Characterization of a Classical Program

Program transforms an input into an output.

 Denotational semantics: a meaning of a program is a partial function

 $states \hookrightarrow states$

- Nontermination is bad!
- In case of termination, the result is unique.

Is this all we need?

Interlude: Verification of a computer program

 $\{x_1, x_2 \text{ are integers satisfying } C_1: x_1 \ge 0, x_2 > 0 \}$

Program P

 $y_{1} := 0; y_{2} := x_{1}; \\ \{ x_{1} = y_{1}x_{2} + y_{2} \land 0 \le y_{2} \} \dots \text{ INV} \\ \text{while } y_{2} \ge x_{2} \text{ do } (y_{1} := y_{1} + 1; y_{2} := y_{2} - x_{2}); \\ z_{1} := y_{1}; z_{2} := y_{2} \end{cases}$

$$\{ C_2: x_1 = z_1 x_2 + z_2 \land \mathbf{0} \le z_2 < x_2 \}$$

We want to verify: $\{C_1\}P\{C_2\}$... (specification of P)

Generated verification conditions:

$$\{C_1\} \ y_1 := 0; y_2 := x_1 \ \{\mathsf{INV}\} \\ \{\mathsf{INV} \land y_2 \ge x_2\} \ y_1 := y_1 + 1; y_2 := y_2 - x_2 \ \{\mathsf{INV}\} \\ \{\mathsf{INV} \land \neg(y_2 \ge x_2)\} \ z_1 := y_1; z_2 := y_2 \ \{C_2\}$$

What about:

- Operating systems?
- Communication protocols?
- Control programs?
- Mobile phones?
- Vending machines?

Characterization of Reactive Systems

Reactive System is a system that computes by reacting to stimuli from its environment.

Key Issues:

- communication and interaction
- parallelism

Nontermination is good!

The result (if any) does not have to be unique.

Questions

- How can we develop (design) a system that "works"?
- How do we analyze (verify) such a system?

Fact of Life

Even short parallel programs may be hard to analyze.

Example: Peterson's protocol

Concurrent, parallel, interactive, 'nondeterministic' systems, with ongoing behaviour ...

No input-output characterization (specification) ... Verification of 'simple' properties ...

Peterson's protocol (to avoid critical section clash)

Process A: ** noncritical region ** $flag_A := true$ turn := Bwaitfor $(flag_B = false \lor turn = A)$ ** critical region ** $flag_A := false$ ** noncritical region **

```
Process B:

** noncritical region **

flag_B := true

turn := A

waitfor

(flag_A = false \lor turn = B)

** critical region **

flag_B := false

** noncritical region **
```

Conclusion

We need formal/systematic methods (tools), otherwise ...

- Intel's Pentium-II bug in floating-point division unit
- Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer
- Mars Pathfinder
- ۰. ا

	Classical	Reactive/Parallel
interaction	no	yes
nontermination	undesirable	often desirable
unique result	yes	no
semantics	$states \hookrightarrow states$?

Question

What is the most abstract view of a reactive system (process)?

Answer

A process performs an action and becomes another process.

Definition

A labelled transition system (LTS) is a triple (*Proc*, *Act*, $\{\stackrel{a}{\longrightarrow}|a \in Act\}$) where

- Proc is a set of states (or processes),
- Act is a set of labels (or actions), and
- for every a ∈ Act, → ⊆ Proc × Proc is a binary relation on states called the transition relation.

We will use the infix notation $s \xrightarrow{a} s'$ meaning that $(s, s') \in \xrightarrow{a}$.

Sometimes we distinguish the initial (or start) state.

Definition

A binary relation R on a set A is a subset of $A \times A$.

 $R \subseteq A \times A$

Sometimes we write x R y instead of $(x, y) \in R$.

Some properties of relations

- *R* is reflexive if $(x, x) \in R$ for all $x \in A$
- R is symmetric if $(x, y) \in R$ implies that $(y, x) \in R$ for all $x, y \in A$
- R is transitive if $(x, y) \in R$ and $(y, z) \in R$ implies that $(x, z) \in R$ for all $x, y, z \in A$

Let R, R' and R'' be binary relations on a set A.

Reflexive Closure

R' is the reflexive closure of R if and only if

- $\ \, \mathbf{R}\subseteq R',$
- \bigcirc R' is reflexive, and

Solution of the smallest relation that satisfies the two conditions above, which means the following: for any relation R", if R ⊂ R" and R" is reflexive then R' ⊂ R".

Let R, R' and R'' be binary relations on a set A.

Symmetric Closure

R' is the symmetric closure of R if and only if

- $\ \, {\bf 0} \ \, R\subseteq R',$
- *R'* is symmetric, and
- Solution R' is the smallest relation that satisfies the two conditions above.

