
Classical View

Characterization of a Classical Program

Program transforms an input into an output.

Denotational semantics:
a meaning of a program is a partial function

states →֒ states

Nontermination is bad!

In case of termination, the result is unique.

Is this all we need?

Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 10 / 29

Interlude: Verification of a computer program

{ x1, x2 are integers satisfying C1: x1 ≥ 0, x2 > 0 }

Program P

y1 := 0; y2 := x1;
{ x1 = y1x2 + y2 ∧ 0 ≤ y2 } ... INV

while y2 ≥ x2 do (y1 := y1 + 1; y2 := y2 − x2);
z1 := y1; z2 := y2

{ C2: x1 = z1x2 + z2 ∧ 0 ≤ z2 < x2 }

We want to verify: {C1}P{C2} ... (specification of P)

Generated verification conditions:

{C1} y1 := 0; y2 := x1 {INV}
{INV ∧ y2 ≥ x2} y1 := y1 + 1; y2 := y2 − x2 {INV}
{INV ∧ ¬(y2 ≥ x2)} z1 := y1; z2 := y2 {C2}

Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 11 / 29

Reactive systems

What about:

Operating systems?

Communication protocols?

Control programs?

Mobile phones?

Vending machines?

Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 12 / 29

Reactive systems

Characterization of Reactive Systems

Reactive System is a system that computes by reacting to stimuli from its
environment.

Key Issues:

communication and interaction

parallelism

Nontermination is good!

The result (if any) does not have to be unique.

Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 13 / 29

Analysis of Reactive Systems

Questions

How can we develop (design) a system that ”works”?

How do we analyze (verify) such a system?

Fact of Life

Even short parallel programs may be hard to analyze.

Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 14 / 29

Example: Peterson’s protocol

Concurrent, parallel, interactive, ‘nondeterministic’ systems,
with ongoing behaviour ...
No input-output characterization (specification) ...
Verification of ‘simple’ properties ...

Peterson’s protocol (to avoid critical section clash)

Process A :

** noncritical region **
flagA := true
turn := B
waitfor

(flagB = false ∨ turn = A)
** critical region **
flagA := false
** noncritical region **

Process B :

** noncritical region **
flagB := true
turn := A
waitfor

(flagA = false ∨ turn = B)
** critical region **
flagB := false
** noncritical region **

Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 15 / 29

The Need for a Theory

Conclusion

We need formal/systematic methods (tools), otherwise ...

Intel’s Pentium-II bug in floating-point division unit

Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer

Mars Pathfinder

...

Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 16 / 29

Classical vs. Reactive Computing

Classical Reactive/Parallel

interaction no yes

nontermination undesirable often desirable

unique result yes no

semantics states →֒ states ?

Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 17 / 29

How to Model Reactive Systems

Question

What is the most abstract view of a reactive system (process)?

Answer

A process performs an action and becomes another process.

Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 18 / 29

Labelled Transition System

Definition

A labelled transition system (LTS) is a triple (Proc , Act, {
a

−→| a ∈ Act})
where

Proc is a set of states (or processes),

Act is a set of labels (or actions), and

for every a ∈ Act,
a

−→ ⊆ Proc × Proc is a binary relation on states
called the transition relation.

We will use the infix notation s
a

−→ s ′ meaning that (s, s ′) ∈
a

−→.

Sometimes we distinguish the initial (or start) state.

Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 19 / 29

Interlude: Binary Relations

Definition

A binary relation R on a set A is a subset of A × A.

R ⊆ A × A

Sometimes we write x R y instead of (x , y) ∈ R.

Some properties of relations

R is reflexive if (x , x) ∈ R for all x ∈ A

R is symmetric if (x , y) ∈ R implies that (y , x) ∈ R for all x , y ∈ A

R is transitive if (x , y) ∈ R and (y , z) ∈ R implies that (x , z) ∈ R for
all x , y , z ∈ A

Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 20 / 29

Closures

Let R, R ′ and R ′′ be binary relations on a set A.

Reflexive Closure

R ′ is the reflexive closure of R if and only if

1 R ⊆ R ′,

2 R ′ is reflexive, and

3 R ′ is the smallest relation that satisfies the two conditions above,
which means the following:
for any relation R ′′, if R ⊆ R ′′ and R ′′ is reflexive then R ′ ⊆ R ′′.

Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 21 / 29

Closures

Let R, R ′ and R ′′ be binary relations on a set A.

Symmetric Closure

R ′ is the symmetric closure of R if and only if

1 R ⊆ R ′,

2 R ′ is symmetric, and

3 R ′ is the smallest relation that satisfies the two conditions above.

Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 22 / 29

Closures

Let R, R ′ and R ′′ be binary relations on a set A.

Transitive Closure

R ′ is the transitive closure of R if and only if

1 R ⊆ R ′,

2 R ′ is transitive, and

3 R ′ is the smallest relation that satisfies the two conditions above.

Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 23 / 29

Labelled Transition Systems – Notation

Let (Proc , Act, {
a

−→| a ∈ Act}) be an LTS.

we extend
a

−→ to the elements of Act∗

−→=
⋃

a∈Act

a
−→

−→∗ is the reflexive and transitive closure of −→

s
a

−→ and s 6
a

−→

reachable states

Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 24 / 29

How to Describe LTS?

