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Abstract

This thesis describes work on the detection of anomalous material in text without
the use of training data. We use the term anomalous to refer to text that is irregular,
or deviates significantly from its surrounding context. In this thesis we show that
identifying such abnormalities in text can be viewed as a type of outlier detection
because these anomalies will differ significantly from the writing style in the majority
of the data. We consider segments of text which are anomalous with respect to topic
(i.e. about a different subject), author (written by a different person), or genre (writ-
ten for a different audience or from a different source) and experiment with whether it
is possible to identify these anomalous segments automatically. Five different innova-
tive approaches to this problem are introduced and assessed using many experiments
over large document collections, created to contain randomly inserted anomalous seg-
ments. In order to identify anomalies in text successfully, we investigate and evaluate
166 stylistic and linguistic features used to characterize writing, some of which are
well-established stylistic determiners, but many of which are original. Using these
features with each of our methods, we examine the effect of segment size on our
ability to detect anomaly, allowing segments of size 100 words, 500 words and 1000
words. We show substantial improvements over a baseline in all cases for all methods,
and identify a novel method which performs consistently better than others and the
features that contribute most to unsupervised anomaly detection.
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Chapter 1

Introduction

For he that knows the ways of nature will more easily observe her

deviations; and on the other hand, he that knows her deviations will more

accurately describe her ways.

-Sir Francis Bacon in Novum Organum (1620)

1.1 Defining Anomaly

This thesis is about identifying the unusual use of language. Obvious questions

that follow from this are “What makes language use unusual?” and “how can we get

a consensus on what kind of language use is unusual?” After all, language that is

unfamiliar to one person may be completely commonplace to others. Likewise, writing

that is unconventional in one context can seem normal in another. Language use can

be domain-centric and subjective and often is not unusual in and of itself, but because

it is different or stands out from the language around it. In fact, when viewed this

way, any language or writing can be considered unusual in the right circumstances

1
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or ‘context’. The central idea behind this thesis is that unusual language use can

be viewed as a type of anomaly because it is out of place in its context and as such

we can approach the problem of identifying unusual language as a type of anomaly

detection.

Anomaly is typically defined as: “something that deviates from what is standard,

normal, or expected” [Burchfield, 1971] and the word is often used to express incon-

gruity, irregularity, or inconsistency. We use the term to describe exactly this notion

of abnormality, but within text. Text that is unexpected, irregular, or inconsistent

is for us anomalous because it breaks the pattern of its context. This thesis investi-

gates whether it is possible to identify anomalous language automatically because it

deviates from its context.

During the course of this research, it became clear that, depending on how broad

we made our definition of anomalous text, almost any text could be seen as an anomaly

for one reason or another in the proper context. We have attempted throughout the

research to keep our anomaly detection techniques as broad as possible, but this work

specifically addresses the detection of four types of textual anomalies:

• Authorship

• Genre

• Style of writing

• Emotional tone of writing

We use the term authorship anomalies to describe pieces of text that deviate from

their contexts because they were written by a different author. A genre anomaly is

defined by text that has a different external use or purpose (for instance narrative
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versus argumentative writing). Closely related to genre is the notion of style, where

text is anomalous because of the way it is written, so the word choice, grammar, voice,

register, etc. play a part in determining the style of the text. Lastly the emotional

tone of writing can be anomalous because it encapsulates a different sentiment or

feeling, for instance, positive versus negative writing or angry vs good-humored. A

detailed discussion of how these text types are defined and of related work in these

areas is presented in Chapter 3 of this thesis.

1.2 Motivation

In everyday life, situations abound that rely on the ability of computers to detect

differences from what is normal or expected. Credit card companies identify possible

fraud by detecting spending patterns that differ from what is ‘normal’ for a given

cardholder [Burge and Shawe-Taylor, 1997; Bolton and Hand, 2002; Fawcett and

Provost, 1997] and network analysts detect possible attacks by spotting network traffic

that is out of the ordinary [Denning, 1987; Kruegel and Vigna, 2003]. The principal

motivation for this research was the development of technologies to similarly detect

anomalies in text. This is an interesting problem because anomalies in text can be

of many different types and extremely varied. For text we would like techniques that

make no assumptions about how many anomalies will be present or what type of

anomaly will be present. Professors, for example, can regularly identify plagiarism

in a paper by noticing writing that is ‘abnormal’ compared to the rest of the paper,

even if there are multiple plagiarized sections from different sources. An automatic

technique for detecting unusual writing (like plagiarism) that could similarly spot
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several different dimensions of anomaly and multiple occurrences of different types

would be extremely useful.

Finding these textual anomalies is important for a range of practical applications

from detecting paragraphs in a single document that are plagiarized to improving

the quality and integrity of data sets by finding textual data in collections that is

inconsistent with the rest of the collection. An important aspect of our research was

also that these tasks should be able to be performed without having to gather large

collections of corpora and train a technique to detect a single type of anomaly, but

would be able to detect a wide range of anomalies in any new domain encountered.

A list of applications where automatic detection of textual anomaly would be

beneficial includes:

Plagiarism, Disputed Authorship, and Text Reuse: Anomaly detection for text

would be useful to automatically identify documents where an author uses sec-

tions of work which are not his own, as in the case of plagiarism. This is

an obvious case for the use of anomaly detection because plagiarized passages

should be unusual when compared to the writing in the rest of the document.

Anomaly detection methods would be beneficial to spot plagiarized passages

in a document because the writing is odd and not, as it the case with most

current methods for detecting plagiarism [Maurer et al., 2006; Bull et al., 2001],

by using outside resources to try and actually find the source material that was

copied. Similarly, it would be helpful where collaborative writing has taken

place to identify areas in the text that appear incongruent and should possibly

be rewritten.
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Anomaly detection would also be beneficial to the problem of identifying text

reuse [Gaizauskas et al., 2001; Clough et al., 2002; Wilks, 2004], where text is

directly copied from one source for use in another. Text reuse has mostly been

defined in the context of newspapers copying newswire for use in production

articles (either verbatim or slightly adapted) and it is desirable to be able to

automatically identify text in this scenario that has been reused. Given the

capability to detect anomalies we would not need to have a copy of the newswire

that has been copied from to compare newspapers against, but rather would

attempt to identify reused text because it does not fit in with the writing in the

rest of the article.

Forensic linguists is another area that lends it self to the application of tex-

tual anomaly detection because it deals with a related problem of attributing

authorship to texts [Coulthard, 1992, 1994; McMenamin, 2002]. Sometimes sec-

tions of a text have disputed authorship as is the case when defendants claim

that their statements, taken down by police, have be altered [Coulthard, 2004].

The language in these altered portions of the statement can be viewed as a

type of authorship anomaly and it would be useful if these could be identified

automatically.

Improving the Homogeneity of Corpora: Another goal of this research is to im-

prove the quality and integrity of corpora by automatically identifying pieces

of text that should not be present, so that they may be removed from these

collections of text and thus make them more homogeneous.

The availability of a wide range of electronic corpora and lexical resources has
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had a dramatic impact on the study of languages and led to many of the most

exciting advances in natural language processing and computational linguistics.

Question answering, language modeling [Goodman, 2001], automatic speech

recognition, text classification, information extraction [Gaizauskas and Wilks,

1998], machine translation and many other research areas have benefited greatly

from availability of large reliable corpora. Corpora play such an important role

in these fields that the selection, quality, and size of corpora can have much more

impact on system performance than the choice of a machine learning technique

or the method used to perform that task.

The creation and validation of corpora has generally relied on humans, but this

can be a very expensive process and it is becoming increasingly common, in re-

search, to use more automated methods for corpus generation. Many automated

techniques [Hassel, 2001; Chen and Dumais, 2000; Sato and Sato, 1999] make

use of the vast amount of text accessible on the World Wide Web to construct

corpora that specifically meet the needs of an application. For instance, it is

now possible to construct a corpus of editorials from newspapers, a corpus of

Swedish news stories, a corpus about infectious diseases, or a corpus of movie re-

views relatively quickly and cheaply. The construction of these corpora usually

involves some form of information retrieval or automated scraping of web pages

to gather relevant data, which can lead to errors in precision; where documents

are gathered that should not have been. It is difficult to validate these corpora,

because this usually involves some form of human interaction, but automatic

techniques for this type of validation or the identification of irrelevant pages, or
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outliers, are immediately useful.

Anomalous text in these corpora may not have been introduced in the gathering

stage, but at an earlier time. It is possible that because the corpus is taken from

the Web it may naturally contain anomalies. A corpus that has been gathered

from an online bulletin board or wiki (such as the collaborative encyclopedia

Wikipedia1) may contain undesirable information or anomalies because text

may typically be added or edited by anyone on the Web. While this collaborative

editing is the strength of these sites, allowing information to be continually

checked for factuality by a large number of people, the corpus is constantly

changing and at any time can contain entries that might be considered spam,

such as advertising or gibberish messages, or even, more subtly, information that

is an opinion rather than a fact, such as rants posted about political figures. It

would be very helpful if these intrusions could be identified automatically and

removed from corpora so that applications that make use of them (a question

answering system for example) do not propagate these errors.

Kilgarriff [1997, 2001], Kilgarriff and Rose [1998] and Sahlgren and Karlgren

[2005] have explored methods to measure this notion of homogeneity within

a corpus and these may be important for determining in what circumstances

anomaly detection is appropriate. It is likely that anomaly techniques would

only apply to corpora that have a high level of homogeneity.

Atypical or Intentionally Deceptive Textual Data: This includes identifying per-

sonal email versus work email (and other textual spam that might occur in

1http://www.wikipedia.org

http://www.wikipedia.org


Chapter 1: Introduction 8

email) as well as detecting ranting or subversive language on websites. A grow-

ing problem that would particularly benefit from anomaly detection is the iden-

tification of machine generated spam emails. This type of unsolicited email

spam often contains sentences or sequences of words that have been randomly

drawn from a corpus and strung together into something resembling sentences

and paragraphs to elude spam filters2 (the actual advertisement or ‘hook’ is of-

ten an image). These messages can be generated at great volume (and can all be

unique) so they get past most spam filters, which are trained on a collection of

spam and so can not possibly have seen these unique random sentences before.

These emails would, however, have stylistic qualities (apart from the vocabulary

used) that make them stand out from other emails you have received and so we

could view them as a type of anomaly to be detected. (As similar problem has

been discovered on the web where machine generated spam webpages are set up

which contain grammatically well formed sentences [Fetterly et al., 2004, 2005],

but exist solely for the purpose of linking to other websites and thus increasing

their rank within search engines.)

It is also possible that anomaly detection may be useful for the detection of

deceptive or hidden messages. These might take the form of a short message

hidden in the middle of another longer message, or a message encoded to look

like English, but which is nonsensical. Text could appear strange or nonsensical

because, for instance, the ordering of the words was used to encode the message.

(This is a type of steganography, from the Greek for “hidden writing”; for a

2http://www.process.com/techsupport/spamtricks.html

http://www.process.com/techsupport/spamtricks.html
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discussion of this and other techniques used to hide messages in text see Wayner

[2000]). Another kind of deception might be passages in documents which are

deliberately misleading or where opinion or speculation is asserted as though

it were fact. These tasks may be difficult, even for humans (as in the case of

classifying business and personal email [Jabbari et al., 2006]), but we believe

that they can be aided by unsupervised anomaly detection.

Some of these problems have been investigated previously (never in the context

of anomaly detection), but they have always used either large segments (i.e. greater

than 1000 words) or a priori knowledge that allows for more traditional classification

using training data. Our motivation was to develop techniques that could be used for

these tasks on much shorter segments of text and across different domains, without

the need to gather corpora or other domain specific resources.

1.3 Focus and Contribution of Thesis

1.3.1 Unsupervised Methods

A strategy for attempting to identify whether things are abnormal or anomalous,

might start by gathering instances of things that are “anomalies‘” and also instances

of data that are considered to be “normal”. A classification approach could then be

used to decide if previously unseen instances should be labeled normal or anomalous.

Often, however, one does not have a reliable definition of what it means to be normal

or anomalous and rather must look at other ways to spot anomaly.

Some work on anomaly detection (sometimes called novelty detection) has as-
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sumed only the existence of a collection of data that defines “normal”, which is used

to model the normal population; methods are then developed to identify data that

differs significantly from this model [Markou and Sing, 2003; Song et al., 2007]. It

is possible to take a similar approach to detecting anomalies in text (a form of one-

class classification [Koppel and Schler, 2004; Koppel et al., 2006]), but this requires

building up a large corpus of “normal” data for any task (or domain) encountered.

In order for this model to be useful, the “normal” collection should be representative

and thus should not contain anomalies. This process can be expensive and time con-

suming for new domains and often impossible for some tasks due to the nature of the

data. We chose a different way to attack this problem and in the rest of this thesis we

focus on the challenging anomaly detection scenario where we assume that we have

no a priori knowledge of what it means to be “normal” language. The techniques we

investigate for this task do not make use of any training data for either the normal

or the anomalous populations and so are referred to as unsupervised.

In this scenario, the task is to find which parts of a collection or document are

most anomalous with respect to the rest of the collection. For instance, if we had a

collection of news stories with one fictional story inserted, we would want to identity

this fictional story as anomalous, because its language is anomalous with respect

to the rest of the documents in the collection. In this example we have no prior

knowledge or training data informing us of what it means to be “normal”, nor what

it means to be news or fiction. As such, if the collection were switched to be fiction

stories and one inserted news story then we would hope to identify the news story as

anomalous with respect to the rest of the collection, because its language use differs
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from the bulk of the collection.

We approach the unsupervised anomaly detection task slightly differently than

we would if we were carrying out unsupervised classification of text [Willett, 1988;

Manning and Schütze, 1999; Oakes, 1998]. In unsupervised classification (or cluster-

ing) the goal is to group similar objects into subsets; but in unsupervised anomaly

detection we are interested in determining which segments are most different from

the majority of the document. The techniques used here do not assume anomalous

segments will be similar to each other: therefore we have not directly used clustering

techniques, but rather developed methods that allow many different types of anoma-

lous segments within one document or collection to be detected3. Our approach to

this problem is more closely related to the task of statistical outlier detection (dis-

cussed in detail in Chapter 2) where we would like to identify data that does not fit

with the rest of the population.

Anomaly
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Figure 1.1: Detecting Anomalous Documents

3While clustering is not directly appropriate for anomaly detection in text was useful as an
exploratory tool for determining how to best characterize text and choose features, see Appendix A
where we performed some initial experiments using clustering on different types of data.
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1.3.2 Segment level focus

A task well suited to unsupervised anomaly detection, and the focus of the ex-

perimental part of this work, is the identification of segments (or paragraphs) in

documents that are anomalous (with respect to the rest of the document). While we

focus exclusively on segments of text, it should be pointed out that all techniques,

methods, and analysis in this work also apply to larger pieces of text (such as identi-

fying an anonymous document in a collection of documents). Identifying anomalous

segments is typically more difficult than anomalous documents because in collections

of documents text length is normally longer and you will see more repetition of phe-

nomena and thus have a much better representation of a text. This segment level

concentration steered us to make choices and develop techniques that are appropriate

for characterizing and comparing smaller segments.

There are several possibilities for the types of anomaly that might occur at the

segment level. One simple situation is an off-topic discussion, where an advertisement

or spam is inserted into a topic-specific bulletin board. Another possibility is that

one segment has been written by a different author from the rest of the document, as

in the case of plagiarism. Plagiarism is notoriously difficult to detect automatically

when the source of the plagiarism cannot be found [Woolls and Coulthard, 1998]

(using a search engine like Google or by comparison to the work of other students or

writers.) In addition, the plagiarized segments are likely to be on the same topic as

the rest of the document, so lexical choice often does not help to differentiate them. It

is also possible for a segment to be anomalous because of a change in tone or attitude

of the writing. The goal of this work is to develop a technique that will detect an
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anomalous segment in text without knowing in advance the kind of anomaly that is

present.
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Figure 1.2: Detecting Anomalous Segments

Unsupervised detection of small anomalous segments cannot depend on the strate-

gies for modeling language that are employed when training data is available. With

a large amount of training data, we can build up an accurate characterization of the

words in a document. These language-modeling techniques make use of the distribu-

tion of the vocabulary in a document and, because language use and vocabulary are

so diverse, it is necessary to train on a considerable amount of data to see the major-

ity of cases (of any specific phenomenon) that might occur in a new document. If we

have a more limited amount of data available, as in the segments of a document, it is

necessary to characterize the language using techniques that are less dependent on the

actual distribution of words in a document and thus less affected by the sparseness of

language. In this unsupervised anomaly detection scenario we make use of techniques

that employ some level of abstraction from words and focus on characterizing style,

tone, and classes of lexical items.
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1.3.3 Contribution of Work

The central question investigated in this thesis is whether it is possible to automat-

ically identify text that deviates from its context. This is an exciting and interesting

research question that has many practical applications. The work presented here

shows that we can view these deviations in text as a type of anomaly and that these

can be successfully detected using automatic unsupervised techniques.

