
111

The Deep Learning Revolution

Raymond J. Mooney

University of Texas at Austin

Deep Learning Revolution
• Recent machine learning methods for training

“deep” neural networks (NNs) have demonstrated
remarkable progress on many challenging AI
problems (e.g. speech recognition, visual object
recognition, machine translation, game playing).

• However, their capabilities are prone to “hype.”

• Deep learning has not “solved” AI and current

methods have clear limitations.

2

Very Brief History of Machine Learning
• Single-layer neural networks (1957-1969)

• Symbolic AI & knowledge engineering (1970-1985)

• Multi-layer NNs and symbolic learning (1985-1995)

• Statistical (Bayesian) learning and kernel methods

(1995-2010)

• Deep learning (CNNs and RNNs) (2010-?)

3

Single-Layer Neural Network 
(Linear Threshold Unit)

• Mathematical model of an individual neuron.

4

Perceptron
• Rosenblatt (1957) developed an iterative,

hill-climbing algorithm for learning the
weights of single-layer NN to try to fit a set
of training examples.

• Unable to learn or represent many
classification functions (e.g. XOR), only the
“linearly separable” ones are learnable.

5

6

Perceptron Learning Rule
• Update weights by:

 where η is the “learning rate,” t is the teacher output, and
o is the network output.

• Equivalent to rules:

– If output is correct do nothing.

– If output is high, lower weights on active inputs

– If output is low, increase weights on active inputs

iii xotww)(−+= η

7

Perceptron Learning Algorithm
• Iteratively update weights until convergence.

Initialize weights to random values

Until outputs of all training examples are correct

 For each training pair, E, do:

 Compute current output o for E given its inputs

 Compare current output to target value, t , for E

 Update weights using learning rule

Perceptron Demise

• Perceptons (1969) by Minksy and Papert
illuminated the limitations of the perceptron.

• Work on neural-networks dissipated during
the 70’s and early 80’s.

8

Neural Net Resurgence (1986)
• Interest in NNs revived in the mid 1980’s due to

the rise of “connectionism.”

• Backpropagation algorithm popularized for

training three-layer NN’s.

• Generalized the iterative “hill climbing” method

to approximate fitting two layers of synaptic
connections, but no convergence guarantees.

9

3-Layer NN Backpropagation

10

Second NN Demise (1995-2010)

• Generic backpropagation did not generalize
that well to training deeper networks.

• Little theoretical justification for underlying
methods.

• Machine learning research moved to
graphical models and kernel methods.

11

Deep Learning Revolution (2010…)
• Improved methods developed for training deep

neural works.

• Particular successes with:

– Convolutional neural nets (CNNs) for vision.

– Recurrent neural nets (RNNs) for machine translation

and speech recognition.

– Deep reinforcement learning for game playing.

12

Massive Data and Specialized Hardware
• Large collections of supervised

(crowdsourced) training data has been critical.

• Efficient processing of this big data using

specialized hardware (Graphics Processing
Units, GPUs) has been critical.

13

CNNs
• Convolutional layers learn to extract local features from image

regions (receptive fields) analogous to human vision (LeCun,
et al., 1998).

• Deeper layers extract higher-level features.

• Pool activity of multiple neurons into one at the next layer

using max or mean.

• Nonlinear processing with Rectified Linear Units (ReLUs)

• Decision made using final fully connected layers.

14

CNNs

Increasingly

broader local

features extracted

from image regions

15

ImageNet Large Scale  
Visual Recognition Challenge (ILSVRC)

• Recognize 1,000 categories of objects in 150K test
images (given 1.2M training images).

16

Mongoose
 Canoe
 Missile
 Trombone

ImageNet Performance Over Time

17

CNNs

introduced

Recurrent Neural Networks (RNNs)
• Add feedback loops where some units’

current outputs determine some future
network inputs.

• RNNs can model dynamic finite-state
machines, beyond the static combinatorial
circuits modeled by feed-forward networks.

18

Simple Recurrent Network (SRN)
• Initially developed by Jeff Elman (“Finding

structure in time,” 1990).

• Additional input to hidden layer is the state

of the hidden layer in the previous time step.

19http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unrolled RNN

• Behavior of RNN is perhaps best viewed by
“unrolling” the network over time.

20

time

Training RNN’s

21

Training

 outputs

Training

inputs

backpropagated errors

yty2y0 y1

BBBB

• RNNs can be
trained using
“backpropagation
through time.”

• Can viewed as
applying normal
backprop to the
unrolled network.

Vanishing/Exploding Gradient Problem
• Backpropagated errors multiply at each layer,

resulting in exponential decay (if derivative
is small) or growth (if derivative is large).

• Makes it very difficult train deep networks,
or simple recurrent networks over many time
steps.

22

Long Distance Dependencies
• It is very difficult to train SRNs to retain information over many time steps.

• This make is very difficult to learn SRNs that handle long-distance

dependencies, such as subject-verb agreement.

23