Syntax

unknown entity
−→ Semantics

known entity

programming language −→ what (denotational) or
how (operational) it computes

???
−→ Labelled Transition Systems

CCS

Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 25 / 29

Goals

What should a reasonable behavioural equivalence satisfy?

abstract from states (consider only the behaviour – actions)

abstract from nondeterminism

abstract from internal behaviour

What else should a reasonable behavioural equivalence satisfy?

reflexivity P ≡ P for any process P

transitivity Spec0 ≡ Spec1 ≡ Spec2 ≡ · · · ≡ Impl gives that
Spec0 ≡ Impl

symmetry P ≡ Q iff Q ≡ P

Lecturer: Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 7 / 18

Congruence

P

C

Q

C

C (P) C (Q)

Congruence Property

P ≡ Q implies that C (P) ≡ C (Q)

Lecturer: Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 8 / 18

Trace Equivalence

Let (Proc , Act, {
a

−→| a ∈ Act}) be an LTS.

Trace Set for s ∈ Proc

Traces(s) = {w ∈ Act∗ | ∃s ′ ∈ Proc . s
w

−→ s ′}

Let s ∈ Proc and t ∈ Proc .

Trace Equivalence

We say that s and t are trace equivalent (s ≡t t) if and only if
Traces(s) = Traces(t)

Is this a “good” behavioural equivalence ?

Lecturer: Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 9 / 18

Black-Box Experiments

Experiment in A Experiment in B Experiment in B

coin tea coffee coin tea coffee coin tea coffee

press coin press coin press coin

coin tea coffee coin tea coffee coin tea coffee

Main Idea

Two processes are behaviorally equivalent if and only if an external
observer cannot tell them apart.

Lecturer: Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 10 / 18

Strong Bisimilarity

Let (Proc , Act, {
a

−→| a ∈ Act}) be an LTS.

Strong Bisimulation

A binary relation R ⊆ Proc × Proc is a strong bisimulation iff whenever
(s, t) ∈ R then for each a ∈ Act:

if s
a

−→ s ′ then t
a

−→ t ′ for some t ′ such that (s ′, t ′) ∈ R

if t
a

−→ t ′ then s
a

−→ s ′ for some s ′ such that (s ′, t ′) ∈ R.

Strong Bisimilarity

Two processes p1, p2 ∈ Proc are strongly bisimilar (p1 ∼ p2) if and only if
there exists a strong bisimulation R such that (p1, p2) ∈ R.

∼ = ∪{R | R is a strong bisimulation}

Lecturer: Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 11 / 18

Basic Properties of Strong Bisimilarity

Theorem

∼ is an equivalence (reflexive, symmetric and transitive)

Theorem

∼ is the largest strong bisimulation

Theorem

s ∼ t if and only if for each a ∈ Act:

if s
a

−→ s ′ then t
a

−→ t ′ for some t ′ such that s ′ ∼ t ′

if t
a

−→ t ′ then s
a

−→ s ′ for some s ′ such that s ′ ∼ t ′.

Lecturer: Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 12 / 18

How to Show Nonbisimilarity?

s
a

t
a a

s1
b c

t1
b

t2
c

s2 s3 t3 t4

To prove that s 6∼ t:

Enumerate all binary relations and show that none of them at the
same time contains (s, t) and is a strong bisimulation. (Expensive:
2|Proc|2 relations.)

Make certain observations which will enable to disqualify many
bisimulation candidates in one step.

Use game characterization of strong bisimilarity.

Lecturer: Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 13 / 18

Strong Bisimulation Game

Let (Proc , Act, {
a

−→| a ∈ Act}) be an LTS and s, t ∈ Proc .

We define a two-player game of an ‘attacker’ and a ‘defender’ starting
from s and t.

The game is played in rounds and configurations of the game are
pairs of states from Proc × Proc .

In every round exactly one configuration is called current. Initially the
configuration (s, t) is the current one.

Intuition

The defender wants the show that s and t are strongly bisimilar while the
attacker aims to prove the opposite.

Lecturer: Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 14 / 18

Rules of the Bisimulation Games

Game Rules

In each round the players change the current configuration as follows:

1 the attacker chooses one of the processes in the current configuration
and makes an

a
−→-move for some a ∈ Act, and

2 the defender must respond by making an
a

−→-move in the other
process under the same action a.

The newly reached pair of processes becomes the current configuration.
The game then continues by another round.

Result of the Game

If one player cannot move, the other player wins.

If the game is infinite, the defender wins.

Lecturer: Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 15 / 18

Game Characterization of Strong Bisimilarity

Theorem

States s and t are strongly bisimilar if and only if the defender has a
universal winning strategy starting from the configuration (s, t).

States s and t are not strongly bisimilar if and only if the attacker has
a universal winning strategy starting from the configuration (s, t).

Remark

Bisimulation game can be used to prove both bisimilarity and
nonbisimilarity of two processes. It very often provides elegant arguments
for the negative case.

Lecturer: Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 16 / 18

	Value Passing CCS
	Intuition
	Translation to standard CCS
	Turing Power

	Semantic Equivalences
	Intuition
	Requirements
	Trace Equivalence

	Strong Bisimilarity
	Motivation
	Definition
	Bisimulation Games
	Properties

