

5. React - basics

What is React? 1

React component tree 2

Function and Class components 2

Props 3
PropsWithChildren 4
Rerendering 5

State 5
State in Class components 5
State in Function component 6

Tic-Tac-Toe in React 7

Grid system 8
Basics 9
Breakpoints 10
Implementation 11

Custom styles in Material UI 12
makeStyles and useStyles 12
Implementation 13

Implementing logic 14

Mouse events 16
Implementation 17

Material UI icons 19

What is React?
React is a declarative, efficient and flexible JavaScript library for building user interfaces.
Components allow you to split the UI into independent, reusable pieces, and to think about each
piece in isolation.

1

React component tree
React components are structured into a hierarchical tree structure. The structure ensures a
one-way data flow (via props). The children cannot update the data it receives from its parent. If
data needs to be updated, children can receive another prop from the parent, that contains a
function to update it. Each component is declaring what will be rendered on the screen based
on the props it renders.

Function and Class components
There are two basic ways to define a React component. In the previous lesson it was created by
CRA component App. This type of component is called a Function​ Component​.

const​ ​App​: ​React​.​FC​ = () ​=>​ {
 ​return​ ​<​div​>​Hello world​</​div​>​;
}

You can also write this component via ES6 Class (syntax was mentioned in lesson 2). Class
components have a set of methods, each of them evoked in concrete time during the

2

component's life cycle. In the following example, the App component has only a single lifecycle
method ​render ​ ​which serves the same purpose as the return value of a function component. In
other words, it renders JSX on the screen.

class​ ​App​ ​extends​ ​React​.​Component​ {
 ​render​() {
 ​return​ ​<​div​ ​/>​;
 }

}

Since we will be using the newer function components and hooks we won’t go deep into the
class component’s lifecycle and other related topics. While React developers said that there are
no plans of deprecating class components, we can safely assume that they won’t be receiving
any new features.

Props
React components accept arbitrary values (called “props” which is short for properties) and
return React elements describing what should appear on the screen. We can expand the
example of the function component above with props like this.

type​ ​Props​ = { ​name​: ​string​ };

const​ ​App​: ​React​.​FC​<​Props​> = ​props​ ​=>​ {
 ​return​ ​<​div​>​Hello ​{​props​.​name​}​</​div​>​;
};

For example ​Typography ​component from MaterialUI in the following snippet uses a
variant ​ prop.

<​Typography​ ​variant​=​"h5"​>​Sign in​</​Typography​>

It’s common to use destructuring on props, so many examples you come across will look like
this.

3

const​ ​App​: ​React​.​FC​<​Props​> = ({ ​name​ }) ​=>​ {
 ​return​ ​<​div​>​Hello ​{​name​}​</​div​>​;
};

PropsWithChildren
When you inspect the type of props you get when using TypeScript, you can see that your
Props type is wrapped in a PropsWithChildren helper which adds the ​children:
React.ReactNode ​ to your props. The ​children ​ prop is a special prop that each component
has and it’s value is equal to what you pass to it between it’s opening and closing tags.

type​ ​Props​ = { ​title​: ​string​ };

const​ ​Button​: ​React​.​FC​<​Props​> = ({ ​title​, ​children​ }) ​=>​ {
 ​return​ ​<​button​ ​title​=​{​title​}​>​{​children​}​</​button​>​;
};

// Usage

<​Button​ ​title​=​"Click me"​>​OK​</​Button​>

Here you can see one simple example where a button component simply passes the children
prop to the DOM element it renders.
You can also change the type of children prop (which TypeScript will also remind you of) to
anything else. Most commonly it’s used to expect an array of components or in a pattern called
Render props​. You can find this pattern used in various component libraries and it may look
something like this.

// Type of children is (close: () => void) => ReactNode instead of ReactNode

<​Dialog​>
 ​{​close​ ​=>​ (
 ​<​div​>
 ​<​p​>​Hello​</​p​>
 ​<​button​ ​onClick​=​{​close​}​>​Back​</​button​>
 ​</​div​>
)​}

4

</​Dialog​>

Rerendering
Important note about props is that the component is rerendered each time the props change. In
class components, you could use multiple methods to change this behaviour, but in function
components there was no such a thing until Hooks came along. Hooks are what allows
functional components with linear code execution to have things like persistent state and other
features, but more on Hooks later.

State
Each component (class or function) is able to store local state. Below we will go over differences
in these two approaches.

