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Overview of Machine Learning

Partially based on the ML lecture by Raymond J. Mooney

University of Texas at Austin


For full version see ISMU  Study Materials FI:PA164 > Learning Materials > Machine 
learning 

https://is.muni.cz/auth/el/fi/podzim2020/PA164/um/65253488/
https://is.muni.cz/auth/el/fi/podzim2020/PA164/um/65253488/
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Machine learning

• Unsupervised learning (clustering)


• Supervised learning (classification, regression; 
prediction)


• Association rule learning (learning frequent 
patterns)


• Outlier analysis
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Inductive Classification
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Classification (Categorization)

• Given:

– A description of an instance, x∈X, where X is the 

instance language or instance space.

– A fixed set of categories: C={c1, c2,…cn}


• Determine:

– The category of x: c(x)∈C, where c(x) is a categorization 

function whose domain is X and whose range is C.

– If c(x) is a binary function C={0,1} ({true,false}, 

{positive, negative}) then it is called a concept.
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Learning for Categorization

• A training example is an instance x∈X, 
paired with its correct category c(x):         <x, 
c(x)> for an unknown categorization 
function, c. 


• Given a set of training examples, D.

• Find a hypothesized categorization function, 

h(x), such that:

)()(: )(, xcxhDxcx =∈><∀
Consistency
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Sample Category Learning Problem

• Instance language: <size, color, shape>

– size ∈ {small, medium, large}

– color ∈ {red, blue, green}

– shape ∈ {square, circle, triangle}


• C = {positive, negative}

• D:

Example Size Color Shape Category
1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative
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Hypothesis Selection

• Many hypotheses are usually consistent with 
the training data.


– red & circle

– (small & circle) or (large & red) 

– (small & red & circle) or (large & red & circle)
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Generalization

• Hypotheses must generalize to correctly 
classify instances not in the training data.


• Simply memorizing training examples is a 
consistent hypothesis that does not 
generalize. But …
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Inductive Learning Hypothesis

• Any function that is found to approximate the target 
concept well on a sufficiently large set of training examples 
will also approximate the target function well on 
unobserved examples.


• Assumes that the training and test examples are drawn 
independently from the same underlying distribution.


• This is a fundamentally unprovable hypothesis unless 
additional assumptions are made about the target concept 
and the notion of “approximating the target function well 
on unobserved examples” is defined appropriately (cf. 
computational learning theory).



10

Evaluation of Classification Learning

• Training time (efficiency of training algorithm).

• Complexity of the hypotthesis that has been 

learned

• Testing time (efficiency of subsequent 

classification).


• Classification accuracy (% of instances classified 
correctly).

– Measured on an independent test data.
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Evaluation of Classification Learning

• Confusion matrix

• Precision and recall

• F-measures, here F1-measure only


• Learning curve

• ROC curve, AUC
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Using the Generality Structure

• By exploiting the structure imposed by the generality of 
hypotheses, an hypothesis space can be searched for 
consistent hypotheses without enumerating or explicitly 
exploring all hypotheses.


• An instance, x∈X, is said to satisfy an hypothesis, h, iff 
h(x)=1 (positive)


• Given two hypotheses h1 and h2, h1 is more general than or 
equal to h2 (h1≥h2) iff every instance that satisfies h2 also 
satisfies h1.


• Given two hypotheses h1 and h2, h1 is (strictly) more general 
than h2 (h1>h2) iff h1≥h2 and it is not the case that h2 ≥ h1.


• Generality defines a partial order on hypotheses.
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Examples of Generality

• Conjunctive feature vectors

– <?, red, ?> is more general than <?, red, circle>

– Neither of <?, red, ?> and <?, ?, circle> is more general 

than the other.

• Axis-parallel rectangles in 2-d space


– A is more general than B

– Neither of A and C are more general than the other.

