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Deep Learning Revolution
• Recent machine learning methods for training 

“deep” neural networks (NNs) have demonstrated 
remarkable progress on many challenging AI 
problems (e.g. speech recognition, visual object 
recognition, machine translation, game playing).


• However, their capabilities are prone to “hype.”

• Deep learning has not “solved” AI and current 

methods have clear limitations.
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Very Brief History of Machine Learning
• Single-layer neural networks (1957-1969)

• Symbolic AI & knowledge engineering (1970-1985)

• Multi-layer NNs and symbolic learning (1985-1995)

• Statistical (Bayesian) learning and kernel methods 

(1995-2010)

• Deep learning (CNNs and RNNs) (2010-?)

3



Single-Layer Neural Network 
(Linear Threshold Unit)

• Mathematical model of an individual neuron.
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Perceptron
• Rosenblatt (1957) developed an iterative, 

hill-climbing algorithm for learning the 
weights of single-layer NN to try to fit a set 
of training examples.


• Unable to learn or represent many 
classification functions (e.g. XOR), only the 
“linearly separable” ones are learnable.
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Perceptron Learning Rule
• Update weights by:


    where η is the “learning rate,” t is the teacher output, and 
o is the network output.


• Equivalent to rules:

– If output is correct do nothing.

– If output is high, lower weights on active inputs

– If output is low, increase weights on active inputs
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Perceptron Learning Algorithm
• Iteratively update weights until convergence.

Initialize weights to random values

Until outputs of all training examples are correct

      For each training pair, E, do: 

             Compute current output o for E given its inputs

             Compare current output to target value, t , for E

             Update weights using learning rule



Perceptron Demise

• Perceptons (1969) by Minksy and Papert 
illuminated the limitations of the perceptron.


• Work on neural-networks dissipated during 
the 70’s and early 80’s.
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Neural Net Resurgence (1986)
• Interest in NNs revived in the mid 1980’s due to 

the rise of “connectionism.”

• Backpropagation algorithm popularized for 

training three-layer NN’s.

• Generalized the iterative “hill climbing” method 

to approximate fitting two layers of synaptic 
connections, but no convergence guarantees.
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3-Layer NN Backpropagation
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Second NN Demise (1995-2010) 

• Generic backpropagation did not generalize 
that well to training deeper networks.


• Little theoretical justification for underlying 
methods.


• Machine learning research moved to 
graphical models and kernel methods.
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Deep Learning Revolution (2010…)
• Improved methods developed for training deep 

neural works.

• Particular successes with:

– Convolutional neural nets (CNNs) for vision.

– Recurrent neural nets (RNNs) for machine translation 

and speech recognition.

– Deep reinforcement learning for game playing.
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Massive Data and Specialized Hardware  
• Large collections of supervised 

(crowdsourced) training data has been critical.

• Efficient processing of this big data using 

specialized hardware (Graphics Processing 
Units, GPUs) has been critical.
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CNNs
• Convolutional layers learn to extract local features from image 

regions (receptive fields) analogous to human vision (LeCun, 
et al., 1998).


• Deeper layers extract higher-level features.

• Pool activity of multiple neurons into one at the next layer 

using max or mean.

• Nonlinear processing with Rectified Linear Units (ReLUs)

• Decision made using final fully connected layers.
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CNNs

Increasingly

broader local

features extracted

from image regions
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ImageNet Large Scale  
Visual Recognition Challenge (ILSVRC)

• Recognize 1,000 categories of objects in 150K test 
images (given 1.2M training images).
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ImageNet Performance Over Time
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Recurrent Neural Networks (RNNs)
• Add feedback loops where some units’ 

current outputs determine some future 
network inputs.


• RNNs can model dynamic finite-state 
machines, beyond the static combinatorial 
circuits modeled by feed-forward networks. 
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Simple Recurrent Network (SRN)
• Initially developed by Jeff Elman (“Finding 

structure in time,” 1990).

• Additional input to hidden layer is the state 

of the hidden layer in the previous time step.

19http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Unrolled RNN

• Behavior of RNN is perhaps best viewed by 
“unrolling” the network over time.
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Training RNN’s
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• RNNs can be 
trained using 
“backpropagation 
through time.”


• Can viewed as 
applying normal 
backprop to the 
unrolled network.



Vanishing/Exploding Gradient Problem
• Backpropagated errors multiply at each layer, 

resulting in exponential decay (if derivative 
is small) or growth (if derivative is large).


• Makes it very difficult train deep networks, 
or simple recurrent networks over many time 
steps.
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Long Distance Dependencies
• It is very difficult to train SRNs to retain information over many time steps.

• This make is very difficult to learn SRNs that handle long-distance 

dependencies, such as subject-verb agreement.
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