Let R, R' and R'' be binary relations on a set A.

Transitive Closure

R' is the transitive closure of R if and only if

- $\ \, \mathbf{R}\subseteq R',$
- *R'* is transitive, and

 \bigcirc R' is the smallest relation that satisfies the two conditions above.

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS.

- we extend \xrightarrow{a} to the elements of Act^*
- $\longrightarrow = \bigcup_{a \in Act} \xrightarrow{a}$
- $\bullet \longrightarrow^*$ is the reflexive and transitive closure of \longrightarrow
- $s \xrightarrow{a}$ and $s \xrightarrow{a}$
- reachable states

What should a reasonable behavioural equivalence satisfy?

- abstract from states (consider only the behaviour actions)
- abstract from nondeterminism
- abstract from internal behaviour

What else should a reasonable behavioural equivalence satisfy?

- reflexivity $P \equiv P$ for any process P
- transitivity $Spec_0 \equiv Spec_1 \equiv Spec_2 \equiv \cdots \equiv Impl$ gives that $Spec_0 \equiv Impl$
- symmetry $P \equiv Q$ iff $Q \equiv P$

Congruence Property $P \equiv Q$ implies that $C(P) \equiv C(Q)$ Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS.

Trace Set for $s \in Proc$

$$\mathit{Traces}(s) = \{w \in \mathit{Act}^* \mid \exists s' \in \mathit{Proc.} \ s \overset{w}{\longrightarrow} s'\}$$

Let $s \in Proc$ and $t \in Proc$.

Trace Equivalence

We say that s and t are trace equivalent $(s \equiv_t t)$ if and only if Traces(s) = Traces(t)

Is this a "good" behavioural equivalence ?

Black-Box Experiments

Main Idea

Two processes are behaviorally equivalent if and only if an external observer cannot tell them apart.

Strong Bisimilarity

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS.

Strong Bisimulation

A binary relation $R \subseteq Proc \times Proc$ is a strong bisimulation iff whenever $(s, t) \in R$ then for each $a \in Act$:

• if $s \stackrel{a}{\longrightarrow} s'$ then $t \stackrel{a}{\longrightarrow} t'$ for some t' such that $(s', t') \in R$

• if $t \xrightarrow{a} t'$ then $s \xrightarrow{a} s'$ for some s' such that $(s', t') \in R$.

Strong Bisimilarity

Two processes $p_1, p_2 \in Proc$ are strongly bisimilar $(p_1 \sim p_2)$ if and only if there exists a strong bisimulation R such that $(p_1, p_2) \in R$.

 $\sim = \cup \{ R \mid R \text{ is a strong bisimulation} \}$

Theorem

 \sim is an equivalence (reflexive, symmetric and transitive)

Theorem

 \sim is the largest strong bisimulation

Theorem

 $s \sim t$ if and only if for each $a \in Act$:

• if
$$s \xrightarrow{a} s'$$
 then $t \xrightarrow{a} t'$ for some t' such that $s' \sim t'$

• if
$$t \stackrel{a}{\longrightarrow} t'$$
 then $s \stackrel{a}{\longrightarrow} s'$ for some s' such that $s' \sim t'$.

How to Show Nonbisimilarity?

To prove that $s \not\sim t$:

- Enumerate all binary relations and show that none of them at the same time contains (s, t) and is a strong bisimulation. (Expensive: $2^{|Proc|^2}$ relations.)
- Make certain observations which will enable to disqualify many bisimulation candidates in one step.
- Use game characterization of strong bisimilarity.

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS and $s, t \in Proc$.

We define a two-player game of an 'attacker' and a 'defender' starting from s and t.

- The game is played in rounds and configurations of the game are pairs of states from *Proc* × *Proc*.
- In every round exactly one configuration is called current. Initially the configuration (*s*, *t*) is the current one.

Intuition

The defender wants the show that s and t are strongly bisimilar while the attacker aims to prove the opposite.

Game Rules

In each round the players change the current configuration as follows:

- the attacker chooses one of the processes in the current configuration and makes an \xrightarrow{a} -move for some $a \in Act$, and
- **②** the defender must respond by making an \xrightarrow{a} -move in the other process under the same action *a*.

The newly reached pair of processes becomes the current configuration. The game then continues by another round.

Result of the Game

- If one player cannot move, the other player wins.
- If the game is infinite, the defender wins.

Theorem

- States *s* and *t* are strongly bisimilar if and only if the defender has a universal winning strategy starting from the configuration (*s*, *t*).
- States *s* and *t* are not strongly bisimilar if and only if the attacker has a universal winning strategy starting from the configuration (*s*, *t*).

Remark

Bisimulation game can be used to prove both bisimilarity and nonbisimilarity of two processes. It very often provides elegant arguments for the negative case.