A
B

C
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Sample Generalization Lattice

< Ø, Ø, Ø>

<?,?,circ>  <big,?,?> <?,red,?>  <?,blue,?>  <sm,?,?> <?,?,squr>  

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr>


< ?,red,circ><big,?,circ><big,red,?><big,blue,?><sm,?,circ><?,blue,circ> <?,red,squr><sm.?,sqr><sm,red,?><sm,blue,?
><big,?,squr><?,blue,squr>

<?, ?, ?>

Size: {sm, big}     Color: {red, blue}     Shape: {circ, squr}

Number of hypotheses = 33 + 1 = 28
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No Panacea

• No Free Lunch (NFL) Theorem (Wolpert, 1995)

      Law of Conservation of Generalization Performance (Schaffer, 1994)


– One can prove that improving generalization performance on unseen data 
for some tasks will always decrease performance on other tasks (which 
require different labels on the unseen instances).


– Averaged across all possible target functions, no learner generalizes to 
unseen data any better than any other learner.


• There does not exist a learning method that is uniformly better than 
another for all problems.


• Given any two learning methods A and B and a training set, D, there 
always exists a target function for which A generalizes better (or at least 
as well) as B.
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Logical View of Induction

• Deduction is inferring sound specific conclusions from 
general rules (axioms) and specific facts.


• Induction is inferring general rules and theories from 
specific empirical data.


• Induction can be viewed as inverse deduction.

– Find a hypothesis h from data D such that


• h ∪ B |― D

   where B is optional background knowledge


• Abduction is similar to induction, except it involves finding 
a specific hypothesis, h, that best explains a set of evidence, 
D, or inferring cause from effect. Typically, in this case B is 
quite large compared to induction and h is smaller and more 
specific to a particular event.
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Decision Tree Learning
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Top-Down Decision Tree Induction

• Recursively build a tree top-down by divide and conquer.
<big, red, circle>: +       <small, red, circle>: +

<small, red, square>: −  <big, blue, circle>: −

color
red blue green

<big, red, circle>: +       

<small, red, circle>: +

<small, red, square>: −  
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shape

circle square triangle

Top-Down Decision Tree Induction

• Recursively build a tree top-down by divide and conquer.
<big, red, circle>: +       <small, red, circle>: +

<small, red, square>: −  <big, blue, circle>: −

<big, red, circle>: +       

<small, red, circle>: +

<small, red, square>: −  

color
red blue green

<big, red, circle>: +       

<small, red, circle>: +

pos
<small, red, square>: −  
neg pos

<big, blue, circle>: −neg neg
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Properties of Decision Tree Learning

• Continuous (real-valued) features can be handled by 
allowing nodes to split a real valued feature into two ranges 
based on a threshold (e.g. length < 3 and length ≥3)


• Classification trees have discrete class labels at the leaves, 
regression trees allow real-valued outputs at the leaves.


• Algorithms for finding consistent trees are efficient for 
processing large amounts of training data for data mining 
tasks.


• Methods developed for handling noisy training data (both 
class and feature noise).


• Methods developed for handling missing feature values.
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Picking a Good Split Feature

• Goal is to have the resulting tree be as small as possible, 
per Occam’s razor.


• Finding a minimal decision tree (nodes, leaves, or depth) is 
an NP-hard optimization problem.


• Top-down divide-and-conquer method does a greedy search 
for a simple tree but does not guarantee to find the smallest.

– General lesson in ML:  “Greed is good.”


• Want to pick a feature that creates subsets of examples that 
are relatively “pure” in a single class so they are “closer” to 
being leaf nodes.


• There are a variety of heuristics for picking a good test, a 
popular one is based on information gain that originated 
with the ID3 system of Quinlan (1979).
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Information Gain
• The information gain of a feature F is the expected reduction in entropy 

resulting from splitting on this feature.


     where Sv is the subset of S having value v for feature F.

• Entropy of each resulting subset weighted by its relative size.