We introduce the notion of outliers to the analysis of anomalies in text and ex-

plore and test five different approaches to the problem, some of which are related to

methods used in statistical outlier detection and unsupervised learning and some of

which are novel. We demonstrate that a novel technique which measures a piece of

text’s distance from its complement (the union of all other prices of text) can most

accurately identify anomalous language.

Several thousand experiments were preformed with all methods and we measured

their ability to detect different types of anomalies in various kinds of corpora using

test sets automatically created by taking documents and artificially inserting text

that differs because of authorship, tone, topic, or style. We show that all techniques

for detecting anomalies are most accurate when there is large variation in the writing

style or genre of the anomalous text (as opposed to the topic, tone, or authorship).

Additionally this work studies the impact that the size of anomalies has on our ability

to detect them and shows a substantial improvement as the size of anomalies increases.

This thesis also investigates and evaluates 166 stylistic and linguistic features

based on their ability to characterize and differentiate between different types of text.

This set of features represents a union of the most popular features used in related
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research and a few novel variations of our own. We rank all these features by their

usefulness in anomaly detection and show a subset of these features are an excellent

choice for identifying a wide range of anomalies.

1.4 Thesis Outline

This thesis can be divided into three parts. Chapters 2 and 3 discuss essential

background for understanding the problem and techniques employed and how they

compare to previous work. These chapters give a comprehensive review of outlier de-

tection in statistics as well as research in natural language processing and linguistics

related to our work. Chapters 4 and 5 cover the methods and techniques we have

introduced for characterizing language and identifying anomalies, some of which are

novel and some are based on procedures from statistical outlier detection. Chapter

6 and 7 give extensive experimental results over different collections, using different

methods, and look at how techniques can be optimized and what are the most im-

portant aspects of the techniques to different types of anomaly detection. The final

concluding chapter summarizes the result and contributions of the thesis. The appen-

dices contain additional material including further results and a review of the corpora

used for experiments.



Chapter 2

Outlier Detection in Statistics

2.1 Overview

The term outlier is used in statistics to describe any observation in a data set

that differs significantly form the other observations in that data set. These outlying

observations are often studied because they are far from, or in some way inconsistent

with, the majority of the data and so might be indicative of unusual phenomena

or errors. The fact that outliers do not fit with the rest of the data also makes

their identification crucial in many areas of statistical analysis where models are

constructed over data and used to make predictions [Mosteller and Tukey, 1977]. It

is important that these models are not unduly influenced by possible mistakes or

errors. This has lead to a wealth of research in statistics into the problem of spotting

outliers and how best to model data that might contain outliers. In this chapter we

present a review of this research and the techniques used. We begin with a review

of univariate outlier detection and then look at the more active research field of

16
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multivariate outlier detection.

Finding unusual, or anomalous text can be viewed as a type of outlier identifica-

tion, where we are attempting to determine if pieces of text are outliers with respect

to the rest of the textual data. A problem comes in how best to characterize text,

so that we can measure the differences between texts and use these differences to

determine if some texts are outliers (we would also like these measurements to have

some linguistic relevance). How to characterize text is intertwined with the problem

of how to detect ‘outliers’ in text, but we will hold off on the discussion of how to

deal with text until Chapter 4, so that in this chapter we can concentrate on a review

of techniques used for the detection of outliers in statistical data.

This chapter starts with an introduction to the problem of outlier detection by

looking at identifying outliers in observations of one variable (univariate outliers).

This problem is relatively simple to understand and we present an overview of ap-

proaches and illustrate the problems that can arise in outlier detection and how they

are dealt with in the univariate case. The next section focuses on outlier detection

in data where each observation is made up of more than one variable (multivariate

outliers). The basic idea is similar to univariate outlier detection, but this problem

also requires understanding the interaction of the multiple variables. We describe

in detail the common approaches to this problem and their limitations. In the last

section of this chapter we focus on the detection of outliers where the number of vari-

ables for each observation is very large, so large that the number of variables could be

greater than the number of observations. This is a special case of multivariate outlier

detection and requires different methods than are used in typical multivariate outlier
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detection (where there are many more observations than variables). We are particu-

larly interested in this last type of outlier detection because these methods are well

suited to the detection of anomalies in text. We describe several methods in detail

and give two that will be compared with other approaches for detecting anomalies in

text in Chapters 5 and 6.

2.2 Univariate Outliers

2.2.1 Outlier detection assuming Gaussian Data

The most basic type of outlier detection is so called univariate outlier detection,

where observations are of a single variable. The setup is simple, we have set of obser-

vations (that are single values) and would like to identify any of these observations

that are very far away from the other observations. In this section we will refer to

a vector of n such observations as x = (x1, x2, ..., xn)T . In order to measure how

“far away” observations are from the rest of the data, it is useful to have estimates

of the center of a data set and some indication of how spread out the values are.

These are often referred to, respectively, as the location and scale estimates of a

population and these estimates form the basis for most outlier detection techniques.

The classical method of estimating the location (or center) of a set of data is the

sample mean, x̄ = 1
n

∑n
i=1 xi. This is the average value in the data and we would

expect outliers to be far from this value, where far is determined by the scale of

the data. The classical method of estimating scale is the sample standard deviation

σ =
√

1
n−1

∑n
i=1(xi − x̄)2. A simple method of identifying outlying observations using
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these estimates, if we make the assumption that our data follows a normal (Gaussian)

distribution, Φ, is to measure how many standard deviations each observation is from

the mean. This is an observations z-score.

zi =
|xi − x̄|

σ

When this simple measurement is used for the detection of outliers by finding the

observation with the higest z-score, it is often called the maximum normalized residual

test or Grubbs’ Test, after Frank Grubbs, who used it [Grubbs, 1960] to identify

outliers and calculated critical values of z for different sample sizes above which an

observation should be labeled an outlier. Grubbs’ method can be used to detect

more than one outlier in a data set, by applying it iteratively, removing one outlying

observation every time, but it is unreliable if the data contains many outliers or very

large outliers because this will distort the sample mean and standard deviation size

(as we explain later).

For Gaussian data, we know that 68.27% of observations should lie within one

standard deviation, 95.45% in two standard deviations, and 99.73% lie within 3 stan-

dard deviations of the mean, so we might make a rule that all observations that are

farther than 3 standard deviations from the mean should be classed as outliers. This

would label, on average, only 0.27% of our good points as outliers (false positives) in

normal data and thus seems fairly reliable. Unfortunately, if the data has more than

one outlier this rule will likely not be able to detect all of the outliers (or possibly any

outliers). Consider, for example, 10 observations taken from a normal distribution

with a mean of zero and a standard deviation size of 1, N (0, 1), and two large outlying
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observations which should clearly be marked as outliers (the numbers 30 and 60).

−0.91 −0.64 −0.52 −0.43 0.06 0.75 0.81 1.19 1.34 2.22 30 60

This sample has a mean of 7.8 and a standard deviation of 18.5, which means

that in fact the largest observation, 60, has a z-score of 2.8 and therefore is within 3

standard deviations and would not be labeled an outlier. Even worse is that the other

outlier, 30, is within 2 standard deviations and so will not even be labeled an outlier

with a cutoff at 2 standard deviations. We see that the use of the standard z-score

in this example is not very effective for outlier detection as it will fail to see these

observations as extreme. The problem is due to the large estimates of the mean and

standard deviation caused by the outlying observations (if we instead had estimated

the mean and standard deviation using only the good data we would have had no

problem detecting the outliers). This inability to see outliers, by virtue of the fact

that the presence of outliers can shift the estimates of location and scale, is called the

masking effect [Bendre and Kale, 1987].

These classical estimators of location and scale, a sample’s mean and standard

deviation (or variance σ2), are deemed non-robust measurements because they are

extremely sensitive to outliers and even a single outlying observation can distort

them. For example, if we replace any one of the n observations in some data, x,

with an extremely large value it will completely change the estimate of the mean

(and if this value were near infinity the mean would also approach infinity). This

property of estimators is called the finite sample breakdown point and is defined as

the proportion of observations in a sample that can be replaced before the estimator

fails to describe the data accurately [Rousseeuw and Leroy, 2003]. The mean and the
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standard deviation estimates, given above, both have a breakdown point of 0% for

large n because even replacing one point can render the estimator useless.

Robust estimators on the other hand are so named because they have higher

breakdown points and thus are more resistant to outliers. The median is a well-

known robust estimator of location and has a breakdown point of 50%. It is defined

as the middle observation in a finite list of observations arranged from least to greatest

(if there are an even number of observations then typically it is the mean of the two

middle observations). If we denote the ith ordered observation as x(i) then we can

write the median as x(n/2) for an odd number of observations and 1
2
(x(n/2) + x(n/2+1))

for an even number of observations. The median’s 50% breakdown point means that

we could replace up to half of the n observations in x with ones that are arbitrarily

far away before the estimate becomes unusable. Returning to the previous case of

replacing one observation above the median in x with a value close to infinity, we can

see that the estimate of the median will not be affected. A breakdown point of 50% is

actually the maximum possible for any estimator because after half of the points have

been replaced with outliers, the majority of the distribution is made up of outliers.

The median absolute deviation (mad) is an example of a robust estimate of scale.

The mad gives an indication of the “median distance from the median” and is defined

as mediani=1,...,n|xi−medianj=1,...,n(xj)|, this value is often is multiplied by a constant

(1.4826) to make it consistent with the standard deviation for normal distributions.

mad(x) = 1.4826×median
i=1,...,n

|xi −median(x)|

We can make the z-score more resistant to outliers, and thus more robust, by using

the robust estimates of location and scale instead of the mean and standard deviation
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used previously.

zi =
|xi −median(x)|

mad(x)
(2.1)

Using this robust z-score measure we have no trouble detecting the outliers in the

data given above (in Section 2.2.1) using the same rule which classifies observations

as outliers if they are farther than 3 standard deviations from the mean. Our two

outlying points, 30 and 60, have robust z-scores of 15.7 and 31.8 (well above 3), while

the other 10 points all have robust z-scores less than 1. This is a good method for

the detection of outliers in univariate data, but it relies on the assumption that the

data is normally distributed.

Often in statistical analysis the underlying distribution is not known [Barnett and

Lewis, 1998] and using outlier identification rules that make the assumption that the

population is Gaussian, when it isn’t, will lead to errors (detecting too many or too

few outliers). If the data comes from a distribution like the Students-t distribution,

for example, which has fatter tails than a normal distribution, then using the rule

above will result in many many more points being labeled outliers. For a Student-

t distribution with 3 degrees of freedom only 98.6% of observations fall within ±3

standard deviations so 5 times more observations, 1.4%, will be classed as outliers

(false positives) than would occur if the distribution were normal. These distributions

are shown in Figure 2.1 along with the percent of the population that falls within

their respective standard deviations.
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Figure 2.1: Normal distribution with a mean of 0 and a standard deviation size of 1
(above) and a Students-t distribution with 3 degrees of freedom (below). They are
marked with the percent of the population falling within their respective standard
deviations.

2.2.2 Data with unknown distribution

The previous section illustrates the challenge of detecting univariate outliers in

observations that come from an unknown distribution. Most outlier detection rules

make the assumption that the data follow a normal distribution and, if the distribu-

tion of the data is not normal, these methods are likely to perform poorly. However, if

we know the exact distribution the data comes from, even if it is non-Gaussian, then

it is possible to construct an appropriate test for outliers based on that particular

distribution, in the example above, we could use a test for outliers for a t-distribution

(many such tests for various distributions are given by Barnett and Lewis [1998]).

We face a tougher problem when the underlying distribution is completely unknown

(and we refuse to make any assumptions about how it is distributed).

Some outlier detection methods attempt to be more general and so are suitable
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Figure 2.2: An example of Tukey’s boxplot where the whiskers extend to the obser-
vations nearest the outer fence. The data was generated from a normal distribution
N (0, 1) with one outlier.

for detecting outliers in many different types of distributions, but this is difficult

to achieve, not least because these distributions might be asymmetric. There are

some basic properties of all distributions that are sometimes used in outlier detection

to mitigate these problems. One such property is given by Chebyshev’s inequality

theorem (sometime called the Bienaymé-Chebyshev theorem), which states that, for

any finite distribution, a minimum of 1 − 1
k2 of the data will lie within k standard

deviations of the mean [Grimmett, 2001; Papoulis, 2002]. So, for any distribution, at

least 93.75% of the observations will lie within 4 standard deviations from the mean

and 96% lie within 5 standard deviations. (Conversely, Chebyshev’s theorem with

k = 5, gives 1
52 = 0.04, so no more than 4% of the population lies outside 5 standard

deviations.) This can aid in outlier detection by calculating the maximum probability

that a point lies some number of standard deviations from the mean or calculating

the maximum number of false positives that will be returned for any population. It

should be noted that to use Chebyshev’s theorem it is important to have a reliable
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estimate of the population’s standard deviation.

The most widely used methods to analyze data and detect outliers for unknown

distributions are due to Tukey [1977], who invented the boxplot as a way to visualize

and explore data. An example boxplot is shown in Figure 2.2 showing normal data

with an outlier. Tukey recommended visualizing data as the best way to identify

outliers in univariate data, but as part of the boxplot he defined what he called the

inner and outer fences for data, outside of which observations were likely to be outliers.

These fences can be used as cutoffs to identify outliers automatically. These fences

make use of quartiles which are extensions of the idea of the median (which is called

the second quartile, Q2) to other fractions of the data. x(1/4) is the first quartile,

often written Q1, or the observation that marks the point where one-fourth of the

observations in the data are smaller and three-fourths of the observations are larger.

Similarly the third quartile, Q3 marks the x(3/4) observation in the data. (Tukey

actually recommends calculating these values using the median of the upper half of

the data and median of the lower half of the data.)

Inner Fences: x(1/4) − 1.5× IQR(x) and x(3/4) + 1.5× IQR(x)
Outer Fences: x(1/4) − 3× IQR(x) and x(3/4) + 3× IQR(x)

These fences are also defined using the inter quartile range (IQR), which is the dif-

ference between the third and fourth quartiles (this is also the height of the box in a

boxplot).

IQR(x) = x(3/4) − x(1/4)

Tukey’s inner and outer fences are for approximately normal data and mark

boundaries in the data where any observations lying outside these boundaries are

likely to be outliers. The inner fence marks the boundary for mild outliers and the
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(a) Positive Skew (c) Symmetric (b) Negative Skew

Figure 2.3: Right, symmetric, and left skewed distributions

outer fence marks the boundary of extreme outliers. If the data is non-Gaussian then

the data can either be transformed to look more normal, or, the constants in the fences

can be changed to allow for that distribution. The interval [Q1−k×IQR,Q3+k×IQR]

can be defined to give reliable fences for any symmetric distribution if we choose k

to correctly allow for the distribution shape. For asymmetric distributions, these k’s

will differ and are calculated for each half of the distribution to take into account the

direction the distribution is skewed (left or right tailed, see Figure 2.3).

Automatic methods to estimate these constants for skewed data have been inves-

tigated by Kimber [1990] and Vandervieren and Hubert [2004]. Vandervieren and

Hubert specifically test the use of quartile skewness (this measure has also been used

by Hinkley [1975], who called it the tilt factor) and the medcouple [Brys et al., 2004].

The Quartile Skewness (Qn) estimates the skewness of a distribution and is also

resistant to outliers (robust). It is zero for symmetric distributions, positive for right

skewed distributions, and negative for left skewed distributions and is calculated as:

Qn =
(Q3 −Q2)− (Q2 −Q1)

Q3 −Q1

The Medcouple (MC) is a similar robust measurement of skewness developed more
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recently in outlier detection.