State in Class components

type​ ​Props​ = {};
type​ ​State​ = { ​foo​: ​string​ };

class​ ​App​ ​extends​ ​React​.​Component​<​Props​, ​State​> {
 ​constructor​(​props​: ​Props​) {
 ​super​(​props​);
 ​this​.​state​ = {
 ​foo:​ ​'bar'​,
 };

 }

 ​render​() {
 ​return​ ​<​div​>​{this​.​state​.​foo​}​</​div​>​;
 }

}

State and props are key mechanisms in React and both invoke rerendering the component after
the change of it’s values. It means that if we have a button element calling ​setState ​ method
(reserved method in Class component, which sets values into state) we can change the value of

5

this.state.foo ​ ​like this...

<​button​ ​onClick​=​{​() ​=>​ ​this​.​setState​({ ​foo:​ ​'baz'​ })​}​>​Click​</​button​>

... and then the state will contain the value of ​“baz” ​ under the ​foo ​ key and the component will
also be rerendered.

State in Function component

import​ ​React​, { ​FC​, ​useState​ } ​from​ ​'react'​;

const​ ​App​: ​FC​ = () ​=>​ {
 ​const​ [​foo​, ​setFoo​] = ​useState​(​'bar'​);
 ​return​ ​<​div​>​{​foo​}​</​div​>​;
};

In function components there is no ​constructor​ nor reserved ​setState​ method. We need to use
the already mentioned Hooks, specifically ​useState ​ hook.
This hook returns a tuple consisting of current value (​foo ​) and setter (​setFoo ​) and takes an
optional value which if provided will be the initial value of this state.

Note:
Array destructuring is used to extract the value and setter from the returned value, therefore you
can choose any names for these two variables. You should still follow the convention ​[x,
setX] ​ whenever possible though.

Note:
If an initial value is provided, the type of the return value is inferred from it. However if there is
no initial value you should explicitly provide the type. Also in this case the type will automatically
be expanded with ​undefined ​.

const​ [​foo​, ​setFoo​] = ​useState​<​string​>(); ​// Type of foo is string | undefined

There may be cases (we will even come across one in this week’s task) where you want to
change state based on its current value. Most commonly this is used for boolean state which
you simply want to toggle between true and false. For this use case, the set function instead of
value can accept a function that provides you with the real and up to date value of its state (this
is usually most important when using state setter in asynchronous code).

6

const​ [​flag​, ​setFlag​] = ​useState​(​false​);
const​ ​toggleFlag​ = () ​=>​ ​setFlag​(​prev​ ​=>​ !​prev​);

Tic-Tac-Toe in React
Now let’s demonstrate all the basics on a Tic-Tac-Toe game example. Our starting point will be
a clean Create React App project.

yarn create react-app tic-tac-toe --template typescript

First create a new ​components ​ folder and do some minor cleanup of CRA template. This
project will contain multiple components declared in multiple files so it’s useful to organise your
files a bit. We can now prepare basic components of the game. Create two new files,
Square.tsx ​ and ​Board.tsx ​ in the components folder.

Square component will represent one field in the tic tac toe board.

import​ ​React​, { ​FC​ } ​from​ ​"react"​;

const​ ​Square​: ​FC​ = ({ ​children​ }) ​=>​ (
 ​<​div​>​{​children​}​</​div​>
);

export​ ​default​ ​Square​;

Board component will represent the board of the tic tac toe game, containing Squares.

import​ ​React​, { ​FC​ } ​from​ ​"react"​;
import​ ​Square​ ​from​ ​"./Square"​;

const​ ​Board​: ​FC​ = () ​=>​ (
 ​<​Square​>​1​</​Square​>
);

7

export​ ​default​ ​Board​;

Now we need to import the Board component in App.tsx and add it into it’s JSX. At this point we
created a tree of components App -> Board -> Square. We can inspect it in the Chrome React
extension.

Next we should prepare our components and style them. For that we will be using the
MaterialUI framework.

yarn add @material-ui/core @material-ui/icons @material-ui/styles

Note:
Since @material-ui is written in TypeScript and comes with it’s own typings we don’t need to
instal any additional @types packages.

Grid system
The grid system creates visual consistency between layouts and allows flexibility across many
different screen sizes and orientations. It is more related to design of web pages and not
something specific to React or Material UI. The grid system from Material UI we will be using
follows many common principles of any grid system:

- Based on a 12-column grid layout
- Supports two types of components: containers and items

8

- Widths of items are specified in percentages, which allows us to create a fluid and

responsive layout, relative to their parent element
- In Material UI, there are five grid breakpoints: xs, sm, md, lg and xl

Basics
Breakpoints refer to screen widths at which the specific rule is applied (you can see the exact
values and more detailed explanation in ​MUI’s documentation​). Sizes of breakpoints are
specified in a mobile first approach, therefore by specifying ​xs ​ size, we also set all larger sizes.