• Example:


– <big, red, circle>: +          <small, red, circle>: +

– <small, red, square>: −     <big, blue, circle>: −

)()(),(
)(

v
FValuesv

v SEntropy
S
S

SEntropyFSGain ∑
∈

−=

2+, 2 −: E=1

     size

big          small

1+,1−     1+,1−

E=1        E=1

Gain=1−(0.5⋅1 + 0.5⋅1) = 0

2+, 2 − : E=1

     color

red          blue

2+,1−     0+,1−

E=0.918   E=0

Gain=1−(0.75⋅0.918 +

               0.25⋅0) = 0.311

2+, 2 − : E=1

     shape

circle      square

2+,1−     0+,1−

E=0.918   E=0

Gain=1−(0.75⋅0.918 +

               0.25⋅0) = 0.311
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Bias in Decision-Tree Induction

• Information-gain gives a bias for trees with 
minimal depth.


• Implements a search (preference) bias 
instead of a language (restriction) bias.
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Overfitting

• Learning a tree that classifies the training data perfectly may 
not lead to the tree with the best generalization to unseen data.

– There may be noise in the training data that the tree is erroneously 

fitting.

– The algorithm may be making poor decisions towards the leaves of the 

tree that are based on very little data and may not reflect reliable trends.

• A hypothesis, h, is said to overfit the training data is there 

exists another hypothesis which, h´, such that h has less error 
than h´ on the training data but greater error on independent 
test data.

hypothesis complexity

ac
cu

ra
cy

on training data

on test data
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Overfitting Example

voltage (V)

cu
rr

en
t (

I)

Testing Ohms Law: V = IR   (I = (1/R)V)

Ohm was wrong, we have found a more accurate function!

Perfect fit to training data with an 9th degree polynomial

(can fit n points exactly with an n-1 degree polynomial)

Experimentally

measure 10 points

Fit a curve to the

Resulting data.



26

Overfitting Example

voltage (V)

cu
rr

en
t (

I)

Testing Ohms Law: V = IR   (I = (1/R)V)

Better generalization with a linear function

that fits training data less accurately.
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Bias-variance tradeoff

Another example
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Bias-variance tradeoff

Linear function works well but

Cubic seems better


Is there any general view to the problem, 

preferably with a theoretical background?
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Overfitting Noise in Decision Trees

• Category or feature noise can easily cause overfitting.

– Add noisy instance <medium, blue, circle>: pos (but really neg)

shape

circle square triangle

color
red bluegreen

pos neg pos

neg neg
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Overfitting Prevention (Pruning) Methods

• Two basic approaches for decision trees

– Prepruning: Stop growing tree as some point during top-down 

construction when there is no longer sufficient data to make reliable 
decisions.


– Postpruning: Grow the full tree, then remove subtrees that do not 
have sufficient evidence.


• Label leaf resulting from pruning with the majority class of 
the remaining data, or a class probability distribution. 


• Method for determining which subtrees to prune:

– Cross-validation: Reserve some training data as a hold-out set 

(validation set, tuning set) to evaluate utility of subtrees.

– Statistical test: Use a statistical test on the training data to determine 

if any observed regularity can be dismisses as likely due to random 
chance.


– Minimum description length (MDL): Determine if the additional 
complexity of the hypothesis is less complex than just explicitly 
remembering any exceptions resulting from pruning.
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C4.5

• Based on ID3 algorithm, author Ross Quinlan

• In all (or most of) non-commercial and commercial data mining tools

• Weka Trees -> j48
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Instance Based Learning
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Example
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Instance-Based Learning

• Unlike other learning algorithms, does not involve 
construction of an explicit abstract generalization but 
classifies new instances based on direct comparison and 
similarity to known training instances.


• Training can be very easy, just memorizing training 
instances.


• Testing can be very expensive, requiring detailed 
comparison to all past training instances.


• Also known as:

– Case-based 

– Exemplar-based

– Nearest Neighbor

– Memory-based

– Lazy Learning
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Similarity/Distance Metrics

• Instance-based methods assume a function for determining 
the similarity or distance between any two instances.