MC = median
xi≤Q2≤xj

(
(xj −Q2)− (Q2 − xi)

xj − xi

)
Both of these skewness measures are used to calculate fences in similar way as was

done in Tukey’s boxplot. These fences are given in Table 2.1, along with similar

fences used by Kimber [1990]. These fences are used, just as those of Tukey, as cutoff

points above which we say points are outliers, but they are appropriate to detect

these outliers even in skewed data. We show the boundaries marked by these fences

on data generated from a skewed distribution in Figure 2.4. Notice that the fences

which attempt to account for the skewness of the data, like the Medcouple, do not

label any points in this figure as outliers and visually seem to be sensible boundaries

for identifying outlying points in this data. In contrast symmetric fences like the

robust z-score are clearly not appropriate for this data and in Figure 2.4 label nearly

5% of the data as outliers and undesirably set outlier fences far below zero which

could lead to genuine outliers being missed.

Measure Left Fence Right Fence

Tukey’s Fences Q1 − 3× IQR Q3 + 3× IQR
Robust z-score Fences
(For 4 std. deviations)

Q2 − 4×mad Q2 + 4×mad

Qn Fences Q1 − 3× e−3.5QnIQR Q3 + 3× e3.5QnIQR
Medcouple Fences Q1 − 3× e−3.5MCIQR Q3 + 3× e3.5MCIQR
Kimber’s Fences Q1 − 3× 2(Q2 −Q1) Q3 + 3× 2(Q3 −Q2)

Table 2.1: Common fences used for univariate outlier detection.
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Figure 2.4: Outlier fences for a skewed distribution. This graph shows the fences for
1,000 points randomly generated from a Gamma Distribution with shape and scale
equal to one.
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2.3 Multivariate Outliers

In multivariate data, outlier detection becomes a slightly less intuitive problem be-

cause it is not as obvious what is considered “far away” or atypical when observations

are composed of more than one variable. It is useful to think of these observations,

as points in p-dimensional space Rp and that we would like to identify points that are

far from the center of this cloud of points. Although it is possible to identify outliers

in univariate data by plotting the data on a graph and visually detecting the outliers

(as advocated by Tukey [1977]), it becomes difficult or impossible when the number

of dimensions is greater than 2 [Rousseeuw and van Zomeren, 1990]. It is therefore of

greater necessity to have automatic methods to detect outliers in multivariate data

than in univariate (or bivariate) data, where there exists the possibility of graphing

the data and utilizing a human’s ability to spot outliers visually.

Throughout this section we will let X be an n × p matrix of observations where

the rows in X are observations and the columns of X are the variables. (The columns

of this matrix might be called features, in the machine learning sense.)

X =



x11 x12 · · · x1p

x21
. . .

...

...
. . .

xn1 · · · xnp


Observations of more than one variable introduce new complexity into the outlier

identification problem because in multivariate data it is necessary to take into account

not only the individual variables, but also the interactions of these variables. Take, for

instance, the data shown in Figure 2.5(a). This figure shows observations consisting
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of two variables (Var 1 and Var 2) as points in R2. There are two clear outliers visible

in this figure (the green triangles), yet these points are not outliers in either direction

(Var 1 or Var 2). These observations are not univariate outliers with respect to either

of their variables individually, but only by virtue of the interaction between them

being atypical for the sample. A similar example for observations in three dimensions

is shown in Figure 2.5(b). It is clear from this picture that it is not enough to

detect outliers based on whether they are outliers in either dimension. Any tests for

multivariate outliers must take into account where the points lie in the space defined

by these dimensions.
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Figure 2.5: Multivariate outliers ‘hidden’ in space
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2.3.1 Classical Multivariate Distance

Mahalanobis Distance

To detect outliers in multivariate space it is desirable to be able to measure how

far points are from the center of the population in this space. If we used simple

Euclidean distance, we could think of the distance from the center of a multivariate

sample in two dimensions as a series of concentric circles expanding out from the

center of the observations and judge outlying points based on the radius of this circle.

This, unfortunately, will give a poor notion of distance unless the data is arranged

spherically. Figure 2.5 shows that when measuring distance from the center of a

mass in multivariate space it is not good enough to simply measure how far away an

observation is from the center of the data, the direction of the distance is important

as well. Specifically, what is important about the direction is the variance in that

direction. Instead of concentric circles, the distance from the center of multivariate

data must be allowed to be ellipsoidal, so that it can take into account the spread of the

variables in different directions. This spread of the variables is due to their interaction

or covariance and Mahalanobis [1936] introduced a way to measure distance with

regard to this covariance. This measure, known as Mahalanobis Distance, is calculated

for each observation as:

di =
√

(xi − x̄)TΣ−1(xi − x̄) (2.2)

Where, x̄ is the center (or location) of the data, estimated as a vector whose columns

are the means of the individual variables (called the coordinate-wise sample mean).

The Σ−1 denotes the inverse of the p × p covariance matrix, the sample covariance
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matrix Σ̂ is calculated for every pair of variables (columns) as:

Σ̂jk = cov(j, k) =
1

n− 1

n∑
i=1

(xij − x̄j)(xik − x̄k)

This covariance matrix can also be written in a simpler way as the dot product of

the columns of the centered matrix. Let X̃ be a new matrix formed by centering the

matrix X, this is achieved by subtracting the column mean from each column in X,

so

X̃j = xj − x̄j , for j = 1, ..., p

Σ̂ =
1

n− 1
X̃TX̃ (2.3)

It is helpful for understanding Mahalanobis distance to look at the special case

where all variables in the data are uncorrelated (this means they vary completely

independently and thus their covariance is zero). It is obvious that for this case

all elements off the diagonal of the covariance matrix will be zero. (Thinking of the

columns of our matrix as vectors, the dot products of a column with any other column

will be zero, and thus all variables all orthogonal.) In this case the diagonal covariance

matrix reduces the Mahalanobis distance in Equation 2.2 to a normalized Euclidean

distance:

di =

√√√√ p∑
j=1

(
(xij − x̄j

σj

)2

(2.4)

From this equation it is clear that if the data were perfectly spherical, with a stan-

dard deviation of 1 in all directions (the covariance matrix would be the identity

matrix), then the Mahalanobis distance would reduce to the standard Euclidean dis-

tance di =
√∑p

j=1(xij − x̄j)2. So, if our data were arranged spherically in space,
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it would be equivalent to measure the distances to observations using Mahalanobis

distance or simple Euclidean distance. This confirms the intuition behind estimat-

ing multivariate distance as described at the beginning of the section. If the data is

scattered equally and independently in all directions then we can measure distance

equally in all directions.

Distribution of Distances

Observations with a large Mahalanobis distance (using the real mean and covari-

ance of the population) are far from the center of the data (taking into account its

variance) and thus are likely to be outliers. Determining where to draw the cutoff

above which observations should be labeled outliers relies on the fact that for nor-

mal distributions the squared Mahalanobis distances, d2, will follow a χ2 distribution

with p degrees of freedom [Hardin and Rocke, 2005]. It is common in the literature

to label as outliers any observations whose Mahalanobis distance, di, is greater than√
χ2
p,.975 [Rousseeuw and van Zomeren, 1990], where χp,.975 is the 0.975 quantile of

the χ2 distribution with p degrees of freedom. For instance, if our multivariate data

consists of observations with 3 variables then observations whose distances exceed

√
χ3,.975 = 3.06 will be labeled outliers. The 0.975 quantile insures that for normal

data there is only a probability of 2.5 percent that distances chosen from the distri-

bution will fall in this range and be labeled outliers; if we wanted less chance of false

positives when labeling outliers, we might use the .99 or even .999 quartiles as our

boundaries. Figure 2.6 shows the same examples from Figure 2.5, but with tolerance

ellipses drawn for the classic Mahalanobis distance up to the .975 quantile of the χ2
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Figure 2.6: Classical Mahalanobis Distance with a tolerance of
√
χ2

2,.975 and
√
χ2

3,.975

respectively. We see that these ‘hidden’ outliers will be correctly labeled using this
measure.

distribution. Notice that in this example the outliers we identified visually would be

labelled correctly.

If the data is not normally distributed then the distances are unlikely to follow

a χ2 distribution and the cutoffs used above will not give meaningful results. A

method used to overcome this problem, with good success [Maronna and Yohai, 1995;

Maronna and Zamar, 2002; Filzmoser et al., 2008], is to transform the Mahalanobis

distances to distances, d∗, that more closely match the χ2 distribution so that the

same cutoffs can be used.

d∗i = di ×

√
χ2
p,.5

median(d1, ..., dn)
(2.5)

While transforming the distances in this manner has shown to be reliable for
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most data, there has been other work in outlier detection that has achieved good

results choosing the cutoff for outliers in different ways. Werner [2003] used a more

complicated procedure that calculates the density of all Mahalanobis distances and

chooses to label as outliers observations that occur after this density has decreased

to nearly zero. This makes the assumption that the distances of the non-outliers will

group together and there will be some space between the next distances, which are

the outliers.

It should be apparent that this last approach depends on what is essentially a uni-

variate outlier detection task, where we are determining which distances are outliers

with respect to the other distances. For this reason Brys et al. [2005] and Rousseeuw

et al. [2006] make use of the right medcouple fence shown in Table 2.1, to take into

account the skew of this distribution and mark outliers as observation appearing out-

side this fence. Hardin and Rocke [2005] investigate this problem thoroughly and give

good insight into the distribution of these distances; they show that distances can also

be labeled as outliers accurately through a well-founded procedure that describes the

distances using a scaled F-distribution.



Chapter 2: Outlier Detection in Statistics 36

2.3.2 Robust Outlier Detection

The classical Mahalanobis distance suffers from the same problem as the z-score

in univariate outlier detection. Namely, the masking effect, where multiple outliers or

large outliers will distort the estimates for the measure so that outliers do not receive

large distances and thus it is not possible to detect them. This is due to the classical

estimates of location and scale it uses, which render it unsuitable for use except on

data that is “certain to contain no outliers” [Filzmoser et al., 2008]. The Mahalanobis

distance can be made more robust if, instead of the column-wise mean and sample

covariance matrix used in Equation 2.2, we use more robust multivariate measures of

location and scale [Rousseeuw and van Zomeren, 1990].

RDi =
√

(xi − T (X))TC(X)−1(xi − T (X)) (2.6)

Here T (X) and C(X) represent robust estimates of location and scale. A more robust

estimate of location of our data, T (X), is the coordinate-wise median, calculated as

a vector whose values are the median of every column in X. This measure has a 50%

breakdown point, but Croux and Ruiz-Gazen [2005] call it “a crude approximation”

of the location. A better estimate of location with the same high breakdown point

[Small, 1990] is the L1 median (often called the spatial median) defined as the point

in space which minimizes the sum of distances to all data points.

T (X) = argmin
µ

n∑
i=1

||xi − µ|| (2.7)

Here || · || denotes the standard Euclidean norm,
√∑

x2. Croux and Ruiz-Gazen

[2005] give a fast algorithm for its computation and code is freely available4.

4As part of the PcaPP package in the R statistical language. This package is available
at CRAN (Comprehensive R Archive Network) at http://cran.r-project.org/web/packages/

http://cran.r-project.org/web/packages/pcaPP/index.html
http://cran.r-project.org/web/packages/pcaPP/index.html
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Affine Equivariance and Robustness

A property for robust estimators that is often important is that they are inde-

pendent of the coordinate system chosen to represent the observations. So, if the

data were moved, rotated, or stretched, we would like the estimator to move, rotate,

and stretch accordingly. This property is called affine equivariance and guarantees

that if we transform the data (say by changing the units of measurement) that the

estimator will change in exactly the way expected. Thus when using these estimates

for outlier detection, we would hope to get the same results before and after the data

has been transformed. If we think of observations in two dimensions as dots that have

been plotted on a thin piece of rubber, then any stretching or rotating performed on

this piece of rubber, by holding the edges and keeping it flat, will not change which

points are outliers. The coordinate-wise median does not have this property and the

L1 median is only orthogonally equivariant (only equivariant with respect to rotation

and flipping), but later in this chapter we will see examples of robust procedures that

are affine equivariant.

Many procedures that would seem to be good for eliminating outliers (and thus

for robust estimates of location and scale) have been shown to have relatively poor

breakdown points in high dimensions. For example, Donoho and Gasko [1992] show

that iteratively removing the point with the largest Mahalanobis distance can never

have a breakdown point higher than 1
p+1

. (Where p is still the number of vari-

ables (or dimentions) of the data.) This is similar to Grubbs’s method in univari-

ate data (pg. 19). They also study a variation of this procedure, where at every

pcaPP/index.html [Filzmoser and Fritz, 2007].

http://cran.r-project.org/web/packages/pcaPP/index.html
http://cran.r-project.org/web/packages/pcaPP/index.html
http://cran.r-project.org/web/packages/pcaPP/index.html
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http://cran.r-project.org/web/packages/pcaPP/index.html
http://cran.r-project.org/web/packages/pcaPP/index.html
http://cran.r-project.org/web/packages/pcaPP/index.html
http://cran.r-project.org/web/packages/pcaPP/index.html
http://cran.r-project.org/web/packages/pcaPP/index.html
http://cran.r-project.org/web/packages/pcaPP/index.html
http://cran.r-project.org/web/packages/pcaPP/index.html
http://cran.r-project.org/web/packages/pcaPP/index.html
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http://cran.r-project.org/web/packages/pcaPP/index.html
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http://cran.r-project.org/web/packages/pcaPP/index.html
http://cran.r-project.org/web/packages/pcaPP/index.html
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iteration the Mahalanobis distance is calculated for observations using the mean

and covariance of all observations but that observation (i.e. a ‘leave one out’ dis-

tnace). So, at every step removing the observation with the largest distance where

d2
i = (xi − x̄(−i))

TΣ−1
(−i)(xi − x̄(−i)). This procedure, unfortunately, shares the same

poor upper bound for the break down point. Donoho and Gasko [1992] and Donoho

[1982] give several other procedures for choosing a set of good points, including el-

lipsoidal trimming, convex hull peeling, and ellipsoidal peeling, that also share this

low breakdown point. Lopuhaä and Rousseeuw [1991] give proofs that the maximum

possible breakdown point for an estimator that is affine invariant can be, as we would

hope, 50%.

Robust estimators for the scale of multivariate data, C(X), by virtue of their

methods, often give a robust estimate of the location along with their scale estimate.

Outlier detection methods usually make use of these location and scale estimates

rather than relying on the location estimates above. Most robust estimators proceed

by identifying a small set of good observations (non-outliers) and then use only these

observations to estimate the classical mean and covariance. If these observations are

truly good observations then the estimates of the location and scatter of the data will

be very accurate and this will lead to the highest possible breakdown point. Finding

this set of good data points is essentially the reverse problem of outlier detection and

faces many of the same problems, except that you only need to find a fixed fraction of

the data which you know to be good (usually between one-half and three-fourths of

n). In the next section we examine one such method for choosing good points, which

leads to a robust method for identifying outliers.
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Minimum Covariance Determinant

A popular robust estimator of location and scale with a high breakdown point

is the Minimum Covariance Determinate (MCD) estimator, which was proposed by

Rousseeuw [1984]. This estimator is hard to beat in terms of accuracy and robustness,

as it can achieve a 50% breakdown point and has the desirable property of affine

equivariance. Its computation in a reasonable amount of time is non-trivial, but a fast

algorithm for its computation, called fastMCD5, was later introduced by Rousseeuw

and van Driessen [1999] that greatly widened the applicability and usefulness of the

MCD.

The MCD estimator works by finding a subset of the observations, h, whose

classical covariance matrix has the minimum determinant. The size of h can be

varied to allow for a higher breakdown point or better efficiency, but is usually chosen

to be a little more than half the number of observations. An exhaustive search of

all possible subsets is obviously not possible, so the fastMCD algorithm makes clever

choices about which observations to include and exclude. Recall that in 2 dimensions,

the absolute value of the determinant of a matrix gives the area of a parallelogram

whose edges are determined by the rows of that matrix (similarly in 3 dimensions, the

volume of the parallelepiped). The intuition behind the MCD is that it minimizes

the area spanned by the covariance matrix and so is useful in finding a group of

observations that are close together and therefore are likely to form the center of the

data.

