Characterization of a Classical Program

Program transforms an input into an output.

- **O** Denotational semantics:
	- a meaning of a program is a partial function

states \hookrightarrow states

- Nontermination is bad!
- In case of termination, the result is unique.

Is this all we need?

 $\{x_1, x_2 \text{ are integers satisfying } C_1: x_1 \geq 0, x_2 \geq 0 \}$

Program P

 $y_1 := 0; y_2 := x_1;$ $\{x_1 = y_1x_2 + y_2 \wedge 0 \leq y_2\}$... INV while $y_2 > x_2$ do $(y_1 := y_1 + 1; y_2 := y_2 - x_2);$ $z_1 := y_1; z_2 := y_2$

 $\{C_2: x_1 = z_1x_2 + z_2 \wedge 0 \le z_2 \le x_2\}$

We want to verify: $\{C_1\}P\{C_2\}$... (specification of P)

Generated verification conditions:

 ${C_1}$ $y_1 := 0$; $y_2 := x_1$ {INV} $\{INV \wedge v_2 > x_2\}$ $v_1 := v_1 + 1$; $v_2 := v_2 - x_2$ $\{INV\}$ $\{INV \wedge \neg (y_2 > x_2)\}\$ $z_1 := y_1: z_2 := y_2 \}$ $\{C_2\}$

What about:

- o Operating systems?
- Communication protocols?
- Control programs?
- Mobile phones?
- Vending machines?

Characterization of Reactive Systems

Reactive System is a system that computes by reacting to stimuli from its environment.

Key Issues:

- **•** communication and interaction
- **o** parallelism

Nontermination is good!

The result (if any) does not have to be unique.

Questions

- How can we develop (design) a system that "works"?
- How do we analyze (verify) such a system?

Fact of Life

Even short parallel programs may be hard to analyze.

Example: Peterson's protocol

Concurrent, parallel, interactive, 'nondeterministic' systems, with ongoing behaviour ...

No input-output characterization (specification) ... Verification of 'simple' properties ...

Peterson's protocol (to avoid critical section clash)

Process A: ** noncritical region ** $flag_A := true$ $turn := B$ waitfor (flag_B = false \vee turn = A) ** critical region ** flag_A := false ** noncritical region **

```
Process B :
** noncritical region **
flag_B := trueturn := Awaitfor
(flag_A = false \vee turn = B)** critical region **
flag<sub>R</sub> := false
** noncritical region **
```
Conclusion

We need formal/systematic methods (tools), otherwise ...

- Intel's Pentium-II bug in floating-point division unit
- Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer
- **Mars Pathfinder**
- \bullet ...

Question

What is the most abstract view of a reactive system (process)?

Answer

A process performs an action and becomes another process.

Definition

A labelled transition system (LTS) is a triple $(\mathit{Proc}, \mathit{Act}, \{\stackrel{a}{\longrightarrow} |$ $a \in \mathit{Act}\})$ where

- *Proc* is a set of states (or processes),
- Act is a set of labels (or actions), and
- for every $a \in Act$, $\overset{a}{\longrightarrow} \subseteq \textit{Proc} \times \textit{Proc}$ is a binary relation on states called the transition relation.

We will use the infix notation $s\stackrel{a}{\longrightarrow}s'$ meaning that $(s,s')\in\stackrel{a}{\longrightarrow}.$

Sometimes we distinguish the initial (or start) state.

Definition

A binary relation R on a set A is a subset of $A \times A$.

 $R \subseteq A \times A$

Sometimes we write x R y instead of $(x, y) \in R$.

Some properties of relations

- R is reflexive if $(x, x) \in R$ for all $x \in A$
- R is symmetric if $(x, y) \in R$ implies that $(y, x) \in R$ for all $x, y \in A$
- R is transitive if $(x, y) \in R$ and $(y, z) \in R$ implies that $(x, z) \in R$ for all $x, y, z \in A$

Let R , R' and R'' be binary relations on a set A .

Reflexive Closure

 R' is the reflexive closure of R if and only if

- $\Box R \subseteq R',$
- $2 \, R'$ is reflexive, and

 \bullet R' is the smallest relation that satisfies the two conditions above, which means the following: for any relation $R'',$ if $R \subseteq R''$ and R'' is reflexive then $R' \subseteq R''$.

Let R , R' and R'' be binary relations on a set A .

Symmetric Closure

 R' is the symmetric closure of R if and only if

- $\Box R \subseteq R'$,
- $2 \nvert R'$ is symmetric, and
- \bullet R' is the smallest relation that satisfies the two conditions above.

Let R , R' and R'' be binary relations on a set A .

Transitive Closure

 R' is the transitive closure of R if and only if

- $\Box R \subseteq R',$
- $2 \, R'$ is transitive, and

 \bullet R' is the smallest relation that satisfies the two conditions above.