• For continuous feature vectors, Euclidian distance is the 
generic choice:

∑
=

−=
n

p
jpipji xaxaxxd

1

2))()((),(

Where ap(x) is the value of the p th feature of instance x.


• For discrete features, assume distance between two values 
is 0 if they are the same and 1 if they are different (e.g. 
Hamming distance for bit vectors).


• To compensate for difference in units across features, scale 
all continuous values to the interval [0,1].
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Other Distance Metrics

• Mahalanobis distance (!)

– Scale-invariant metric that normalizes for variance.


• Cosine Similarity

– Cosine of the angle between the two vectors.

– Used in text and other high-dimensional data.


• Pearson correlation (!)

– Standard statistical correlation coefficient.


• Edit distance

– Used to measure distance between unbounded length 

strings.

http://en.wikipedia.org/wiki/Mahalanobis_distance
http://en.wikipedia.org/wiki/Mahalanobis_distance
http://en.wikipedia.org/wiki/Mahalanobis_distance
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
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K-Nearest Neighbor

• Calculate the distance between a test point 
and every training instance.


• Pick the k closest training examples and 
assign the test instance to the most common 
category amongst these nearest neighbors.


• Voting multiple neighbors helps decrease 
susceptibility to noise. 


• Usually use odd value for k to avoid ties.
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Nearest Neighbor Variations

• Can be used to estimate the value of a real-
valued function – regression - by taking the 
average function value of the k nearest 
neighbors to an input point.


• All training examples can be used to help 
classify a test instance by giving every 
training example a vote that is weighted by 
the inverse square of its distance from the 
test instance.
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Feature Relevance and Weighting

• Standard distance metrics weight each feature 
equally when determining similarity.

– Problematic if many features are irrelevant, since 

similarity along many irrelevant examples could mislead 
the classification.


• Features can be weighted by some measure that 
indicates their ability to discriminate the category 
of an example, such as information gain.


• Overall, instance-based methods favor global 
similarity over concept simplicity.
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Naïve Bayes Learning

Based on Raymond J. Mooney’s slides

University of Texas at Austin
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Bayes Theorem

Simple proof from definition of conditional probability:
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Bayesian Categorization

• Determine category of xk by determining for each yi


• P(X=xk) can be determined since categories are 
complete and disjoint.
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Bayesian Categorization (cont.)

• Need to know:

– Priors: P(Y=yi) 

– Conditionals: P(X=xk | Y=yi)


• P(Y=yi) are easily estimated from data. 

– If ni of the examples in D are in yi then P(Y=yi) =  ni / |D|


• Too many possible instances (e.g. 2n for binary 
features) to estimate all P(X=xk | Y=yi).


• Still need to make some sort of independence 
assumptions about the features to make learning 
tractable.



44

Naïve Bayesian Categorization

• If we assume features of an instance are independent given 
the category (conditionally independent).


• Therefore, we then only need to know P(Xi | Y) for each 
possible pair of a feature-value and a category.


• If Y and all Xi and binary, this requires specifying only 2n 
parameters:

– P(Xi=true | Y=true) and P(Xi=true | Y=false) for each Xi

– P(Xi=false | Y) = 1 – P(Xi=true | Y)


• Compared to specifying 2n parameters without any 
independence assumptions.
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Naïve Bayes Example

Probability positive negative
P(Y) 0.5 0.5

P(small | Y) 0.4 0.4
P(medium | Y) 0.1 0.2

P(large | Y) 0.5 0.4
P(red | Y) 0.9 0.3
P(blue | Y) 0.05 0.3
P(green | Y) 0.05 0.4
P(square | Y) 0.05 0.4
P(triangle | Y) 0.05 0.3
P(circle | Y) 0.9 0.3

Test Instance:

<medium ,red, circle>
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Naïve Bayes Example

Probability positive negative
P(Y) 0.5 0.5

P(medium | Y) 0.1 0.2
P(red | Y) 0.9 0.3

P(circle | Y) 0.9 0.3

P(positive | X) = P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive) / P(X)