The MCD estimator uses this good set of h points to estimate the location and

5Source code for the fastMCD algorithm is available in the R statistical language as the function
cov.mcd in the MASS package.
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scale using the standard coordinate-wise mean and sample covariance matrix and then

re-weights all observations. Let Th and Ch be the mean and covariance estimates of

the h good points, then the MCD calculates the robust Mahalanobis distances for

every observation by plugging Th and Ch into Equation 2.6. These distances, RDh,

are used to re-weight the location and scale estimates so that all observations receive

some weight (see Rousseeuw and van Driessen [1999] for this re-weighting step and

Lopuhaä and Rousseeuw [1991] for a proof of why it is important to perform this

step). Figure 2.7 gives some sample data that is made up of 15% clear outliers.

We have drawn the the classical Mahalanobis distance with
√
χ2

2,.975 tolerance which

fails to identify all but a few of these outliers due to the estimations of mean and

variance being skewed by presence of the outliers. The MCD estimator’s tolerance

ellipse, using the same quantile of the chi-squared distribution, clearly gives a good

estimation of the mean and variance and thus identifies all outliers.
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Figure 2.7: The classical Mahalanobis distance versus the robust MCD distance with

a tolerance of
√
χ2

2,.975. The data has been constructed to contain 200 normal ob-

servations (with a certain covariance) and 30 outliers. The classical distance, which
uses non-robust measures of location and scale, clearly fails to identify most outliers,
whereas the MCD method is more robust and easily identifies all outliers.
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2.4 Approaches for High Dimensional Data

When observations contain a large number of variables, namely when p > n, there

are concerns that arise in the detection of outliers. The main problem is that the

covariance matrix estimate, Σ̂, is guaranteed to be singular (and thus not have an

inverse) if the dimension of the data, X, is greater than the number of observations.

This is because the rank of the covariance matrix, r (the number of non-zero eigen-

values), will always be less than or equal to n, the number of observations (see Lay

[2003] for an full explanation) and the basic fact that in order for a matrix to have

an inverse, its dimension must equal its rank. Thus, if p > n, the p × p covariance

matrix will have rank r ≤ n which is < p, so clearly r 6= p and the matrix will be

singular.

The singularity of the covariance matrix means that it does not have an inverse and

therefore it is not possible to compute the Mahalanobis distance for any observations.

Likewise, we can see that this effects the MCD estimate, which relies on finding a

subset of h observations whose covariance matrix has the smallest determinant. Recall

that the determinant of any singular matrix is zero. Thus we know that any subset of

the observations will necessarily have a singular covariance matrix because it will have

dimension p > h, so all covariance matrices will have a determinant of zero, rendering

the estimator useless (as there is nothing to minimize). So, if the number of variables

is greater than the number of observations then neither the classical Mahalanobis

distance nor the MCD will yield meaningful results. In the rest of this section we

explore some methods for dealing with data in high dimensions.
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2.4.1 Projection Pursuit Approach

Stahel [1981] and Donoho [1982] independently introduced an estimator that is

useful for high dimensional data and works by the simple idea of projecting the data

down to one dimension in space and measuring the “outlyingness” of observations in

that dimension. This was inspired by the Projection Pursuit techniques of Friedman

and Tukey [1974] that looked at finding “interesting” projections of high dimensional

data (see Huber [1985] for a detailed look at PP). The goal is to find a projection of

the data onto a direction that maximizes an observation’s robust z-score in that direc-

tion. This has become known as the Stahel-Donoho Estimator (SDE), and it is affine

equivariant and can achieve the highest breakdown point possible (1
2
). We demon-

strate later in this thesis that the SDE is well suited to the detection of anomalies

in text. Chapter 5 shows its application to this problem and Chapter 6 gives exper-

imental results using it to detect textual anomalies and comparing it to other well

know outlier detection methods and some novel ones.

The SDE method is conceptually intuitive yet its computation can be difficult as

there are infinitely many directions that data can be projected onto and we are trying

to find the one direction for each observation that makes it appear to be as far away

from the center of the data as possible. So, we would like to find the supremum over

all possible directions (unit length vectors) a ∈ Rp for the outlyingness, SD, of an

observation.

SD(xi) = sup
a

xTi a−median(Xa)

mad(Xa)
(2.8)

Where xTi a is the projection of observation xi in direction a. In practice it is im-

possible to calculate the supremum over all possible directions, so the maximum is
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computed over a finite set of directions instead, in an attempt to closely approximate

the measure [Donoho and Gasko, 1992]. After the maximum distance for each ob-

servation (over the finite set of projection directions) is calculated, these distances,

SDi are used to calculate re-weighted covariance and location estimates. The SDE

was thoroughly investigated by Maronna and Yohai [1995] who experimented with

different types of re-weighting and compared it with other robust outlier procedures.

Maronna and Yohai showed it to be successful for dimensions up to size 20 where the

computation time required to insure a reliable estimate can become prohibitive.

The set of directions chosen is crucial to how the estimator performs and several

different methods have been experimented with for how to best pick these directions

(and how many directions are necessary to try for each observation). Many choices

seem to give good results, Stahel [1981] picked directions by randomly choosing h

observations and calculating a direction, a, orthogonal to the hyperplane containing

those h observations (this method was also used by Maronna and Yohai [1995]6 and

later Hubert and Van der Veeken [2008] used a variation for skewed data7). Choos-

ing directions is this manner, however, is not useful in high dimensions with limited

observations. Other methods have been experimented with, but the number of direc-

tions that must be tried in high dimensions grows so rapidly it makes most methods

impractical. Peña and Prieto [2001] introduced a procedure to choose a good set

6An implementation is available in fortran as part of the robust package (Insightful Robust Li-
brary) in the R statistical language http://cran.r-project.org/web/packages/robust/index.
html this implementation is limited to cases where n < p.

7The Adjusted Outlyingness Estimator was also used in connection with robust principal com-
ponent analysis [Brys et al., 2005] and is available from http://www.agoras.ua.ac.be/ as part of
the medcouple package, this implementation is also limited to cases where n < p.

http://cran.r-project.org/web/packages/robust/index.html
http://cran.r-project.org/web/packages/robust/index.html
http://www.agoras.ua.ac.be/
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of only 2p directions as part of the Kurtosis8 estimator, which picks directions that

maximize or minimize the kurtosis. This estimator greatly reduces the computation

time, as the number of directions that must be tested is small, but Filzmoser et al.

[2008] indicate that there is some debate about whether this is always the best way

to choose directions and as to how useful it is in high dimensions.

2.4.2 Principal Component Analysis and Singular Value De-

composition

Another approach to the high dimensionality problem is simply to reduce the

dimensions of the data using Principal Component Analysis (PCA) (Huber [1985]

explains that PCA is actually a type of Projection Pursuit). Principal component

analysis is a technique used to transform data from the observed variables to a new

set of variables that are uncorrelated and ordered by how much of the variance of

the data they explain. PCA is often used for the task of dimensionality reduction by

transforming the data in this way and then discarding all but the first k components,

where we usually pick k either by determining the total variance of the data we wish

to explain or by some practical constraint on size of the dimensions.

The traditional method of performing PCA is to compute the eigenvalues and

eigenvectors of the covariance matrix, and to project the data onto the eigenvectors

with the k largest eigenvalues (The eigenvalue decomposition of the covariance matrix

gives Σ = V DV −1, where the columns of V contain the eigenvectors of Σ and D is

8Matlab code for Kurtosis, written by the authors of the paper, is available at their website
http://halweb.uc3m.es/fjp/download3.html, which is limited to cases where p < 50.

http://halweb.uc3m.es/fjp/download3.html
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Figure 2.8: The first figure shows some data along with the eigenvectors of the data’s
covariance matrix. Notice that they are orthogonal and in the directions of the
greatest variance. The second figure shows the data after the principal component
transform. We can see that in this case we kept both components and it amounts to
rotating the data so that it is in terms of the principal components.

a diagonal matrix with the eigenvalues of Σ along its diagonal.) This amounts to

an orthogonal transform of the data, so that the data is in terms of the directions

with greatest variance and these variables are orthogonal to each other. It should be

pointed out that there is no need to compute the classical Mahalanobis distance using

the inverted covariance matrix in this principal component space. Instead, because

the principal components are orthogonal to each other, the distance reduces to that

of Equation 2.4. Figure 2.8 shows, for some example data, the steps in PCA for a

two dimensional matrix. The eigenvectors of the covariance matrix will always be

orthogonal to each other and those with the largest eigenvalues correspond to the
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directions in the data with the greatest variance. So, projecting the data onto the

k largest eigenvectors effectively keeps only the k dimensions in the data with the

largest variance. We could have kept only the first principal component for the data

in Figure 2.8(a) which would have resulted in the data in Figure 2.8(b) being flattened

along the horizontal axis and contain no movement in the vertical direction. It this

example we would have good success detecting outliers using only the first principal

component as the outliers happen to lie in this direction, but this is not always the

case. Often outliers distort the variance of the data so that the principal components

do not fit the data well. For this reason PCA is considered a non-robust technique.

An equivalent technique to the eigenvalue decomposition of the covariance matrix,

is to take the Singular Value Decomposition (SVD) of the centered data matrix. Let

X̃ be the centered data matrix, X̃ = X− X̄. The singular value decomposition of X̃

is:

X̃ = UΛVT

The SVD decomposition says that U and V must be orthonormal matrices and Λ

is a diagonal matrix. It turns out that the columns of V are the eigenvectors of

X̃T X̃, which is helpful because this means they are the same as the eigenvectors of

the covariance matrix (from Equation 2.3 we can see that the matrix X̃T X̃ is the

covariance matrix times a scalar). U contains the eigenvectors of the matrix X̃X̃T .

The matrix Λ contains its only non-zero values along its diagonal and they correspond

to the square root of the eigenvalues of the covariance matrix times n minus one. The

values in Λ are ordered from greatest to least, so the eigenvectors in V follow the

same ordering and range from the vectors that account for the most variance in the
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data to the least.

λ =
Λ2

(n− 1)
, where λ are the eigenvalues of the covariance matrix.

The matrix X̃ in terms of its principal components is just X̃V (or equivalently

UΛ) and by using only the first k eigenvectors from V, we end up with the data in

terms of the first k principal components. Let Z[k] be the n × k matrix that is the

centered data, X̃, in terms of its first k principal components. This matrix can be

computed as:

Z[k] = X̃V[k] (2.9)

The SVD is useful because it can be used on high dimensional data to reduce

the number of dimensions to the point where we can guarantee that the covariance

matrix will be invertible. Once the covariance matrix is known to be invertible, we can

use any standard multivariate outlier procedure (e.g. robust Mahalanobis distance

or fastMCD). It is important to note that components that are thrown away in the

dimensionality reduction (when using a k in Equation 2.9 that is less than n) are

effectively lost information, unless the eigenvectors have very very small eigenvalues

(and thus the data has little variance in that direction). It is usually preferred to

keep as many components as possible to insure that no information is wasted [Hubert

et al., 2005]. It is also pointed out by Hubert et al. [2005] that the SVD transform of

a matrix of any size (using all vectors in V) results in a matrix of dimension at most

n with no loss of information. (V will have at most n eigenvectors so X̃V will be

at most n× n.)

This is a valuable tool for outlier detection in high dimensions, especially if a

matrix has more variables than observations, p > n. We can simply calculate X̃V
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and achieve a matrix that is of dimension at most n without loosing any information

and proceed with outlier detection on this matrix. When the data is transformed in

this way (without limiting the number of principal components) we say that we are

representing the data in “terms of its own dimensionality”.

2.4.3 Principal Component Outliers Method

In general there has been little research conducted in statistics on outlier detection

in data where the number of variables is greater than the number of observations. An

exception is the work of Filzmoser et al. [2008], who introduced and made available

a technique they call PCOut9 which makes use of many of the ideas mentioned in

this chapter, including singular value decomposition, kurtosis, and robust distance in

the principal component space. In later chapters, we show how to apply the PCOut

method to the problem of detecting anomalies in texts and give experimental results

comparing it to other methods and methods of our own.

The PCOut measure is fast to compute, works with data of any dimension, and

has good success at detecting outliers. This method was shown by Filzmoser et al.

to be competitive on data with a low number of dimensions (ten or less) where it was

compared with many popular multivariate outlier detection methods (fastMCD, Kur-

tosis, and the OGK estimator of Maronna and Zamar [2002]). In higher dimensions,

where tests were conducted with the number of variables ranging up to 2,000, there

were no other techniques available to compare against (because none can accommo-

date such large dimensions). The PCOut method of outlier detection achieved 0.38%

9 PCOut has been made available by its authors, in the R statistical language. It is found in the
package mvoutlier at http://cran.r-project.org/web/packages/mvoutlier/index.html.

http://cran.r-project.org/web/packages/mvoutlier/index.html
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false negatives and 2.52% false positives on data with 2,000 dimensions and contain-

ing 10% outliers. PCOut’s performance in detecting outliers in all of the artificially

created test sets created by Filzmoser et al. (as well on a real test case involving

microarray data) proved successful in terms of performance and robustness, making

it very attractive for use when the number of dimensions in data is large.

We give a short summary of the exact procedure used in the PCout method here.

The method breaks down into two separate phases one of which looks for location

outliers and the other for outliers based on the scatter of the data. At the end of the

procedure these two measures are combined. Let X be the data matrix with n rows,

one for each observation, and p columns, one for each variable, and let xij denote the

value of the ith observation’s jth variable. Then the procedure is as follows.

PCout Algorithm:

Phase 1: Detection of Location Outliers

Step 1: Robustly sphere the data (zscore)

X∗ =
xij −median(x1j, ..., xnj)

mad(x1j, ..., xnj)

Step 2: Compute the matrix of principal components that account for 99% of
the variance in the data. This is computed as in Equation 2.9 above, with
k determined by the first k eigenvalues that sum to 99% of the total sum
of all eigenvalues. We will call this matirx Z. This matrix is then robustly
sphered again as in Step 1, to give a matrix Z∗.

Step 3: Compute robust kurtosis weights for each component of Z∗.

wj =

∣∣∣∣∣ 1n
n∑
i=1

(
z∗ij −median(z∗1j, ..., z

∗
nj)
)4(

mad((z∗1j, ..., z
∗
nj)
)4 − 3

∣∣∣∣∣ , j = 1, ..., p

Weight each principal component by its relative weight (z∗ij ×
wjP
wj

) and

then compute the robust Mahalanobis distance for every observation. As
discussed before, these are principal components (and thus all components
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are orthogonal) so it is possible to compute these distances using the sim-
plified Mahalanobis formula shown in Equation 2.4 on page 32. These
distances are then transformed to make them look more like the χ2 distri-
bution using the scaling given in Equation 2.5, on page 34.

Step 4: Determine weights for each observation using a translated biweight.
PCOut’s approach to weighting observations is different from that used by
most methods of outlier detection. It is a version of the translated biweight
that was first used by Rocke [1996] and assigns weights as follows. Let dloci
be the scaled distances from the previous step then:

w1i =


0, dloci ≥ c(

1−
(
dloci−M
c−M

)2)2

, M < dloci < c

1, dloci ≤M

(2.10)

The constant M is taken to be the 331
3
rd quantile of the distances (this is

computed in a similar manner to the quartiles described in Section 2.2.2
pg. 25 and marks the point at which exactly one third of distances are
smaller). The constant c is a cutoff set at:

c = median(dloc1, ..., dlocn) + 2.5×mad(dloc1, ..., dlocn)

This cutoff is very similar to the fences used by Tukey described in Sec-
tion 2.2.2. Here we see that observations which have distances that are
greater than the cutoff, and so are likely to be outliers, receive a weight of
zero. Similarly, observations whose distances are very small, in the bottom
third of the all distances, are likely to be good points and thus receive full
weight. The distances in between this range receive a partial weighting
based on their distance.

Phase 2: Detection of Scatter Outliers

Step 5: The sphered principal component matrix Z∗ from Step 2 is used to
produce distances by calculating the Euclidean norm for every observation.

dscati =

√√√√ p∑
j=1

Z∗ij

These distances are then transformed to look more χ2 as in Step 3.