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS.

- we extend $\stackrel{a}{\longrightarrow}$ to the elements of Act^*
- $\longrightarrow = \bigcup_{a \in Act} \stackrel{a}{\longrightarrow}$
- \longrightarrow^* is the reflexive and transitive closure of \longrightarrow
- $s \stackrel{a}{\longrightarrow}$ and $s \stackrel{a}{\longrightarrow}$
- **•** reachable states

What should a reasonable behavioural equivalence satisfy?

- \bullet abstract from states (consider only the behaviour actions)
- **a** abstract from nondeterminism
- **a** abstract from internal behaviour

What else should a reasonable behavioural equivalence satisfy?

- reflexivity $P \equiv P$ for any process P
- **transitivity** $Spec_0 \equiv Spec_1 \equiv Spec_2 \equiv \cdots \equiv ImpI$ gives that $Spec_0 \equiv Impl$
- symmetry $P \equiv Q$ iff $Q \equiv P$

Congruence Property $P \equiv Q$ implies that $C(P) \equiv C(Q)$ Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS.

Trace Set for $s \in Proc$

$$
Traces(s) = \{ w \in Act^* \mid \exists s' \in Proc. \ s \xrightarrow{w} s' \}
$$

Let $s \in Proc$ and $t \in Proc$.

Trace Equivalence

We say that s and t are trace equivalent $(s \equiv_t t)$ if and only if $Traces(s) = Traces(t)$

Is this a "good" behavioural equivalence ?

Black-Box Experiments

Main Idea

Two processes are behaviorally equivalent if and only if an external observer cannot tell them apart.

Strong Bisimilarity

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS.

Strong Bisimulation

A binary relation $R \subseteq Proc \times Proc$ is a strong bisimulation iff whenever $(s, t) \in R$ then for each $a \in Act$: $\mathsf{if} \; s \stackrel{a}{\longrightarrow} s' \; \mathsf{then} \; t \stackrel{a}{\longrightarrow} t' \; \mathsf{for} \; \mathsf{some} \; t' \; \mathsf{such} \; \mathsf{that} \; (s',t') \in R$ if $t \stackrel{a}{\longrightarrow} t'$ then $s \stackrel{a}{\longrightarrow} s'$ for some s' such that $(s', t') \in R$.

Strong Bisimilarity

Two processes $p_1, p_2 \in Proc$ are strongly bisimilar $(p_1 \sim p_2)$ if and only if there exists a strong bisimulation R such that $(p_1, p_2) \in R$.

 \sim = ∪{R | R is a strong bisimulation}

Theorem

 \sim is an equivalence (reflexive, symmetric and transitive)

Theorem

 \sim is the largest strong bisimulation

Theorem

 $s \sim t$ if and only if for each $a \in Act$: $if s \stackrel{a}{\longrightarrow} s'$ then $t \stackrel{a}{\longrightarrow} t'$ for some t' such that $s' \sim t'$ \int if $t \stackrel{a}{\longrightarrow} t'$ then $s \stackrel{a}{\longrightarrow} s'$ for some s' such that $s' \sim t'.$

How to Show Nonbisimilarity?

To prove that $s \nsim t$:

- Enumerate all binary relations and show that none of them at the same time contains (s, t) and is a strong bisimulation. (Expensive: $2^{|Proc|^2}$ relations.)
- Make certain observations which will enable to disqualify many bisimulation candidates in one step.
- Use game characterization of strong bisimilarity.

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS and $s, t \in Proc.$

We define a two-player game of an 'attacker' and a 'defender' starting from s and t.

- The game is played in rounds and configurations of the game are pairs of states from $Proc \times Proc.$
- In every round exactly one configuration is called current. Initially the configuration (s, t) is the current one.

Intuition

The defender wants the show that s and t are strongly bisimilar while the attacker aims to prove the opposite.

Game Rules

In each round the players change the current configuration as follows:

- **1** the attacker chooses one of the processes in the current configuration and makes an $\stackrel{a}{\longrightarrow}$ -move for some $a \in Act$, and
- 2 the defender must respond by making an $\stackrel{a}{\longrightarrow}$ -move in the other process under the same action a.

The newly reached pair of processes becomes the current configuration. The game then continues by another round.

Result of the Game

- **If one player cannot move, the other player wins.**
- If the game is infinite, the defender wins.

Theorem

- \bullet States s and t are strongly bisimilar if and only if the defender has a universal winning strategy starting from the configuration (s, t) .
- \bullet States s and t are not strongly bisimilar if and only if the attacker has a universal winning strategy starting from the configuration (s, t) .

Remark

Bisimulation game can be used to prove both bisimilarity and nonbisimilarity of two processes. It very often provides elegant arguments for the negative case.