

2. Modern Javascript & ES6

First things first 1

Basic syntactic constructs in JS (es2015+) 2

First things first
At first, you need to install a minimal set of tools necessary for development. The most important
(means that there is not an alternative to) is

Node.js

Node.js​ is a javascript environment able to run JS code outside of a web
browser. It is based on the Chrome V8 JavaScript engine.

What is a V8 engine?
V8 is an open-source high performance JavaScript WebAssembly engine,
written in C++. It is used in Chrome web browser or Node.js, among others. It
implements ​ECMAScript​ (explanation next) and ​WebAssembly​, runs on every
popular OS like Windows 7 and higher, macOS 10.12+, and Linux systems that
use x64, IA-32, ARM, or MIPS processors. (​https://v8.dev/​)

In this lesson, Node.js environment will be used for interpretation of simple javascript code
snippets.

IDE
You can choose from plenty of various development environments. On the internet, there are
plenty of articles with pros and cons for any of them (​example​). In InQool, we tend to use Visual
Studio Code. For the examples, demos and snippets of this course, we will use this IDE as well.
It’s portable for all platforms and free to download. For later assignments you will also have an
option to use online IDE ​Repl.it​ with it’s integration for github education. If anyone has personal
preference to use something else, of course you can, but maybe we won’t be able to help you
with some problematic stuff.

Useful extensions for VS Code:

1

https://nodejs.org/en/
https://tc39.github.io/ecma262/
https://webassembly.github.io/spec/core/
https://v8.dev/
https://dzone.com/articles/top-5-javascript-ides-in-2018
https://repl.it/

- Bracket Pair Colorizer
- GitLens — Git supercharged
- Material Icon Theme
- Path Intellisense
- Prettier - Code formatter
- ESLint
- StyleLint
- Error Lens
- Import Cost
- Vscode-styled-components

Why should I as a React developer care about Javascript?
React is a Javascript framework for development of web applications. So just from that we know
there is a relation between them. To further separate what each is used for we may ask another
question “What frontend applications do?”.
We need to display some information to users and for that React or other user interface
framework are used. It supplies many useful features such as virtual DOM, that speed up
development and allow better programmer experience than writing plain JavaScript. It then
results in plain HTML + CSS + JS files that a browser can interpret.
Information, in most cases, is represented by data that needs to be transformed and retrieved
from source (backend server). Since React is a user interface framework, rest of the application
logic is handled via normal JavaScript.

Basic syntactic constructs in JS (es2015+)
In this section, it is assumed you have some basic knowledge of JavaScript. The most common
constructs will be described and shown on examples. Also there will be explained the difference
between the older version, ECMAScript 5 (everyone who creates at least basic HTML page,
meets this standard) and newer version, ES6, which comes with some news and syntactic
changes. At this moment, a frontend developer can not exist without knowledge of this standard.
There are of course a lot more differences between ES5 and ES6 than described in the lesson,
but online sources are available and I hope a frontend developer can find the right information
by him/herself :)

Data types (Value vs. Reference)

In JavaScript data types are split into these three types:

Primitives
undefined, Boolean, Number, String, BigInt, Symbol
Structural Types

2

https://marketplace.visualstudio.com/items?itemName=CoenraadS.bracket-pair-colorizer
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=PKief.material-icon-theme
https://marketplace.visualstudio.com/items?itemName=christian-kohler.path-intellisense
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://marketplace.visualstudio.com/items?itemName=stylelint.vscode-stylelint
https://marketplace.visualstudio.com/items?itemName=usernamehw.errorlens
https://marketplace.visualstudio.com/items?itemName=wix.vscode-import-cost
https://marketplace.visualstudio.com/items?itemName=jpoissonnier.vscode-styled-components

Object (Object, Array, Map, Set, WeakMap, WeakSet), Function
Structural Root Primitive
null

Just like in many other languages there is a difference between primitives and structural types in
the way they are stored. Each non primitive type is stored as a reference pointing to memory on
the heap. This means that you can get unexpected side effects such as modifying seemingly
unrelated values through it’s reference.

Why this is important to keep in mind especially in React is because of the way it checks for
updates in props of components. React uses shallow comparison which means that by passing
objects (and functions) as props, while containing the same values, their references can differ,
which can trigger unnecessary change (more on that later).

Falsy and Truthy values

When using any value type as a boolean JavaScript uses coercion to decide whether the result
is considered true or false. Truthiness or falseness of an expression therefore means whether
the expression is considered true or false in this context.

false The keyword ​false

0 The number ​zero

-0 The number negative ​zero

0n BigInt​, when used as a boolean, follows the same rule as a Number.
0n is falsy.

"" Empty ​string​ value

null null​ - the absence of any value

undefined undefined​ - the primitive value

NaN NaN ​- not a number

All other values are considered ​truthy​. (f.e. empty objects and arrays [] {})
This means that if not used correctly, you can get false negatives when checking string or
number values for truthiness.