Step 6: The distances dscati are used to calculate weights for observations ac-
cording to Equation 2.10 used in Step 4 except with different cutoffs. In
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this step c =
√
χ2
p,0.99 (the 99th quantile of the χ2 distribution with p de-

grees of freedom) and M =
√
χ2
p,0.25. As mentioned earlier in Section 2.3.1

on page 33, these cutoffs assume that the distances, dscat, will approxi-
mately follow a chi-squared distribution (and they will for normal data).
If the data is not normal then the scaling applied in the last step should
help them appear more χ2 like. Using quartiles of the chi-squared dis-
tribution is typical for weighting/re-weighting of observations, and closely
related procedures can be found in many other outlier detection methods,
including Maronna and Zamar [2002], Rousseeuw and van Driessen [1999],
Maronna and Yohai [1995], and Rocke and Woodruff [1996].

Final Weights and Choosing Outliers Final weighting is calculated as a combi-
nation of the weights from the two phases. The equation for the final weights
is given by:

wi =
(w1i + s)(w2i + s)

(1 + s)2
(2.11)

The scaling constant s is set to 0.25 by Filzmoser et al. to insure that obser-
vations are only marked as outliers if they received low weights in both phases,
rather than only one. Outliers are finally chosen as those observations whose
weight wi is less than 0.25.

2.5 Summary

This chapter presented an overview of outlier detection in statistics. We began

with an introduction to univariate outlier detection, where observations are of a sin-

gle variable. For instance, observations could be measurements of the length of a

widget and we would like to identify any observations that seem incongruous. If we

make the assumption that the length of widgets is normally distributed, we showed

that we can easy construct a robust measure to detect these outliers. Where robust

means a method that will give reliable estimates for all observation even when the

data contains outliers. On the other hand, if we make no assumptions about the

distribution of the length of widgets we show that one can inspect the data visually
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to detect outliers or automatically construct “fences” based on the shape of the data

which mark the boundaries of outlier and non-outliers.

The chapter proceeded with the detection of outliers in multivariate data where

observations are of more than one variable. For instance, each observation could

consist not only of the length of a widget, but also its width, height, and weight

measurements as well. It is necessary in this case to not only look for outliers in

each of these variables independently, but also to take into account the interaction of

these variables. We give a full descriptions of two well known methods used for this

purpose: Robust Mahalanobis Distance and the Minimum Covariance Determinant

estimator.

The last part of the chapter focused on data with a large number of variables

(dimensions). This type of data has often been gathered automatically and we are

unwilling to make any assumptions about which variables are important identifiers

of outliers. This situation arises, for example, in genomics when analyzing microar-

ray data for gene expressions where each observation corresponds to an experiment

and can consists of thousands of variables each indicating the activity of a certain

gene [Sebastiani et al., 2003]. Data with a large number of variables presents unique

challenges that make most multivariate outlier detection procedures unsuitable and

we describe statistical methods that have been developed to overcome these chal-

lenges. Specifically we looked at projecting the data down into one dimension using

the Stahel-Donoho Estimator (SDE), reducing the dimensionality of the data using

Singular Value Decomposition, and Filzmoser et al.’s Principal Component Outlier

detection method (PCOut). In the experimental portion of this thesis we apply the
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SDE and PCOut methods to the detection of anomalies in text and compare their

performance to other approaches.



Chapter 3

Related Work in Natural Language

Processing

3.1 Overview

This thesis describes work on the task of detecting anomalies in textual data with

no prior knowledge as to what it means to be normal or anomalous. While this is

a novel task, it is closely related to and builds on several ideas and techniques from

work on authorship attribution, plagiarism detection, and genre identification. These

research areas have in common a collective need to measure the similarity between

types of writing and a history of research involving the use of stylometry [Milic, 1967,

1991; Kenny, 1982], or literally the “measurement of style.” The use of statistical

methods with these stylistic measures has proved effective in many areas of natural

language processing and in this chapter we will examine this research and how it

relates to the problem of anomaly detection. We begin this chapter with a look at the

55
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problem of authorship attribution with a focus on research that has used methods

which attempt to capture stylistic qualities in text. The next section focuses on

work specifically aimed at detecting stylistic inconsistencies and the following section

focuses on the problem of genre identification.

3.2 Authorship Attribution

Authorship attribution refers to the automatic identification or assessment of

a document’s author. There is a long history of research in authorship attribu-

tion [Holmes, 1994] from many different academic disciplines including linguistics,

literary forensics, literary studies and more recently computer science. In broad terms

there have traditionally been two statistical approaches in authorship attribution.

Counting words The use of distributions of word frequencies to characterize an

author’s writing and differentiate between authors. These techniques count the

distributions of words or sequences of words (n-grams) in various authors’ writ-

ing. Probabilities are computed for words occurring in different authors’ writing

and this information is used to assign a probability to new documents as hav-

ing been written by a particular author. These methods can also be used to

capture topic, as similar approaches are used in classification of documents by

topic [Guthrie et al., 1994; Yang, 1998; Sebastiani, 2002]. Authorship attribu-

tion techniques typically minimize this impact, by focusing on words that occur

very frequently in the writing of all authors being considered.

Stylometrics The use of features that specifically attempt to capture elements of
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writing that differentiate one author from another apart from the conscious

choice of words. These features include counting the use of punctuation, the

length of sentences, parts of speech, common misspellings, character sequences [Peng

et al., 2003], and morphological features like the number of past tense words

(by counting word suffixes) [Stamatatos et al., 1999]. Burrows [1992] makes the

claim that computerized use of these features captures a constant aspect of an

author’s writing that transcends the topic of that writing. However, there is

some disagreement about this, as these types of features can also successfully

distinguish between genres [Kessler et al., 1997], as we describe in Section 3.4.

Among the first uses of statistical methods for identifying authorship were the

pioneering works of Mendenhall [1887], who counted the average word lengths of

authors and Sherman [1888] who looked at distributions of sentence lengths. These

influential works studied the use of these features as indicators of an author’s writing

style and also explored their uses as a way of attributing authorship. These methods

were evaluated qualitatively, but this research lead to many related statistical methods

for authorship detection [Williams, 1975; Love, 2002].

Mosteller and Wallace [1964] carried out one of the most influential works on

authorship attribution using the disputed authorship of the Federalist Papers. The

Federalist Papers are a series of 85 articles written to convince early Americans to

ratify the United States Constitution. Most of these articles were published during

1787 and 1788 in four New York City newspapers under the pseudonym “Publius”.

In the May of 1788 the full set of these articles was then published as a book using

the same assumed name. The articles are known to have actually been written by
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three different authors: General Alexander Hamilton, James Madison (who became

the 4th U.S. president), and the statesman John Jay. The papers are a good test

set for examining the differences in writing style between these authors because they

all are essentially on the same topic. Twelve of the Federalist Papers have disputed

authorship because both Hamilton and Madison claimed to have written them. These

articles have sparked debate over who the true authors are because the styles of both

authors are so similar.

Mosteller and Wallace examine the problem of determining who wrote these dis-

puted papers using different statistical techniques and methodologies. They approach

the problem by gathering various other works written by the authors and insuring

that they are consistent, in terms of word usage, with the writing style these authors

used in the Federalist Papers in the undisputed articles. In total they use 94,000

words of text written by Hamilton and 114,000 words of text written by Madison.

The goal of their work is to use this text to build a statistical model for each author

and then test the disputed Federalist Papers to see which model they are more likely

to have come from.

Sentence length is dismissed by Mosteller and Wallace for use as discriminator

between the two authors, because it is distributed very similarly for both. Instead

they focus on words that discriminate well between the authors (i.e. occur more

frequently in one author than another). They were inspired by similar words used

with different frequencies between two authors, for instance Madison uses the word

“whilst” almost exclusively while Hamilton prefers “while”. These words’ frequencies

were not used as a ratio (i.e. while/whilst) as is commonly attributed to their work.
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according also although
always an apt
both by commonly
consequently considerable(ly) direction
enough innovation kind
language matter(s) of
on particularly probability
there this through
to upon vigrous
while whilst work(s)

Table 3.1: The 30 Mosteller and Wallace marker words chosen because they discrim-
inate well between Alexander Hamilton and James Madison.

Individual word frequencies were counted as a percentage of all words in the collection

of writing (i.e. the occurrences of a particular word divided by the total number of

words in the corpus). These percentages are modeled assuming independence between

words, not as a ratio between particular pairs of words.

Even with the large amounts of text gathered they conclude that most words do

not have a high enough frequency to give reliable results. They form an initial set

of 165 words whose frequencies have the ability to discriminate between texts of the

different authors. They call these words marker words and based on further testing

on held out data they narrow this set down to the best 30. These words are shown

in Figure 3.1.

Mosteller and Wallace apply a Bayesian approach10 to modeling the distributions

of these words. This involves assuming that the frequency of each word comes from a

negative binomial distribution. The negative binomial distribution requires parame-

ters so, because they are using a Bayesian approach, they estimate the distribution of

10Bernardo and Smith [1995] and Efron [1986] give good background on Bayesian methodologies
and how they differ from traditional statistical approaches.
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these parameters from the data and assume they follow a Beta distribution. Mosteller

and Wallace choose to use the negative binomial and Beta distribution based on a

study of the behavior of ninety very common words (different from the marker words).

They use these distributions to predict the authorship of the undisputed works. The

study by Mosteller and Wallace deals heavily with this Bayesian approach and how

to apply it to a practical problem like authorship attribution. To this end, the study

also compares this Bayesian approach to different traditional statistical methods for

solving this problem.

This groundbreaking and comprehensive study of the Federalist Papers and the

statistics useful for modeling word frequencies, unfortunately has had very little im-

pact on the techniques used in the field of authorship attribution. Holmes and Forsyth

[1995] give an overview of the work in Mosteller and Wallace [1964] and say with regard

to their influence “they have been more admired than emulated”. They popularized

the use of the Federalist Papers as a research corpus and their marker words, but did

very little to propagate the Bayesian approach to modeling language in authorship

detection. This, according to Holmes and Forsyth [1995], is most likely due to the fact

that the Bayesian approach is more difficult to understand than the traditional sta-

tistical approach and Mosteller and Wallace [1964] showed that both yielded similar

results.

McColly and Weier [1983] have also experimented on the Federalist Papers, but

they used different statistical techniques and attempted to determine the similarity

between different articles. McColly and Weier use the log-likelihood ratio test be-

tween pairs of the articles in the Federalist Papers and then give a probability that
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they were written by the same or different authors. They pair articles written by

Hamilton and Madison (where authorship is known) and show that using the same

word set as Mosteller and Wallace (shown in Table 3.1) it is possible to tell when two

articles have been written by the same or different authors. They use a log-likelihood

test to measure if the distribution of these words from each article come from the

same population. If the p-value for this test is very low then then we can reject

the hypothesis that they were written by the same author. For every test pairing of

known authors given in McColly and Weier [1983] the correct authorship (same or

different) is determined correctly by this test. In addition to these results they also

come to very much the same conclusions as Mosteller and Wallace [1964] as to the

authorship of the disputed articles.

The results of McColly and Weier [1983] are not comparable with those of Mosteller

and Wallace because they are performing different tests. McColly and Weier [1983]

are not making use of the prior distribution of words from the two authors, only

comparing the distributions of the words in the two articles to see if they are sim-

ilar. McColly and Weier’s tests, in a way, can be seen as unsupervised as there is

no training data involved. The tests are performed only with regard to the pair of

articles. They are however using the marker words found by Mosteller and Wallace to

be good at discriminating between Hamilton and Madison. These words were found

using training data, so this technique is not actually unsupervised. The results of

McColly and Weier are nonetheless impressive because, even though they use the

marker words, they do not have prior probabilities for how likely each author is to

use them.
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McColly and Weier created a second type of experiment which used a word set

based on non-content words that occur with high frequency. These words are not

necessarily good discriminators like the words used by Mosteller and Wallace. The

words used are function words that occur most often overall in the articles (they could

even be used only by one author). These words were chosen to see if it is possible to

correctly label pairs of articles with no prior knowledge at all. They perform the same

set of tests with these words and show that the results are very poor compared to

those using the marker words. The results of this final comparison are sometimes used

to dismiss function words as bad discriminators of authorship, but this is completely

misinterpreting the results. This finding tells us nothing about function words in

general. It merely shows that words that were chosen to be good discriminators (like

the marker words) will be better than words that are picked randomly just because

they occur many times. (Results were never misinterpreted by McColly and Weier,

but in the research of other authors, who shall remain nameless.)

A good history of the origins of many of the techniques used in authorship attri-

bution can be found in Holmes [1994] and Love [2002] gives a nice overview of the

field and its history.

3.3 Detecting Stylistic Inconsistencies

A field closely related to authorship attribution is the detection of stylistic in-

consistency. Often this is to aid in the measurement of stylistic unity [Smith, 1998;

McColly, 1987] in questions of multiple authorship or for the purposes of improving

collaborative writing. Text written with incongruous style can be confusing and diffi-
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cult to read. There has been research into automatically identifying these changes in

writing style to aid multiple authors working on a single project to diagnose inconsis-

tencies so that they may fix them. Baljko and Hirst [1999] showed that humans can

intuitively detect and agree on sections of a text where the style is incongruous (be-

cause it is written by more than one author) and this has further motivated research

into automatic techniques for performing this task.

Glover and Hirst [1996] were the first to directly approach the problem of detecting

a change in authorship. They had subjects watch half of a video and write a summary

of it and then return weeks later to watch the second half and complete the essay.

They then counted different stylistic features in the essays to see if any were consistent

in an author’s writing between the first and second halves. They also generated all

possible combinations of different authors’ first and second halves and measured the

same features over this data to determine the features that were good discriminators

of inconsistency (or a change in author). They tested several different features:

• word length;

• sentence length;

• percentage of two and three letter words;

• distribution of parts-of-speech;

• distributions of the part-of-speech used at the beginning or end of sentences.

Results indicated that all of these features were fairly consistent with respect to a

single author’s style and that the percentage of two and three letter words, and the

use of coordinating conjugations were particularly useful in discriminating between

these writers.
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Graham [2000] and Graham et al. [2005] further explore this problem using stylis-

tic features, similar to the ones mentioned above, to identify the points in a document

where its stylistic character changes. These can either be points indicative of a change

in author, as in collaborative writing where authors have not integrated their writing

styles, or points where a single author’s writing style is inconsistent within a docu-

ment. Graham et al. construct a corpus made from posts in a Usenet group (making

the assumption every post is written by a different author and that single posts are

written by the same author). They then compute many stylistic features over this cor-

pus. They train several supervised neural network classifiers on pairs of paragraphs,

either on ones that occur in the same post (thus are assumed to have the same au-

thor) or on paragraphs across different posts (the author is assumed to be different.)

The classifier is tested by feeding it similar pairs of paragraphs to determine if it can

tell if they occurred in the same post or a different post. They achieve an F -measure

of .53 , which is an improvement on their baseline of randomly choosing the correct

classification, which gives an F -measure of .23 (this is because they have an unequal

number of same-author and different-author pairs). This provides some evidence that

the use of stylistic features can be useful to distinguish between authors even in small

segments of text (they used paragraphs which averaged 50 words in length and had

a standard deviation of 41 words).

What differentiates the work of Graham et al. from most other authorship attri-

bution research (other than their choice of classifiers) is that they show it is possible to

learn what makes the style of authors’ writing different in general. This is in contrast

to most other authorship work which has typically focused on learning the particular
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style of a single author, or two authors, so that work can be correctly attributed to

an author automatically.

The goals in detecting stylistic inconsistencies are very similar to ours in unsuper-

vised anomaly detection and thus many of the same techniques and ideas apply to our

research. In our research, however, we are primarily interested in finding anomalies

in an entire collection of data and not simply differences between one paragraph and

the next, or one document and another. Another major differentiating factor is that,

as with typical approaches to authorship attribution, research on detecting stylistic

inconsistency uses training data to train a classifier to recognize the style of specific

authors and we did not wish to be reliant on the availability of training data.

3.4 Genre Identification

The term genre is used to refer to a category of literary composition characterized

by a particular form and style. This is often very closely related to topical content,

as genres often have specific content associated with them, but the term is used to

refer to the non-topical aspects of a piece of writing or text type [Biber, 1988, 1989]

such as, its intended audience, communication style, or purpose. Scientific journal

articles and fishing magazine articles would be examples from two different genres

that happen to have individual topics associated with them, but it is possible to have

different genres on the same topic, for instance a scientific journal article about a

research study and a subsequent newspaper story covering that research.