                            0.5        *               0.1              *        0.9            *        0.9

                        =  0.0405 / P(X) 

P(negative | X) = P(negative)*P(medium | negative)*P(red | negative)*P(circle | negative) / P(X) 

                                0.5       *              0.2               *        0.3             *     0.3

                         =  0.009 / P(X)

P(positive | X) + P(negative | X) = 0.0405 / P(X) + 0.009 / P(X) = 1

P(X) = (0.0405 + 0.009) = 0.0495 

= 0.0405 / 0.0495 = 0.8181

= 0.009 / 0.0495 = 0.1818

Test Instance:

<medium ,red, circle>
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Estimating Probabilities

• Normally, probabilities are estimated based on observed 
frequencies in the training data.


• If D contains nk examples in category yk, and nijk of these nk 
examples have the jth value for feature Xi, xij, then:


• However, estimating such probabilities from small training 
sets is error-prone.


• If due only to chance, a rare feature, Xi, is always false in the 
training data, ∀yk :P(Xi=true | Y=yk) = 0.


• If  Xi=true then occurs in a test example, X, the result is that 
∀yk: P(X | Y=yk) = 0 and ∀yk: P(Y=yk | X) = 0

k

ijk
kiji n

n
yYxXP === )|(
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Probability Estimation Example

Probability positive negative
P(Y) 0.5 0.5

P(small | Y) 0.5 0.5
P(medium | Y) 0.0 0.0

P(large | Y) 0.5 0.5
P(red | Y) 1.0 0.5
P(blue | Y) 0.0 0.5
P(green | Y) 0.0 0.0
P(square | Y) 0.0 0.0
P(triangle | Y) 0.0 0.5
P(circle | Y) 1.0 0.5

Ex Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negitive

4 large blue circle negitive

Test Instance X:

<medium, red, circle>

P(positive | X) = 0.5 * 0.0 * 1.0 * 1.0 / P(X) = 0

P(negative | X) = 0.5 * 0.0 * 0.5 * 0.5 /  P(X) = 0
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Smoothing

• To account for estimation from small samples, 
probability estimates are adjusted or smoothed.


• Laplace smoothing using an m-estimate assumes that 
each feature is given a prior probability, p, that is 
assumed to have been previously observed in a 
“virtual” sample of size m.


• For binary features, p is simply assumed to be 0.5.
mn
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Laplace Smothing Example

• Assume training set contains 10 positive examples:

– 4: small

– 0: medium

– 6: large


•  Estimate parameters as follows (if m=1, p=1/3)

– P(small | positive) = (4 + 1/3) / (10 + 1) =     0.394

– P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03

– P(large | positive) = (6 + 1/3) / (10 + 1) =      0.576

– P(small or medium or large | positive) =        1.0
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Continuous Attributes

• If Xi is a continuous feature rather than a discrete one, need 
another way to calculate P(Xi | Y).


• Assume that Xi has a Gaussian distribution whose mean and 
variance depends on Y.


• During training, for each combination of a continuous feature 
Xi and a class value for Y, yk, estimate a mean,  µik , and 
standard deviation σik based on the values of feature Xi in class 
yk in the training data.


• During testing, estimate P(Xi | Y=yk) for a given example, using 
the Gaussian distribution defined by µik and σik .
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Comments on Naïve Bayes

• Tends to work well despite strong assumption of 
conditional independence.


• Experiments show it to be quite competitive with other 
classification methods on standard UCI datasets.


• Although it does not produce accurate probability estimates 
when its independence assumptions are violated, it may still 
pick the correct maximum-probability class in many cases.

– Able to learn conjunctive concepts in any case


• Does not perform any search of the hypothesis space.  
Directly constructs a hypothesis from parameter estimates 
that are easily calculated from the training data.

– Strong bias


• Not guarantee consistency with training data.