<​Grid​ ​container​ ​spacing​=​{​3​}​>
 ​<​Grid​ ​item​ ​xs​=​{​12​}​>​xs=12​</​Grid​>
 ​<​Grid​ ​item​ ​xs​=​{​6​}​>​xs=6​</​Grid​>
 ​<​Grid​ ​item​ ​xs​=​{​6​}​>​xs=6​</​Grid​>
 ​<​Grid​ ​item​ ​xs​=​{​3​}​>​xs=3​</​Grid​>
 ​<​Grid​ ​item​ ​xs​=​{​3​}​>​xs=3​</​Grid​>
 ​<​Grid​ ​item​ ​xs​=​{​3​}​>​xs=3​</​Grid​>
 ​<​Grid​ ​item​ ​xs​=​{​3​}​>​xs=3​</​Grid​>
</​Grid​>

9

https://material-ui.com/customization/breakpoints/

Breakpoints
By providing multiple values, the grid items will be sized based on current breakpoint.

On screens larger than ​sm ​ breakpoint (>=600px):

On screens smaller than ​sm ​ breakpoint (<600px):

10

<​Grid​ ​container​ ​spacing​=​{​3​}​>
 ​<​Grid​ ​item​ ​xs​=​{​12​}​>​xs=12​</​Grid​>
 ​<​Grid​ ​item​ ​xs​=​{​12​}​ ​sm​=​{​6​}​>​xs=12 sm=6​</​Grid​>
 ​<​Grid​ ​item​ ​xs​=​{​12​}​ ​sm​=​{​6​}​>​xs=12 sm=6​</​Grid​>
 ​<​Grid​ ​item​ ​xs​=​{​6​}​ ​sm​=​{​3​}​>​xs=6 sm=3​</​Grid​>
 ​<​Grid​ ​item​ ​xs​=​{​6​}​ ​sm​=​{​3​}​>​xs=6 sm=3​</​Grid​>
 ​<​Grid​ ​item​ ​xs​=​{​6​}​ ​sm​=​{​3​}​>​xs=6 sm=3​</​Grid​>
 ​<​Grid​ ​item​ ​xs​=​{​6​}​ ​sm​=​{​3​}​>​xs=6 sm=3​</​Grid​>
</​Grid​>

Implementation
Our tic tac toe board will consist of 3 rows and 3 columns of ​Card ​ components spaced out in a
Grid ​. We can use the fact that by default Grid wraps it’s items into the next row if they don’t fit
into it’s 12 columns. For styling we will use a ​Container ​ component that will make sure our
board isn’t stretched on large screens and for styling the squares we can use the ​Card
component and it’s ​CardActionArea ​ which take care of distinguishing between squares and
also styling the click action.

const​ ​Square​: ​FC​ = ({ ​children​ }) ​=>​ (
 ​<​Grid​ ​item​ ​xs​=​{​4​}​>
 ​<​Card​>
 ​<​CardActionArea​>
 ​<​Typography​ ​variant​=​"h5"​>​{​children​}​</​Typography​>
 ​</​CardActionArea​>
 ​</​Card​>
 ​</​Grid​>
);

const​ ​Board​: ​FC​ = () ​=>​ (
 ​<​Container​ ​maxWidth​=​"sm"​>
 ​<​Grid​ ​container​ ​spacing​=​{​1​}​>
 ​<​Square​>​1​</​Square​>
 ​<​Square​>​2​</​Square​>

11

 ​<​Square​>​3​</​Square​>
 ​<​Square​>​4​</​Square​>
 ​<​Square​>​5​</​Square​>
 ​<​Square​>​6​</​Square​>
 ​<​Square​>​7​</​Square​>
 ​<​Square​>​8​</​Square​>
 ​<​Square​>​9​</​Square​>
 ​</​Grid​>
 ​</​Container​>
);

Output on the screen should now look like this:

Custom styles in Material UI
Material UI provides a solution for custom styles based on the CSS-in-JS concept. All styles are
held in js files, there is no need to keep static ​.css ​ files. It comes with many powerful features
like dynamic styles, theming… We will be using this modern solution too, so let’s describe how.

makeStyles and useStyles
The most crucial part is located in package ​@material-ui/styles ​ and it is the
makeStyles ​ function. With ​makeStyles ​ we can create a hook ​useStyles ​ which injects
styles into our app`s markup during runtime. These styles can be found inside the head
selection when you inspect the running app.