A large part of the work in the study of genres has been concerned with the

linguistically motivated task of defining classifications for texts that separate them
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into different types based on their linguistic form. Traditional genres like articles,

editorials, reviews, and letters are, according to Biber [1989], a kind of “folk typology”

of texts. Biber explains that these categories are simply based on the most easily

discernible external attribute, not on any internal linguistic qualities. As an example,

Biber offers the fact that “two newspaper articles can range from extremely narrative

and colloquial in linguistic form to extremely informational and elaborated in form”,

but they are still traditionally grouped into the same genre. The goal of his research

has been to define new genres or text types that more informatively describe the

internal linguistic features of texts.

Biber [1988, 1989, 1992, 1995] uses a technique called Multidimensional Analysis

to analyze texts from a wide range traditional genres and derive a set of linguistic

groupings or text types. He starts by defining sixty-seven features that he believes

will be useful for this task based on the linguistics literature. These features are

mostly composed of the percentages of different specific parts of speech (for example,

the number of demonstrative pronouns, gerunds, infinitives, wh-relative clauses, etc.)

plus a few features like the type/token ratio and the mean word length. These features

are computed over all texts in his collection to construct a matrix. He then performs

Factor Analysis on this matrix to get what he calls “textual dimensions”. Factor

analysis is really another name for principal component analysis (see section 2.4.2),

but where typically only the components with the highest eigenvalues are kept. In

Biber’s case he ends up with six components or “textual dimensions” (from the origi-

nal sixty-seven). These dimensions will show where the greatest variation in the data

occurs.
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Biber then takes each of these these six dimensions and qualitatively analyzes it

to describe its bearing on different texts in the collection. For example, one of the

dimensions he labeled “Narrative versus Non-narrative Concerns” and he postulates

that this dimension separates texts that are concerned with narrative discourse (e.g.

novels) and use a high percentage of past tense verbs and third person pronouns from

text which have more descriptive or “expository” concerns (e.g. scientific papers) and

avoid using past tense verbs and third person pronouns. These six dimensions are

further used to cluster the original texts into eight groups, based on the number of

features they have in common with these dimensions. Biber then analyses these eight

clusters of documents qualitatively to produce a typology of English texts. These are

the categories that more accurately describe the internal linguistic forms of text (text

types) in his corpus.

A different field of research dealing with genre is that of using computers to decide

the genre of unseen documents or genre classification [Kessler et al., 1997; Argamon

et al., 1998, 2003]. This is relativity new field when compared with research on author-

ship attribution and has been principally motivated by a desire to improve information

retrieval [Karlgren and Cutting, 1994; Karlgren, 1998; Santini, 2004]. Search engines

that return results over a large collection of different types of documents and data,

like the internet, could allow genre-specific searching and thus improve the quality of

the results returned. Other work by Maynard et al. suggests that genre detection

can also aid in information extraction [Maynard et al., 2001, 2003].

Research in this field typically makes use of at least some stylistic features to clas-

sify genres. Import work in the field was done by both Karlgren and Cutting [1994]
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and Kessler et al. [1997] who have investigated different approaches to automatically

classifing documents in the Brown Corpus [Francis and Kucera, 1964] according to

genre. Their work makes use of discriminant analysis and logistic regression, respec-

tively, to train on data that has been labeled with its correct genre. They make use

using linguistic features (similar to Biber’s features) and attempt to classify unseen

data into its proper genre. Karlgren and Cutting are able to achieve a 4% error

rate, when classifying documents into 2 different genres and a 27% error rate, when

classifying documents into 4 genres.

Almost all work in this area involves training on a hand-crafted data set containing

documents labeled with their correct genres and developing techniques to classify new

documents into these genres. Unsupervised work on genre classification is rarer, but

it more closely relates to our research because it does not make use of training data.

Instead, this work makes use of the statistical method of clustering, where by similar

objects are grouped together into subsets. Clustering techniques have typically been

used in natural language processing to classify documents by topic (Manomaisupat

et al. [2006] for example), but Bekkerman et al. [2006], Rauber and Müller-Kögler

[2001] have employed them for the unsupervised grouping of documents by genre.

The work of Bekkerman et al. is interesting because it uses clustering on a data

set with pre-defined genre markings so that results can be evaluated for accuracy.

This work makes use of a multi-way distributional clustering technique to group doc-

uments into 21 marked genre categories of the British National Corpus [Burnard,

1995; Burnage and Dunlop, 1992]. They achieve 50% accuracy when classifying doc-

uments into these 21 genre categories and conclude that bag-of-word features give
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4% better results for his task than features that use part of speech trigrams. This

result is extremely impressive considering the number of genre categories and that

no training data was used. (Especially as there is so much disagreement about what

genres most accurately describe texts.)

Clustering techniques may be related, but anomaly detection is not a unsupervised

classification task. Mostly this due to the fact that in anomaly detection the problem

is not to group similar items together, but rather to identify ones that are most

different from all others. Anomalous text is defined by virtue of the fact that it is

simply not like some majority of the text. There is no assumption that anomalies

would form a cluster by themselves or that necessarily the rest of the text would form

a single cluster. If we did try to employ clustering techniques, in the hope that all

‘normal’ data would cluster together it would also be very difficult to determine at

what point to stop the clustering so as to be left with only anomalous outliers.

3.5 Summary

This chapter presented an overview of work in computational linguistics which

deals with the characterization of the style and language used in a piece of writing.

Specifically we focused on research in authorship attribution, detection of stylistic

inconsistency, and genre identification.

Authorship Attribution typically relies on the assumption, expressed clearly in Sin-

clair and Coulthard [1975] and Coulthard [2004], that every writer has their own

vocabulary and preferences which they build up over time (called their idiolect) that

influences the word choice and structure of their writing. The idea in authorship
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attribution is that the individual preferences or idiolects of authors should allow us

to identify them. We examined work by Mosteller and Wallace that makes use of

the distribution of words in a text to distinguish between authors, as well as, work

like that of Glover and Hirst which focuses on using stylistic features such as word

length and sentence length to detect a change in author. These works, as well as

other research, have achieved good results using these techniques and have advanced

the notion that authors idiolects can at the very least be used to reliably discriminate

between authors.

In the final section of the chapter we looked at identifying non-topical aspects of

a text that can be used to characterize a particular text-type or genre. We reviewed

the work of Biber that focused on automatically defining text-types, as well as the

work of many other authors on the problem of automatically classifying documents

by genre (both supervised and unsupervised).

The methods covered in this chapter for identifying authors and genres are not

directly applicable to the task of anomaly detection, but nonetheless we rely heavily

on many aspects of this research. In particular for the features we used to characterize

text that are described in the next chapter.
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Characterizing Text

4.1 Overview

How best to characterize text is by no means straightforward and is influenced

by the problem one is trying to solve as well as the techniques and data available.

Depending on the task, or what it is about language you are trying to model, you

might attempt to model the characters, words, n-grams, phonemes, sentiment, content

words, or any number of other properties. An important goal of our research is the

identification of pieces of text that are anomalous in very small collections (paragraphs

in a document for example). This has led us to focus more on features that capture the

style of writing, rather than on content word based features, which typically are more

susceptible to the data sparsity problem of language [Guthrie et al., 2003]. The use of

words in language is so varied and complex that word-based features typically require

more data than stylistic features in order to see the repetition necessary to build

sufficient models. We therefore concentrate on features that are based on large classes
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of words and features from stylometry. Determining which stylistic measures are most

useful from the literature can be difficult (see Chapter 3), as often features are used for

different tasks or on different data sets. We approached this problem by implementing

a wide range of features previously used in the fields of genre identification, authorship

attribution, detecting stylistic inconsistency and content-analysis. We chose features

that were popular in the literature and empirically determine which are best suited

to the task of anomaly detection in small collections. All features described in this

chapter were specifically chosen because they were used by different authors in at least

three research papers. The only exceptions to this rule are the seven novel features

in Section 4.4 which seemed natural extensions of the readability measures.

We have chosen to characterize a text by representing it as a vector, where the

components of the vector are based on these stylistic and linguistic features. In this

context, we then choose to approach anomaly detection as a type of high dimensional

outlier detection (described in Section 2.4), where these features correspond to the

dimensions (variables) and pieces of text correspond to observations. The vectors are

computed for pieces of text and we vary the size of these pieces of text and measure

the effect this has on anomaly detection. In the rest of this chapter we describe all

the features we tested.

We use a total of 166 features, 31% of which are typical stylistic features, the rest

being features that attempt to capture emotional tone. The features used break down

as follows:
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Feature Type Number of Features
Simple Surface Features 19
Readability Measures 7
Obscurity of Vocabulary Features 7
Part of Speech and Syntax Features 11
Rank Features 8
Emotional Tone Features 114

4.2 Simple Surface Features

The simplest measures of style treat the text as a collection of tokens grouped

into words and sentences and make use of the distributions of these features. These

include things like the average length of sentences, the amount of punctuation used,

and the usage of function words (words like prepositions, articles, and pronouns that

have little bearing on content [Ellegard, 1962]). In this research we implemented the

most commonly used surface features from the literature and for each piece of text

computed:

1. Average sentence length

2. Average word length

3. Average number of syllables per word

4. Percentage of all words that have 3 or more syllables

5. Percentage of all words that only have 1 syllable

6. Percentage of long sentences (sentences greater than 15 words)

7. Percentage of short sentences (sentences less than 8 words)

8. Percentage of sentences that are questions

9. Percentage of all characters that are punctuation characters

10. Percentage of all characters that are semicolons

11. Percentage of all characters that are commas
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12. Percentage of all words that have 6 or more letters

13. Percentage of word types divided by the number of word tokens

14. Percentage of words that are subordinating conjunctions (then, until, while,
since, etc.)

15. Percentage of words that are coordinating conjunctions (but, so, but, or, etc.)

16. Percentage of sentences that begin with a subordinating or coordinating conjunc-
tions

17. Percentage of words that are articles

18. Percentage of words that are prepositions

19. Percentage of words that are pronouns

4.3 Readability Measures

Readability measures [Stephens, 2006; Flesch, 1974] attempt to provide a rough

indication of the reading level required for a text. These measures were first developed

in the 1920’s in response to teachers who wanted science text books more suited to

their students’ reading levels. The formulas provided a guide for how difficult a text

was to read. Readability formulas are still used in education today, as well as in the

military, to gauge the difficulty of training materials. All these formulas make use

of a few basic features such as average sentence length, average word length, average

syllables per word, words with 3 or more syllables, words with 6 or more letters. These

measures are obviously lacking where true readability is concerned because they do

not directly capture the obscurity of the vocabulary, whether ideas flow logically, or

the complexity of the grammatical structures used, but they are nonetheless useful as

an approximation of how simple a text is to read. There are many different measures
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of readability and it is not clear how they correspond on different texts [Mailloux

et al., 1995]. They have been used successfully in the literature to separate genres

[Kessler et al., 1997; Dewdney et al., 2001] and writing style [Clough, 2000] (and

possibly even authors [Luyckx and Daelemans, 2005]). We have implemented and

tested all the most popular readability measures:

• Flesch-Kincaid Reading Ease

Reading Ease = 206.835− 1.015

(
total words

total sentences

)
− 84.6

(
total syllables

total words

)
(4.1)

• Flesch-Kincaid Grade Level

Grade Level = 11.8

(
total syllables

total words

)
+ 0.39

(
total words

total sentences

)
− 15.59 (4.2)

• Gunning-Fog Index

Fog Index =

((
total words

total sentences

)
+

(
words with 3 or more syllables

total words

)
× 100

)
(4.3)

• Coleman-Liau Formula

ColemanLiau = 5.89

(
total characters

total words

)
− 0.3

(
total sentences

total words× 100

)
− 15.8 (4.4)

• Automated Readability Index

ARI = 4.71

(
total characters

total words

)
+ 0.5

(
total words

total sentences

)
− 21.43 (4.5)

• Lix Formula

Lix =

(
total words

total sentences

)
+ 100

(
total words with at least 6 letters

total words

)
(4.6)

• SMOG Index

SMOG = 3 +

√
words with 3 or more syllables× 30

total sentences
(4.7)



Chapter 4: Characterizing Text 76

4.4 Obscurity of Vocabulary Usage

One distinguishing feature of writing is how ordinary or obscure the choice of

vocabulary is and we created some novel features that attempt to capture this. We

expect that some authors chose many words that are not very commonplace in normal

writing while others may prefer to stick to more everyday, less obscure words. This

captures a notion very similar to Ahmad’s weirdness of vocabulary [Ahmad and

Rogers, 2001; Ahmad and Al-Sayed, 2005], but instead of comparing the distributions

of a word in a sample with a reference corpus, we look for what percentage of words in

our sample occur often in our reference corpus. For every segment of text, we calculate

how frequently its words appear in 10 years of newswire using the Gigaword Corpus11

[Graff, 2003]. First we ranked all words by frequency in the Gigaword corpus, and

then we make sets of words based on these frequencies. Features of this sort have

never, to our knowledge, been used for similar tasks like authorship attribution, genre

identification, etc., but our experimental results prove them to be extremely valuable

(as can be seen in Chapter 7 when we look at feature evaluation). The sets of words

we make from the Gigaword are the:

1. Top 1000 words

2. Top 5000 words

3. Top 10,000 words

4. Top 50,000 words

5. Top 100,000 words

6. Top 200,000 words

11For a detailed description of the Gigaword corpus see Appendix B.
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7. Top 300,000 words

We then measure the distribution of words into these sets for any piece of text.

So for any section of text we compute the percentage of words in that section that

occur in each of the 7 sets of words individually. (Thus we have 7 features.)

4.5 Part of Speech and Syntax Features

We also implemented and evaluated features that make use of the part-of-speech

of a word. Text is passed through the RASP12 (Robust and Accurate Statistical

Parser) system’s part-of-speech tagger [Briscoe and Carroll, 2002; Briscoe et al., 2006]

developed at the Universities of Sussex and Cambridge. The RASP part-of-speech

tagger is trained on a subset of the British National Corpus (BNC) [Burnage and

Dunlop, 1992; Burnard, 1995] and uses a hidden markov model bi-gram tagger. This

tagger has good accuracy, evaluated at over 97% on texts with a vocabulary similar

to training texts [Briscoe and Carroll, 2002]. The RASP team also has augmented

the tagger with an unknown word model and a series of hand crafted rules for known,

but rare, words and has shown that the tagger now has very little degradation in

accuracy on out-of-domain texts [Briscoe et al., 2006].

All words and characters are tagged with one of 150 part-of-speech tags from the

CLAWS 2 tagset [Leech et al., 1994]. We use this mark-up to compute features that

capture the distribution of parts of speech.

1. Percentage of words that are adjectives

12The RASP parser has been made available by its authors and can be found at http://www.
informatics.susx.ac.uk/research/groups/nlp/rasp/.

http://www.informatics.susx.ac.uk/research/groups/nlp/rasp/
http://www.informatics.susx.ac.uk/research/groups/nlp/rasp/
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2. Percentage of words that are adverbs

3. Percentage of words that are interrogative words (who, what, where when, etc.)

4. Percentage of words that are nouns

5. Percentage of words that are verbs

6. Ratio of number of adjectives to nouns

7. Percentage of words that are proper nouns

8. Percentage of words that are numbers (i.e. cardinal, ordinal, nouns such as
dozen, thousands, etc.)

9. Diversity of POS tri-grams

POS TrigramDensity =

(
number of different POS trigrams

total number of POS trigrams

)
× 100 (4.8)

Texts are also run through the RASP morphological analyzer, which produces

words lemmas and inflectional affixes. These are used to compute:

Percentage of passive sentences Sentences are counted as passive if they contain

the following pattern:

(Form of the verb “be”)(adv)*(past tense of a verb)

Percentage of words nominalizations Nominalizations are spotted by searching

the suffixes produced by the RASP morphological analyzer for tion, ment, ence,

and, ance.

4.6 Rank Features

Authors can often be distinguished by their preference for certain prepositions

over others or their reliance on specific constructions of phrase. We capture these
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preferences by keeping a ranked list sorted by frequency of several different kinds of

function class words and part-of-speech bi-grams and tri-grams.