• Typically handles noise well since it does not even focus on 

completely fitting the training data.
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… and many others

• Support Vector Machines (SVM) and more


• is welcome to be familiar with a ML tool like R or 
scikit-learn (python)
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Subsymbolic learning. Neural nets



Deep Learning Revolution
• Recent machine learning methods for training 

“deep” neural networks (NNs) have demonstrated 
remarkable progress on many challenging AI 
problems (e.g. speech recognition, visual object 
recognition, machine translation, game playing).


• However, their capabilities are prone to “hype.”

• Deep learning has not “solved” AI and current 

methods have clear limitations.

55



Very Brief History of Machine Learning
• Single-layer neural networks (1957-1969)

• Symbolic AI & knowledge engineering (1970-1985)

• Multi-layer NNs and symbolic learning (1985-1995)

• Statistical (Bayesian) learning and kernel methods 

(1995-2010)

• Deep learning (CNNs and RNNs) (2010-?)

56



Single-Layer Neural Network 
(Linear Threshold Unit)

• Mathematical model of               
an individual neuron.

57



Perceptron
• Rosenblatt (1957) developed an iterative, 

hill-climbing algorithm for learning the 
weights of single-layer NN to try to fit a set 
of training examples.


• Unable to learn or represent many 
classification functions (e.g. XOR), only 
the “linearly separable” ones are learnable.

58
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Perceptron Learning Rule
• Update weights by:


    where η is the “learning rate,” t is the teacher output, and 
o is the network output.


• Equivalent to rules:

– If output is correct do nothing.

– If output is high, lower weights on active inputs

– If output is low, increase weights on active inputs

iii xotww )( −+= η
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Perceptron Learning Algorithm
• Iteratively update weights until 

convergence.
Initialize weights to random values

Until outputs of all training examples are correct

      For each training pair, E, do: 

             Compute current output o for E given its inputs

             Compare current output to target value, t , for E

             Update weights using learning rule



Perceptron Demise

• Perceptons (1969) by Minsky and 
Papert illuminated the limitations of 
the perceptron.


• Work on neural-networks dissipated 
during the 70’s and early 80’s.
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Neural Net Resurgence (1986)
• Interest in NNs revived in the mid 1980’s due to 

the rise of “connectionism.”

• Backpropagation algorithm popularized for 

training three-layer NN’s.

• Generalized the iterative “hill climbing” method 

to approximate fitting two layers of synaptic 
connections, but no convergence guarantees.
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3-Layer NN Backpropagation
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Second NN Demise (1995-2010) 
• Generic backpropagation did not generalize 

that well to training deeper networks.

• Little theoretical justification for 

underlying methods.

• Machine learning research moved to 

graphical models and kernel methods.
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Deep Learning Revolution (2010…)
• Improved methods developed for training 

deep neural works.

• Particular successes with:


– Convolutional neural nets (CNNs) for vision.

– Recurrent neural nets (RNNs) for machine 

translation and speech recognition.

– Deep reinforcement learning for game playing.
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Massive Data and Specialized Hardware  
• Large collections of supervised 

(crowdsourced) training data has been 
critical.


• Efficient processing of this big data using 
specialized hardware (Graphics 
Processing Units, GPUs) has been critical.
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CNNs
• Convolutional layers learn to extract local features from image 

regions (receptive fields) analogous to human vision (LeCun, et 
al., 1998).


• Deeper layers extract higher-level features.

• Pool activity of multiple neurons into one at the next layer 

using max or mean.

• Nonlinear processing with Rectified Linear Units (ReLUs)

• Decision made using final fully connected layers.
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CNNs

Increasingly

broader local

features extracted

from image regions
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ImageNet Large Scale  
Visual Recognition Challenge (ILSVRC)

• Recognize 1,000 categories of objects 
in 150K test images (given 1.2M 
training images).
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Mongoose
 Canoe
 Missile
 Trombone




ImageNet Performance Over Time
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CNNs

introduced



CNN for text

•  71



Convolutional networks in NLP

Collobert, Weston et al. (2011)  semantic-role labeling

Kalchbrenner et al (2014)  sentiment classification

Kim (Kim, 2014) question-type classification
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