12

The mechanism behind this feature makes sure that unique class names are always generated
for each of our styles object and provides these unique class names for us to use, without
having to worry about how it works.

Implementation
Now we can provide some custom styles for our ​Square ​ component to make sure it looks more
like a grid and also has a larger area.

import​ { ​makeStyles​ } ​from​ ​"@material-ui/styles"​;

const​ ​useStyles​ = ​makeStyles​({
 ​card:​ {
 ​borderRadius:​ ​0​,
 },

 ​action:​ {
 ​minHeight:​ ​150​,
 },

});

const​ ​Square​: ​FC​ = ({ ​children​ }) ​=>​ {
 ​const​ ​classes​ = ​useStyles​();
 ​return​ (
 ​<​Grid​ ​item​ ​xs​=​{​4​}​>
 ​<​Card​ ​className​=​{​classes​.​card​}​>
 ​<​CardActionArea​ ​className​=​{​classes​.​action​}​>
 ​<​Typography​ ​variant​=​"h5"​>​{​children​}​</​Typography​>
 ​</​CardActionArea​>
 ​</​Card​>

13

 ​</​Grid​>
);

};

With these styles applied it should look a bit closer to an actual tic tac toe board.

Implementing logic
Now that we have some basic layout done, we can start working on implementing the
functionality of tic tac toe. For a game of tic tac toe to play out we need to keep track of two
things. State of the board and which player is supposed to go next. For both of these things we
can learn the ​useState ​ hook.

const​ ​Board​: ​FC​ = () ​=>​ {
 ​// State
 ​const​ [​player​, ​setPlayer​] = ​useState​<​Player​>(​"X"​);
 ​const​ [​board​, ​setBoard​] = ​useState​<​BoardState​>({});

 ​// ...

14

With TypeScript we can neatly declare what values our two states should accept. For Player
type we can use the X and O string literal values.

type​ ​Player​ = ​"O"​ | ​"X"​;

Since we know that our board has exactly 9 fields and each field will either be empty or selected
by either player we have few options.

First and the most simple approach would be to use an array of optional players but this does
not limit the board to have exactly 9 values.

type​ ​BoardState​ = (​Player​ | ​undefined​)[];

Next option that solves the length problem is to use a tuple type. This type technically describes
our board perfectly but from a code style perspective is not very clean and readable. It would
also make it harder to insert elements into arbitrary indexes.

type​ ​BoardState​ = [​Player​?, ​Player​?, ​Player​?, ​Player​?, ​Player​?, ​Player​?,
Player​?, ​Player​?, ​Player​?];

Here TypeScript’s utility types can come to rescue. We can write out the expected indexes as a
numeric literal type (there are also more advanced automatic options but for this use case this is
sufficient). With these indexes we can create a ​Partial ​ ​Record ​ of players. This will allow us
to write to an arbitrary index of our “array” object and also provides a neat and safe type to
describe our index.

type​ ​Indexes​ = ​0​ | ​1​ | ​2​ | ​3​ | ​4​ | ​5​ | ​6​ | ​7​ | ​8​;
type​ ​BoardState​ = ​Partial​<​Record​<​Indexes​, ​Player​>>;

Now that we have our state described, we can move on to the next task, implementing a
function that sets the board’s value on a given index and switches to the next player.

const​ ​Board​: ​FC​ = () ​=>​ {
 ​// State
 ​const​ [​player​, ​setPlayer​] = ​useState​<​Player​>(​"X"​);
 ​const​ [​board​, ​setBoard​] = ​useState​<​BoardState​>({});

15

 ​// Handlers
 ​const​ ​onSquareClicked​ = (​index​: ​Indexes​) ​=>​ {
 ​// Disallow clicking on already set square
 ​if​ (​board​[​index​]) {
 ​return​;
 }

 ​// Mark square with current player's symbol
 ​setBoard​((​b​) ​=>​ ({ ...​b​, ​[index]:​ ​player​ }));
 ​// Switch to other player
 ​setPlayer​((​p​) ​=>​ (​p​ === ​"O"​ ? ​"X"​ : ​"O"​));
 };

 ​// ...

Note:
In both cases we want to update the value based on the previous one, therefore we use the
function setter variant that provides us with the previous value. With the board we want to keep
the old state and just add the new change. For the player we want to set it to the other one.