3

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar#Future_reserved_keywords_in_older_standards
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#Number_type
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#Number_type
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Glossary/null
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/null
https://developer.mozilla.org/en-US/docs/Glossary/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Glossary/NaN
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/NaN
https://developer.mozilla.org/en-US/docs/Glossary/Truthy

function​ ​checkDefined​(​val​) {
 ​return​ !​val​;
}

checkDefined​(​null​); ​// false
checkDefined​(​""​); ​// false because of "" being falsy
checkDefined​(​0​); ​// false because of 0 being falsy

Template literals

Also known as ​template strings ​. Based on usage of back-tick ​(` `) ​ compared to classic
double ticks ​(“ “) ​. Text between brackets is managed like a classic string, but sequence of
characters ​${} ​is replaced by expression inside (ex. variable, logic operation).

var​ ​name​ = ​'Slim'​;
var​ ​surname​ = ​'Shady'​;

// classic ES5 version

console​.​log​(​"Hi, my name is "​ + ​name​ + ​" "​ + ​surname​ + ​"."​);

// written in ES6

console​.​log​(​`Hi, my name is ​${​name​}​ ​${​surname​}​.`​);

// both outputs end with:

// > Hi, my name is Slim Shady.

Also supports multiline strings.

// classic ES5 version

console​.​log​(​'Hi! My name is - what?​\n​'​ +
'My name is - who?​\n​'​ +
'My name is​\n​'​ +
'Slim Shady!'​);

// written in ES6

4

console​.​log​(​`Hi! My name is - what?
My name is - who?

My name is

Slim Shady!`​);

// both outputs end with:

// > Hi! My name is - what?

// > My name is - who?

// > My name is

// > Slim Shady!

More info can be found on
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

Constants - let, const

Keyword ​const ​means a constant (mind-blowing, I know) - if a variable has been assigned a
value once, it can not be overridden during her lifetime. On the other hand, if you want to
override a variable, you should use keyword ​let ​.

const​ ​a​ = ​10​;

try​ {
 ​a​ = ​20​; ​// ends with: Uncaught SyntaxError: Identifier 'a' has already been
declared

} ​catch​(​e​) {
 ​console​.​error​(​e​);
}

console​.​log​(​a​); ​// 10

let​ ​a​ = ​10​;
a​ = ​20​;

console​.​log​(​a​); ​// 20

5

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

It’s important to say that ​const ​ / ​let ​ variable is accessible only inside of the ​scope
(​https://developer.mozilla.org/en-US/docs/Glossary/Scope​), in which variable is defined (unlike
var ​).

if​ (​true​) {
 ​var​ ​a​ = ​10​;
}

console​.​log​(​a​); ​// 10

if​ (​true​) {
 ​const​ ​a​ = ​10​;
}

console​.​log​(​a​); ​// undefined

if​ (​true​) {
 ​let​ ​a​ = ​10​;
}

console​.​log​(​a​) ​// undefined

Arrow function

Basically this is only a more compact writing of a function. It is interpreted like a classic function,
but without its own ​this ​. It also can not be used with a constructor. Functionality is described
with the following examples.

1. Arrow function returning number

function​ ​getNumber​() {
 ​return​ ​10​;
}

// basic variant

6

https://developer.mozilla.org/en-US/docs/Glossary/Scope

const​ ​getNumber​ = () ​=>​ {
 ​return​ ​10​;
}

// short variant

const​ ​getNumber​ = () ​=>​ ​10​;

2. Arrow function returning array

function​ ​getArray​() {
 ​return​ [​1​, ​2​, ​3​];
}

const​ ​getArray​ = () ​=>​ [​1​, ​2​, ​3​];

3. Arrow function returning object

function​ ​getObject​() {
 ​return​ {
 ​a:​ ​1
 };

}

const​ ​getObject​ = () ​=>​ ({ ​a:​ ​1​ });

4. Arrow function with parameters

function​ ​pow​(​a​) {
 ​return​ ​a​ * ​a​;
}

const​ ​pow​ = ​a​ ​=>​ ​a​ * ​a​;

5. Arrow function with block of code

7

function​ ​getHigherValue​(​a​, ​b​) {
 ​if​ (​a​ > ​b​) {
 ​return​ ​a​;
 } ​else​ {
 ​return​ ​b​;
 }

}

const​ ​getHigherValue​ = (​a​, ​b​) ​=>​ ​a​ > ​b​ ? ​a​ : ​b​; ​// used ternary operator

Spread operator

This new syntax allows to group parameters of functions, iterate over items of array and from
standard ES 2018 also over attributes of JSON objects. This functionality is easier to
understand in the following examples.

