificate

Owner's name

Owner's public key

Issuer's (CA's) reference
name
lssuer's signature | Intermediate Certificate
‘ _ Owner's ([CA's) name
— Owner's public key

lssuer's (root CA's) referance

name

Issuer's signature

+ : Root CA's name
SIgi

. Root CA's public key

q Root CA's signature

Raot Certificate

saif-

40 | pv181 www.fi.muni.cz/crocs

CR& CS

Chain of trust - text

Cert = Owner’s name, Owner PK, Issuer’s name,
Issuer signature

1. End entity cert
— Issuer reference to 2.cert owner’s name

2. Intermediate cert
— issuer reference to 3.root cert owner’s name

3. Root cert

41 | pv1s1 www.fi.muni.cz/crocs

CR& CS

Certificate path validation

Input: cert path, trust anchor

Path validation:

1.

42 | Pv181 www.fi.muni.cz/crocs

-

C

O 0 O

nec
nec
nec

nec

K all certs If still valid
K revocation status of certs
K issuer = of previous cert subject

K policy constraints

CR& CS

Revocation

« Reasons for revocation

— key compromise (most common), CA compromise,
affiliation change,...

* Two states:
— revoked — irreversibly for compromised private key

— hold — unsure user about key compromising, can be
reinstalled

« Checked using:
— CRL - list of revoked certs
— Online Certificate Status Protocol — on demand

43 | Pv181 www.fi.muni.cz/crocs

CR& CS

CRL

Issued by CA:

 Certificate Revocation List (CRL):
— list of revoked certificates of end-users

* Authority Revocation list
— List of revoked cert of CA's

ssuer name
Date list created

Date next CRL scheduled

Entries = serial number + revocation date of cert

s b=

44 | pv181 www.fi.muni.cz/crocs