1. Distribution of POS tri-grams list

2. Distribution of POS bi-gram list

3. Distribution of POS list

4. Distribution of Articles list

5. Distribution of Prepositions list

6. Distribution of Conjunctions list

7. Distribution of Pronouns list

8. Distribution of Adverbs list

We compute all these lists and store them for every piece of text. These ranked

lists are very different than the features described previously, because they are not

numerical. Recall, that we are characterizing a piece of text as a vector of features,

but these ranked lists do not allow for meaningful numerical values except when

compared to other lists (so that their ranks can be compared). For this reason we

have experimented with the use of these rank list features only when measuring

the similarity or distance from one piece of text to another. When measuring the

similarity between two pieces of text, for example, we can calculate eight features by

comparing the eight lists from each piece of text. We compute the similarity between

any two ranked lists, x and y using the Spearman Rank Correlation formula:

S(x, y) = 1−
6

m∑
i=1

d2
i

m(m2 − 1)
(4.9)

where di is the distance between the ith item in list x and that item’s rank in list y

and m is the number of items in each list.
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4.7 General Inquirer Dictionary

The General Inquirer Dictionary (http://www.wjh.harvard.edu/~inquirer/)

was initially developed by the Social Science Department at Harvard based on Charles

Osgood’s attempts to quantify the connotative meaning of words and the efforts of

Dexter Dunphy [Stone et al., 1966]. It consists of mappings from words to social sci-

ence content-analysis categories. These content-analysis categories attempt to capture

the tone, attitude, outlook, or perspective of words and for this reason it has been

used to determine the sentiment of texts [Ahmad, 2008; Tetlock, 2007]. The Inquirer

dictionary we used consists of over 13,000 root words mapped into 114 categories

with most words assigned to more than one category. The two largest categories are

‘positive’ and ‘negative’ which account for 1,915 and 2,291 words respectively.

The General Inquirer Dictionary’s main group of categories are called Harvard IV-

4, but it has been built up with other smaller dictionaries and by various users and

contributors. This has increased the size of the dictionary and has also lead to some

different branches of the dictionary being made available. A decision was made by

us to use the version of the Inquirer Dictionary which is in use in the online content-

analysis tool at the University of Maryland (http://www.webuse.umd.edu:9090/).

This decision was made because this dictionary is larger (i.e. has more words) than

the one currently available at Harvard and also because this dictionary does not

include the extra Lasswell categories (which are more topical categories like ‘nations’

, ‘transactions’ , and ‘wealth’ and thus less concerned with the sentiment or tone of

a text).

We make use of these General Inquirer Dictionary by keeping track of the per-

http://www.wjh.harvard.edu/~inquirer/
http://www.webuse.umd.edu:9090/
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centage of words in a segment that fall into each of the 114 categories. So, we keep

one feature for the percentage of ‘positive’ words, one for the percentage of ‘negative’

words, one for the percentage of ‘hostile’ words, etc. A sample of the General Inquirer

Categories we use as features are shown in Table 4.713.

Positive Negative Strong
Hostile Self-referencing Weak

Casual slang Think Negate
Know Compare Person Relations
Need Pleasure Pain

Affection Work Active
Passive Overstated Understated

Agreement Disagreement Virtue

Table 4.1: Some of the General Inquirer Harvard IV-4 Categories

4.8 Summary of Features

The features analyzed in this research for the detection of anomalies in text rep-

resent a large selection of the features previously used in the fields of genre identifi-

cation, authorship attribution, detecting stylistic inconsistency and content-analysis.

We chose to investigate a total of 166 features (listed in the previous sections of this

chapter) based on several important criteria. Firstly, we concentrated only on features

that do not make use of counts of content words. Content words have been used in an

enormous amount of research to classify text by topic successfully, but our research

is not only concerned with detecting a change in topic, but also the identification of

13A detailed list of all categories and their descriptions can be found at http://www.wjh.harvard.
edu/~inquirer/homecat.htm

http://www.wjh.harvard.edu/~inquirer/homecat.htm
http://www.wjh.harvard.edu/~inquirer/homecat.htm


Chapter 4: Characterizing Text 82

text that is different because the writing style, genre or tone of the text is different.

It was important in our research to test whether textual anomalies can be detected

without the topical clues which these words provide as one important application of

this work is the identification of plagiarized passages, which will most likely be the

same topic as the rest of the text. It was also important in our research to make use

of features that have been widely used in other research in this field and to give an

indication of how useful these features are for this task.



Chapter 5

Identifying Anomaly

5.1 Overview

In this chapter we describe our procedures for identifying anomalies. We present

five different methods for anomaly detection and give detailed descriptions and imple-

mentation details of each. Two of these methods are based on procedures used in high

dimensional outlier detection, two derive from related areas, and one is completely

novel and devised by us specifically for anomaly detection in text. The final sections

of the chapter describe the different methods we tested for normalizing the data, a

overview of the distance measures that were used, and finally we give a description

of the system we built for experimentation and visualization of results.
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5.2 Detection Methods

We devised and tested five methods for the unsupervised detection of anomaly.

They are all closely related in that they use the same set of features to characterize

text and their goal is to produce a ranking of how anomalous one piece of text

(segment, document, etc.) is to the rest of the text in the document (or collection of

documents). They differ based on how these features are used and how segments are

compared.

We have chosen to describe each method in the setting of choosing anomalous

segments from a document, but note that these methods equally apply to detecting

pieces of text of any size, such as picking out anomalous documents from a collection

of documents. All methods measure the anomalousness of a piece of text by char-

acterizing it as a vector (of features), ~x, and defining a function for measuring the

anomalousness of ~x with respect to the set of all segments in a document D.

Three of the five methods tested are variations on techniques that have been used

to detect outliers in statistical data. One is a variant of average linkage clustering

and one technique is to our knowledge completely novel. The methods are:

ClustDist A distance based on average linkage clustering
SDEDist The Stahel-Donoho Estimator distance
PCout The weights calculated by the PCout algorthim
MeanComp Distance from the mean of all other segments in the data
TxtCompDist A novel method using the distance from the textual com-

plement

The rest of the chapter gives a full discussion of these methods.
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5.2.1 ClustDist (Average Linkage Distance)

This is a simple method for identifying anomalies that is similar to the procedure

for measuring the distance between clusters in average linkage clustering [Manning

and Schütze, 1999]. Intuitively, we measure the average distance from one piece of

text to all other pieces of text and then average this result.

For a document D with n segments we first characterize each individual segment,

i, by computing the p features over it and generating a vector of these features ~vi. In

our experimentation we used the paragraphs in documents as well as fixed segment

sizes. We define a n × p matrix V where each row in the matrix corresponds to a

segment’s feature vector.

V =


~v1

~v2
...
~vn

 , where ~vi is a vector of features representing segment i

(Figure 5.1 shows the construction of this matrix V).

We calculate the anomalousness of a piece of text, say x, with respect to all

segments in the document, V, by representing x as a vector of features, ~x, and

computing:

ClustDist(~x,V) =

n∑
i=1

d (~x,~vi)

n
(5.1)

Where d can be any measure of the distance between two vectors. We experimented

with different methods for measuring this distance d (e.g. Euclidean, city block,

cosine) and these are described in Section 5.4.

ClustDist calculates this average distance (anomalous score) for all segments in
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Figure 5.1: Representing Documents

a document. So, we are simply measuring how far away each segment is from every

each other segment one by one and averaging these results. We hope that segments

which are anomalous are on average farther away from every other segment. This

can be visualized by constructing a distance matrix (see Figure 5.2) by measuring

the distance between each vector and every other vector. The anomalousness score

of any vector is the average of its distance from all other segments (a row or column

in the distance matrix). This anomalousness score can then be used to produce a

ranking. This ranking corresponds to how different (on average) a segment is to all

other segments in a document.
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Figure 5.2: Creating a Distance Matrix
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5.2.2 SDEDist (Stahel-Donoho Estimator Distance)

This measure of the anomalous of a segment is based on the Stahel-Donoho Es-

timator, which has been used in statistics for the identification of outliers (described

in detail in Section 2.4.1). The Stahel-Donoho Estimator says that to measure an

observation’s outlyingness in some multivariate data, you should find a direction in

space that the data can be projected onto which will give the maximum possible

univariate outlyingness for that observation. Here univariate outlyingness is taken to

be the robust z-score (Equation 2.1). In practice, it is impossible to project the data

into all possible directions to determine which gives the largest distance, so instead

we choose a finite set of directions to project the data into and take the maximum

distance for observations among these projections. Let, V, be the feature matrix for a

document, D, that contains as its rows all segments in the document and as columns

the p features computed over those segments. Then, for a new segment of text, x,

that we have computed features over to give a column vector ~x = (f1, f2, ..., fp)
T , the

SDEDist measure of anomalousness with respect to a document D’s feature matrix

V is:

SDEDist(~x,V) = max
~a

~xT~a−median(V~a)

mad(V~a)
(5.2)

Where a is a direction (unit length column vector) in Rp from our finite set of direc-

tions to test (with length one). The difficulty of using this procedure is how to choose

the set of directions to test. There has been very little research in how to choose these

directions when the number of features is very large, as in this case, where we have

over 150 variables that we are using to characterize text. We can lessen this problem
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if we first represent the data “in terms of its own dimensionality” as recommended by

Hubert et al. [2005]. This is achieved by calculating the singular value decomposition

of the centered feature matrix (see section 2.4.2 page 48) and taking UΛ to be our

new feature matrix. This new feature matrix will be at most dimension n×n and re-

sults in no loss of information. Our SDEDist method for identifying anomalies always

performs this procedure as an initial step on the feature matrix to reduce the number

of dimensions and from this point on (when discussing SDEDist) we will assume that

the feature matrix has undergone this transformation.

The approach we take for choosing directions is one which was used by Struyf

and Rousseeuw [2000] for the task of finding the deepest location in multivariate data

(which is closely related to outlier detection), but has to our knowledge not been used

for outlier detection before. The procedure chooses four types of directions:

1. The p coordinate axes

2. Vectors containing an observation and the coordinate-wise median of the data.

For the feature matrix V let the coordinate-wise median be v̄. This is just

vi − v̄ for i = 1, ..., n. Each of these vectors is then normalized to have length

one by dividing by their Euclidean norm. (So, for a vector x, we divide by its

Euclidean norm x
||x|| = x√P

x2
)

3. Vectors containing two observations. We choose two segments at random from

the data matrix call them va and vb and then take as a direction the vector

va− vb (and as before normalize it to length one). Struyf and Rousseeuw [2000]

only choose 250 directions of this type, but as this process of randomly picking

segments and subtracting them is extremely fast, we choose a minimum of 750
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directions in this way. If the number of segments, n, is less than 50 then we forgo

random sampling and just calculate all combinations as this is just
(
49
2

)
=1176

directions.

4. Vectors perpendicular to a subset, h, of the observations. Here we take the

number of observations in h to be a third of the segments in our document, n
3
,

and construct the matrix by randomly selecting this many segments from V.

We then calculate the eigenvectors of its covariance matrix (see Section 2.4.2).

All of these eigenvectors are then added to our set of directions (eigenvectors are

already of length one, so there is no need to normalize them). As we explained

in Chapter 2, these eigenvectors will point in directions of the greatest variance

in the data, so the hope is that if we choose subsets and directions in this

manner that one subset will contain some good data as well as some outliers.

In this case the variance will likely be largest in the direction of the outlier

and we will get an eigenvector pointing in this direction. This is exactly the

kind of direction that will maximize the Stahel-Donoho distance. We repeat

this process 250 times adding all eigenvectors to our set of directions on every

iteration (each subset has n eigenvectors because the feature matrix has been

made to be n× n).

Struyf and Rousseeuw [2000] explain that the first three types of directions are

mainly chosen because they are fast to compute and that the fourth type is most

likely to give good directions that will be useful for determining how far away points

are from the center of the data. In addition the 4 types of direction listed above, we

add a fifth type of direction which is also fast to compute:
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5. Random directions based on normal data. We add 200 directions by randomly

generating 200 multivariate normal observations with mean 0 and with covari-

ance matrix that is the identity matrix, N (0, I)14. We treat these observations

as vectors and normalize them to have a length one. We can visualize this step

as randomly generating points in a spherical shape around the origin and then

picking the directions that go from the origin to these points.

The SDEDist is computed for every segment in a document over this entire set of

directions. We then rank segments by this degree of anomalousness.

The SDEDist was the most computationally intensive measure that we tested and

required more than 4 times as much time to run as the next slowest method. This

method of choosing directions for each document in our experiments generated 13,500

directions (as our test documents typically have n equal to 50) onto which the data

must be projected. We implemented this method in the R statistical language, which

makes use of the LAPACK [Anderson et al., 1990] linear algebra library, so matrix

operations are as fast as possible, but nonetheless, Step 4 for generating directions

still adds considerable computation time as we repeatedly perform SVD to get the

eigenvectors of subsets.

14Random multivariate normal observations were generated using the mvrnorm function in the
MASS package, which is part of the R statical language install.
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5.2.3 PCOut (Principal Component Weighting Distance)

The PCOut method of outlier detection, developed by Filzmoser et al. [2008],

is described in detail in Section 2.4.3, but to summarize, it measures the distance

from observations in principal component space using dimensionality reduction (to

decrease the number of components) and the kurtosis measure to weight the different

components. We make use of this procedure to identify anomalies in text, by con-

structing a feature matrix V for a document D and running the PCOut method on

V. The PCOut method gives a final weighting for every observation (we show how to

calculate this in Equation 2.11) and we use this weighting to rank our observations

(which are the segments in a document). The weighting given by PCOut assigns low

weights to possible outliers, so in contrast to the other methods we describe, segments

are ordered from least to greatest, to be in order of anomalousness.

We would like to point out that it is possible for the PCOut method to assign

the same weight to multiple segments of text, because of how it chooses its weights.

For instance clear outliers should all get a weight zero. In this case, when we are

ranking the segments in a document in order of anomalousness, we break ties (as in

sports) by letting all segments that have the same weight be assigned the minimum

rank. So, if multiple segments had rank zero they would all receive rank one (the

most anomalous segment). This gives PCOut the best possible chance of performing

well in our experiments (as you will see from the experimental setup in Section 6.2).

Unfortunately, even with this slight advantage, we show that the PCOut method of

outlier detection is never among the best performing techniques on any experiments

(but it is also not the not the worst and it is extremely fast).
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The PCOut method was the only method we experimented which was not imple-

mented by us, as the source code was made available by Filzmoser et al. [2008] who

introduced the PCOut measure for outlier detection in statistics. We used this code

as it is freely available for the R Statistical Language and can be run on data in very

high dimensions.

5.2.4 MeanComp (Distance from the vector complement)

The MeanComp method can be thought of as a “leave one out” approach, where

we measure a vector ~v’s distance to the mean of the other vectors leaving out ~v.

Firstly, just as in the other methods discussed so far, we compute all features for each

segment independently and create a vector of features for each one. Next, instead of

measuring a vector’s difference from every other vector, as in ClustDist, we create a

vector representation for that vector’s complement by averaging together all of the

other feature vectors (each feature in averaged independently for the p components

of the data). Lastly, we compute each vector’s difference from this complement vector

and rank each segment by this distance.

To compute the anomalousness, MeanComp(~x,V), of a segment of text x, we let

V′ be the matrix of feature vectors for all segments in a document except x and ~µ′

be the coordinate-wise mean of these vectors.

V′ =


~v1

~v2
...

~vn−1

 , where n is the number of segments and ~x /∈ V′
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~µ′ = µ1, µ2, . . . , µp

=

n∑
i=1

V′i1

n
,

n∑
i=1

V′i2

n
, . . . ,

n∑
i=1

V′ip

n

(5.3)

We compute the anomalousness of each segment in the document as the distance

from this mean (centroid) of the other segments and rank them by this score.

MeanComp(~x,V) = d(~x, ~µ′) (5.4)
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5.2.5 TxtCompDist (Distance from the textual complement)

This is a novel method for finding atypical textual data by calculating, for each

segment of a document, the distance to its complement in the text (the union of the

remaining segments) rather than in vector space. We construct a vector of features,

~x, for each segment x in a document (by computing all features over the text of x)

and another vector of features representing that segment’s complement in the text ~cx

(numerical features are computed over all text except that of x to produce a single

vector) and measure the distance between them.