1. Function call

const​ ​sum​ = (​a​, ​b​, ​c​) ​=>​ ​a​ + ​b​ + ​c​;

const​ ​array​ = [​1​, ​2​, ​3​];

const​ ​value​ = ​sum​(...​array​);
console​.​log​(​value​); ​// 6

// Bonus question: How to create a sum function for N values using spread

operator?

const​ ​sumN​ = (​a​, ...​rest​) ​=>​ ​rest​.​length​ > ​0​ ? ​a​ + ​sumN​(...​rest​) : ​a​;

2. Work with array

const​ ​array1​ = [​1​, ​2​, ​3​];
const​ ​array2​ = [​4​, ​5​, ​6​];

const​ ​array3​ = [...​array1​, ...​array2​];

8

console​.​log​(​array3​); ​// [1, 2, 3, 4, 5, 6]

3. Work with object

const​ ​obj1​ = { ​foo:​ ​'bar'​, ​x:​ ​1​ };
const​ ​obj2​ = { ​foo:​ ​'baz'​, ​y:​ ​2​ };

const​ ​clonedObj​ = { ...​obj1​ }; ​// Object { foo: "bar", x: 1 }
const​ ​mergedObj​ = { ...​obj1​, ...​obj2​ }; ​// Object { foo: "baz", x: 1, y: 2 }

Destructuring
The destructuring assignment syntax is an expression that makes it possible to unpack values
from arrays, or properties from objects, into distinct variables. Let’s see it in practice.

1. Array destructuring

const​ [​a​, ​b​] = [​10​, ​20​];

console​.​log​(​a​); ​// 10
console​.​log​(​b​); ​// 20

2. Can be even more sophisticated

const​ ​getAB​ = () ​=>​ [​10​, ​20​];

const​ [​a​, ​b​] = ​getAB​();

console​.​log​(​a​); ​// 10
console​.​log​(​b​); ​// 20

3. Object destructuring

const​ ​getObject​ = () ​=>​ ({
 ​a:​ ​10​,
 ​b:​ {
 ​c:​ ​20
 }

});

9

const​ { ​a​, ​b​: { ​c​ }} = ​getObject​();

console​.​log​(​a​); ​// 10
console​.​log​(​b​); ​// b is not defined
console​.​log​(​c​); ​// 20

4. Destructuring with spread operator

const​ ​getObject​ = () ​=>​ ({
 ​arr:​ [​0​, ​1​, ​2​],
 ​b:​ ​3​,
 ​c:​ ​4​,
});

const​ { ​arr​: [​head​, ...​tail​], ...​rest​ } = ​getObject​();

console​.​log​(​head​); ​// 0
console​.​log​(​tail​); ​// [1, 2]
console​.​log​(​c​); ​// { b: 3, c: 4 }

Class
The class declaration creates a new class with a given name using prototype-based inheritance.
Classes can be created also with class expression, for more information please read
documentation​. In React, classes were used as class components, which were now replaced by
the newer function components and hooks (more on that later).

10

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/class

class​ ​Rectangle​ {
 ​constructor​(​a​, ​b​) {
 ​this​.​a​ = ​a​;
 ​this​.​b​ = ​b​;
 }

 ​getArea​() {
 ​return​ ​this​.​a​ * ​this​.​b​;
 }

}

class​ ​Square​ ​extends​ ​Rectangle​ {
 ​constructor​(​a​) {
 ​super​(​a​, ​a​);
 }

}

const​ ​s​ = ​new​ ​Square​(​15​);
const​ ​r​ = ​new​ ​Rectangle​(​10​, ​5​);

console​.​log​(​s​.​getArea​()); ​// 225
console​.​log​(​r​.​getArea​()); ​// 50

Optional chaining
This operator allows you to safely try to access nested properties of objects that are possibly
undefined, without the need to manually write all the checks. For more information please read
documentation​.

const​ ​foo​ = {};
const​ ​goo​ = { ​a:​ { ​b:​ ​1​ } };

// Without optional chaining without checks

console​.​log​(​foo​.​a​.​b​); ​// Uncaught TypeError: Cannot read property 'b' of
undefined

console​.​log​(​goo​.​a​.​b​); ​// 1

11

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining

// Without optional chaining with checks

console​.​log​(​foo​.​a​ && ​foo​.​a​.​b​); ​// undefined
console​.​log​(​goo​.​a​ && ​goo​.​a​.​b​); ​// 1

// With optional chaining

console​.​log​(​foo​?.​a​?.​b​); ​// undefined
console​.​log​(​goo​?.​a​?.​b​); ​// 1

Nullish coalescing
This operator works great together with optional chaining operator. It replaces previously used ||
operator which achieved a similar goal but was less safe to use because of false negatives
when using falsy values (0, empty string, etc.). For more information please read
documentation​.

const​ ​foo​ = {};
const​ ​goo​ = { ​a:​ { ​b:​ ​0​ } };

// Without nullish coalescing

console​.​log​(​foo​?.​a​?.​b​ || ​42​); ​// 42
console​.​log​(​goo​?.​a​?.​b​ || ​42​); ​// 42 (wrong because 0 is falsy)

// With nullish coalescing

console​.​log​(​foo​?.​a​?.​b​ ?? ​42​); ​// 42
console​.​log​(​goo​?.​a​?.​b​ ?? ​42​); ​// 0

12

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Nullish_Coalescing_Operator