Mouse events
In order to interact with our app we need to implement and use event handlers. React
normalizes events so that they have consistent properties across different browsers. There are
many different events and for handling the direct interaction (click or touch) we can use the
onClick ​ handler. In general, any DOM element can have an onClick handler, but there are few
recommendations to keep in mind. Mostly for accessibility purposes, it’s a good practice to
provide an onClick handler only on elements that are supposed to be interactable. You can see
this property with Chrome’s inspect element tool under the ​Role ​ key.

16

This makes sure that for example users that can’t use a mouse can select this element by
hitting tab on their keyboard.

Implementation
Since CardActionArea is supposed to be interactable and Material UI follows these accessibility
principles, it is the correct element to provide a onClick handler to. You can test it out with this
code.

<​CardActionArea​ ​onClick​=​{​() ​=>​ ​alert​(​children​)​}​>

Now that our Square component is properly clickable, we can expand it to expect a callback that
is executed when it is clicked.

type​ ​Props​ = {
 ​onClick​: () ​=>​ ​void​;
};

const​ ​Square​: ​FC​<​Props​> = ({ ​onClick​, ​children​ }) ​=>​ {

17

 ​const​ ​classes​ = ​useStyles​();
 ​return​ (
 ​<​Grid​ ​item​ ​xs​=​{​4​}​>
 ​<​Card​ ​className​=​{​classes​.​card​}​>
 ​<​CardActionArea​ ​className​=​{​classes​.​action​}​ ​onClick​=​{​onClick​}​>
 ​<​Typography​ ​variant​=​"h5"​>​{​children​}​</​Typography​>
 ​</​CardActionArea​>
 ​</​Card​>
 ​</​Grid​>
);

};

This change will give us a compilation error since all usages of the Square component in Board
are now expecting onClick prop that they did not receive. Let’s fix that.

return​ (
 ​<​Container​ ​maxWidth​=​"sm"​>
 ​<​Grid​ ​container​ ​spacing​=​{​1​}​>
 ​{​([​0​, ​1​, ​2​, ​3​, ​4​, ​5​, ​6​, ​7​, ​8​] ​as​ ​const​).​map​((​i​) ​=>​ (
 ​<​Square​ ​onClick​=​{​() ​=>​ ​onSquareClicked​(​i​)​}​>
 ​{​board​[​i​] ?? ​i​}
 ​</​Square​>
))​}
 ​</​Grid​>
 ​</​Container​>
);

Instead of copy pasting 9 components we can change the code to work with and array of
components. We simply start with an array of our indexes (the ​as const ​ is there so TypeScript
interprets them as literals) and then map it into an array of ​Square ​ components.

Note:
You will now see an error in the developer console saying that ​Each child in a list
should have a unique "key" prop ​. This is safe to ignore for now and we will get back
to it in a later lecture.

18

Material UI icons
Now to finalize our Square component we can use Cross and Circle icons instead of rendering
plain text. Material UI provides a large set of consistent and clean icons. You can browse
through them ​here​ and read the documentation ​here​.

We will be using these two icons for our players:

import​ ​Cross​ ​from​ ​"@material-ui/icons/Clear"​;
import​ ​Circle​ ​from​ ​"@material-ui/icons/PanoramaFishEye"​;

To keep our components small and simple we can extract this logic into a new ​PlayerIcon
component which we can use in our ​Square ​ component.

// Imports...

const​ ​useStyles​ = ​makeStyles​({
 ​cross:​ {
 ​color:​ ​"red"​,
 },

 ​circle:​ {
 ​color:​ ​"blue"​,
 },

});

const​ ​PlayerIcon​: ​FC​ = ({ ​children​ }) ​=>​ {
 ​const​ ​classes​ = ​useStyles​();
 ​switch​ (​children​) {
 ​case​ ​"X"​:
 ​return​ ​<​Cross​ ​className​=​{​classes​.​cross​}​ ​/>​;
 ​case​ ​"O"​:
 ​return​ ​<​Circle​ ​className​=​{​classes​.​circle​}​ ​/>​;
 }

 ​return​ ​<​Typography​ ​variant​=​"h5"​>​{​children​}​</​Typography​>​;
};

19

https://material-ui.com/components/material-icons/
https://material-ui.com/components/icons/

export​ ​default​ ​PlayerIcon​;

And that’s all we will spoil from this week’s task. You can freely use any code from these
materials in the assignment but your own creative solutions can and will be awarded.

20