TxtCompDist(~x,V) = d(~x, ~cx), where ~cx is the complement of x (5.5)

An advantage of using the complement of a segment’s text in a document is that

features can be computed over a much larger amount of text than is possible when

treating each segment independently (especially when the number of segments, N ,

is large). This gives a more accurate characterization of the rest of the document

than averaging the individual segments as in the vector complement approach above.

This procedure makes the exact choice of segment boundaries much less important.

In addition it is possible to add features that cannot be accurately computed on

small pieces of text. For example, trigrams of parts of speech, adverb preference, and

other ranked list features described in (Section 4.6) are sparse enough that on small

pieces of text there are very few elements of these lists in common. When using the

textual complement, we are more likely to have overlap in the lists so as to produce a

score based on the differences in rank. The main disadvantage of this method that it

requires more computation than many of the simpler methods. Unlike other methods,

where features are computed over a segment exactly one time, using this method it
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is necessary to recompute features for each complement in the text.

We experimented with supplementing the measure of anomaly above using our

vectors of ranked lists (Section 4.6) for each segment and its complement. So, for

every segment in a document we have a total of 4 vectors:

~x - feature vector characterizing the segment

~cx - feature vector characterizing the complement of the segment

Lx - vector of lists for all rank features for the segment

Lcx - vector of lists for all rank features for the complement of the segment

We next create a vector of Spearman scores, ~ρx, by computing the Spearman rank

correlation coefficient for each pair of lists in vectors Lx and Lcx . (All numbers in ~ρx

are actually 1 minus the Spearman rank coefficient so that higher numbers mean less

correlation).

~ρx = ρ11, ρ22, . . . , ρnn (5.6)

Where n is the number of lists and ρ11 is the Spearman rank between the first list in

Lx and the first list in Lcx . We rank segments by a new measure of anomalousness

we call TxtCompDist2(~x), which we achieve by summing the values in ~ρx and the

distance between the feature vector and the complement of the text vector. We

compute this for all segments in a document and use it to determine which segments

are most different from the rest of the document.

TxtCompDist2(~x,V) = d(~x, ~cx) +
∑

~ρx (5.7)

TxtCompDist and TxtCompDist2 proved more successful than any other meth-

ods in experiments and in fact clearly do better on almost every subtask than the
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other methods (see Chapter 6). This is mainly due to the use of the textual comple-

ment allowing for more reliable estimates of features. Experiments show that when

identifying unusual pieces of text in a document this is clearly the method that should

be employed. It is relatively fast to compute and gives better results than more time

consuming methods like the Stahel-Donoho Estimator.

The Rank Features (Section 4.6) employed by TxtCompDist2, unfortunately had

very little impact on the accuracy of this estimate in experiments. This indicates

they may not be very useful for these types of experiments, however, their inclusion

also did not (on average) lower the results. The rank features could be weighted

more heavily by adapting Equation 5.7 to weight the sum of the list features, but

we did not experiment with any other weightings and from our results it seems that

doing so would have no positive impact. We henceforth refer to this method simply

as TxtCompDist. For the results presented in the following Chapter, the actual

estimator used was the variant of this method with the ranked lists included, i.e.

TxtCompDist2, but because these features had negligible impact we will use the

original name. (Extended results tables in Section 6.7 show the exact difference in

the performance of these approaches.)

5.3 Standardizing Variables

While the majority of the features in our feature vectors measure distributions

of phenomena, and thus are percentages (% of adjectives, % of negative words, % of

words that occur frequently in the Gigaword, etc.) some features are on a different

scale, such as the readability formulae. Vector similarities (and differences) using
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these unbalanced features will cause some features have a greater impact than others

and thus could skew results toward those features. To overcome this problem and

to test the impact of different scales on the performance of the methods we also

experimented by performing all tests with and without standardizing the variables.

5.3.1 Zero-One Standardization of variables

We do this by scaling all variables to be between zero and one. Each value in the

n × p data matrix can be standardized to produce a new matrix S, with each value

in this matrix given by:

sij =
xij −min(xj)

max(xj)−min(xj)
(5.8)

where xij is the value of the ith row and jth column in the document feature matrix

and minj and maxj are the maximum and minimum values for the variable j across all

observations (segments). This standardization is therefore applied for every variable

in the document matrix, V. This has the advantage of making all variables equally

weighted in the decision making process, but also has the side effect of suppressing the

variance of some truly vast differences or overemphasizing some very slight differences.

5.3.2 Normalizing Variables

We also experimented with normalizing all features by expressing them as their

deviations from the means in units of standard deviations or z-scores. We discuss

z-scores in the context of outlier detection in Section 2.2 on page 18; here they are

used to standardize the scale of the variables. Let, Z, be the data with z-scored
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variables, with each value computed as:

zij =
xij − x̄j
σj

, for each i = 1, ..., n and j = 1, ..., p (5.9)

where xij is the value of the jth feature variable for the ith observation (ith row and

jth column of the n×p document feature matrix, V), x̄j is the mean of the jth feature

for the sample and σi is the standard deviation in the jth feature in the sample.

All experiments have been performed using scaling, z-scores and raw feature scores

so a comparison could be made between them. Overall, using z-scores or standardiza-

tion on the data before outlier detection did not have a positive effect on the results

(see Results, Section 6.7), but did improve experiments in the detection of authorship.

Some of our methods (SDEDist and PCOut) perform robust standardization as part

of their approach to the detection of anomalies anyway and so standardization of the

variables beforehand is not necessary.

5.4 Distance Measures

We also experimented with several different measures for computing a vector’s

distance from another vector. We tested four different distance measures (listed

below) and these were used with all methods and on all experiments. The results

of these experiments (shown in Chapter 6). The city block distance stood out as

the most successful distance measure in experiments using the textual complement

(TxtCompDist), which was the best performing method of anomaly detection. The

formulas we tested, for the distance between two vectors ~x and ~y of length p, are as

follows.
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Cosine Dissimilarity Measure

d(~x, ~y) = 1− ~x · ~y
||~x|| ||~y||

= 1−

p∑
i=1

xiyi√√√√ p∑
i=1

x2
i

√√√√ p∑
i=1

y2
i

(5.10)

Euclidean Distance (referred to as L2 distance)

d(~x, ~y) =

p∑
i=1

(xi − yi)2 (5.11)

City Block Distance (also called Manhattan distance or L1 distance)

d(~x, ~y) =

p∑
i=1

|xi − yi| (5.12)

Pearson Dissimilarity Coefficient

d(~x, ~y) = 1− 1

p

p∑
i=1

(
xi − x̄
σx

)(
yi − ȳ
σy

)
(5.13)

Here we use x̄ to indicate the mean of a vector ~x and σx to indicate the
standard deviation of ~x.

x̄ =
1

p

p∑
i=1

xi σ =

√√√√ 1

p− 1

p∑
i=1

(xi − x̄)2

5.5 Unsupervised Anomaly Detection System

We have built a system for finding anomalies in text called the UNsupervised

Anomaly Detector (or UNSAD). This allowed us to test different combinations of

methods, features, and segment sizes easily, and also means that all of our results are
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repeatable. Another advantage is that it is now possible to test our methods on new

tasks and domains very quickly.

The UNSAD system (Figure 5.3) takes documents as input and outputs a ranked

list of the segments according to how anomalous they are. The system handles all

tasks involved in finding textual anomalies including: segmentation (either by para-

graph or as a fixed number of words), document preprocessing (cleaning,sentence

splitting), running RASP (see section 4.5), computation of features, standardization

of features, and running the different anomaly detection techniques with various dis-

tance measures.

Ranked list of 
Anomalous 
Segments

Segmenter  

POS 
Tagger

Compute Features on

          Each Segment  
Document

Detect

Anomaly  

Interface

Figure 5.3: UNSAD system model

All of the major text processing work done by the system is implemented in

Perl [Wall et al., 2000] and the user interface for the system was implemented using

Java [Arnold and Gosling, 1998]. The Stahel-Donoho Distance method using our

choice of direction was implemented by us, using the R statistical language [R De-

velopment Core Team, 2008], while the PCOut method was tested in the R language

using the code provided by its authors as an R package mvoutlier 15.

15The package mvoutlier can be found at http://cran.r-project.org/web/packages/
mvoutlier/index.html

http://cran.r-project.org/web/packages/mvoutlier/index.html
http://cran.r-project.org/web/packages/mvoutlier/index.html
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The user interface (shown in Figure 5.4) for the UNSAD System allows a user

to run the different unsupervised anomaly detection methods, turn on feature stan-

dardization, or change the segment size, and experiment with thresholds and then

displays the results visually by highlighting segments of the document.

Figure 5.4: UNSAD Segment Detection Interface: the main window allows users to
view a document and then press the “Detect Anomaly” button to run an anomaly
detection method (specified in the preferences) on the text. Segments that the system
identifies as anomalous are highlighted in red according to the threshold set.
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5.6 Summary

We describe five methods for the identification of anomalies in text:

• ClustDist is based on average linkage clustering and measures the distance

from one observation to all other observations and averages the result.

• SDEDist makes use of the Stahel-Donoho Estimator to find projections of the

data which maximize an observations distance from the center of the observa-

tions. We give a description of this procedure and also of the method we use

for choosing the projection directions.

• PCOut method of outlier detection measures an observations distance from

the center of the observations in principal component space using kurtosis to

weight these components.

• MeanCompDist method measures an observations distance to the mean of all

other observations excluding itself.

• TxtCompDist method measures distance form the textual complement. It is

a novel method we created specifically for anomaly detection where we measure

an observations distance to a new observation obtained by recalculating all

features over the entire text the observation was drawn form, excluding that

observation.

We also describe two different methods for normalizing the variables as well as

four different distance measures that we test along with the five methods in the next

chapter.



Chapter 6

Experiments on Detection of

Anomalies

6.1 Overview

In this chapter we apply the methods introduced in the previous chapter to thou-

sands of different documents automatically constructed to contain an anomaly. We

examine each methods ability to detect these anomalies and compare the results. The

first section of the chapter describes the experimental setup and the assumptions we

made and the following sections present results for four different anomaly detection

scenarios, namely:

• Authorship anomalies

• Factual writing vs opinion writing anomalies

• Subversive article anomalies

• Machine translation anomalies

104
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6.2 Experimental Setup

All of the unsupervised anomaly detection techniques we have developed are ap-

plicable to both small pieces of text (like a short paragraph) and to large pieces of text

like documents or books. We chose to experiment on the task of finding sections in a

document that are anomalous, but there is nothing inherent in the methods to suggest

that they must be used detect anomalies within a document; they could equally well

be used to detect whole documents that are anomalous with respect to a collection.

The task is always about finding text that does not belong or is unusual with respect

to its surroundings and it is just a matter of scope as to what those surroundings are.

Many thousands of different experiments were run to detect anomalous segments in

documents. We describe these with a view to investigating what types of anomaly

are easiest to detect, the effect text size has on anomaly detection, the impact of

standardization, and the anomaly detection technique that performs best.

Our experiments in the detection of anomalies focus primarily on detecting when

the author, genre, writing style, or topic is anomalous. In these experiments we take

a document that contains an anomaly and feed it to our anomaly detection program.

This program returns a list of all segments ranked by how anomalous they are with

respect to the whole document. If the program has performed well, then the truly

anomalous segment should be at the top of the list (or very close to the top). Our

assumption has been that a human wishing to detect anomaly would be pleased if they

could find the truly anomalous segment in the top 3 or 5 segments marked most likely

to be anomalous, rather than having to scan the whole document or collection. This

may not be the case in situations where there is no reason to believe that anomalies
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exist. In this case it would be necessary to label segments definitively as either outliers

or non outliers and we investigate doing exactly this in Chapter 7. In this chapter we

explain the experimental setup and present the results for the percentage of the time

an anomalous segment can be identified in the top 1, 3, 5, 10 and 20 segments using

our different methods for anomaly detection.

Test documents are artificially created by taking a “document” made up of ran-

dom segments from a single source and inserting a randomly chosen segment from a

different source. In this scenario, the source which makes up the majority of a doc-

ument is the normal population while the single inserted segment is anomalous with

respect to that population. Our anomaly detection procedures are then run over this

artificially created test document with the goal of identifying the inserted segment

from the different source as an anomaly. We created thousands of documents in this

manner from different sources and using different sized segments, but always inserted

a segment from one source into a collection of segments from a different source as

illustrated in Figure 6.1.

In each of the experiments below, all test documents contain exactly one anoma-

lous segment and exactly 50 “normal” segments. Whilst in reality it may be true

that multiple segments are anomalous within a document; for the sake of simplic-

ity of evaluation, we insert only one anomalous segment per document at a time.

All methods, however, have been developed with the intention of detecting multiple

anomalies in documents (if they exist) and there is nothing inherent in our procedures

that precludes or hinders detecting anomalies if more than one is present in a docu-

ment. In fact, in most genres of writing, the style of the writing can change greatly
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Figure 6.1: Random test documents are generated by selecting random segments from
a normal document and inserting segments of anomalous text

from one paragraph (segment) to the next, so all methods for detecting anomalies

in text must naturally cope with documents and collections that have fluctuation in

the writing style. Documents, by virtue of the fact that not every paragraph is the

same, are never perfectly homogenous and so there is a degree to which every piece

of a document can be scored as anomalous with respect to the entire document.

There is an unproven assumption that what is artificially inserted into a document

or collection will be the most anomalous thing within that document or collection.

While this might not be true in the general case, every attempt was made to ensure

the cohesiveness of the collections used in this research to minimize the chance of

finding genuine, unplanned anomalies.
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The work presented here looks only at fixed-length segments with pre-determined

boundaries, while a real application of such a technique might be required to function

with vast differences between the sizes of segments. Once again, there is nothing

implicit in the method assuming fixed-length sizes, and the choice to fix certain pa-

rameters of the experiments is to better illustrate the effect of segment length on

the performance of the different methods. One could simply use paragraph breaks as

natural segment boundaries, or employ more sophisticated segmentation techniques

if desired. For example, if these techniques were being used to detect anomalous

documents in a collection of documents then no segmentation or choosing of segment

sizes would be necessary as each document could naturally be thought of as simply a

“large segment” and anomaly detection methods could be applied to them. If one was

interested in identifying anomalies within a document, but the size of these anoma-

lies was unknown then it might be necessary to extend the techniques presented here

by iteratively looking at different segment sizes while preforming anomaly detection

methods in order to identify segments and their sizes that are most anomalous for

that document. Alternatively, one could apply a more computationally intensive pro-

cedure like calculating the degree of anomalousness for a sliding window of a fixed

segment size that moved through the entire document. While these extensions are

certainly possible, they are not the focus of this work and we assume fixed segments

throughout. We choose to focus on the more general problems of what types of

anomalies can be detected in text, by what methods, and the influence the size of

these anomalies has on our ability to detect them.

We introduce a baseline for the following experiments that is the probability of
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selecting the truly anomalous segment by chance. For instance, the probability of

choosing the single anomalous segment in a document that is 51 segments long, com-

pletely by chance, when picking 3 segments is 1/51 + 1/50 + 1/49 or 6%.

We conducted thousands of experiments comparing each method using the differ-

ent ways of standardization of variables across different segment sizes, genres, authors

and various other testbeds. This produced an extremely large number of results (and

figures comparing these results), many of which are shown in Section 6.7. For the

sake of simplicity we have limited most of the tables and figures in this chapter to the

best performing method. The following sections show the results using the most suc-

cessful method (on average) TxtCompDist (using the textual complement) to detect

anomaly in many different scenarios.

6.3 Authorship Tests

For these sets of experiments we examine whether it is possible to distinguish

anomaly of authorship at the segment level. We test this by taking a document

written by one author and inserting in it a segment written by a different author. We

then see if this segment can be detected using our unsupervised anomaly techniques.

We create our new experimental data from a collection consisting of 50 thousand

words of text written by each of 8 Victorian authors:

• Bronte

• Carroll

• Doyle

• Eliot
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• James

• Kipling

• Tennyson

• Wells

Test sets are created for each pair of authors by inserting a segment from one

author into a document written by the other author. This creates 56 sets of experi-

ments (one for each author inserted into every other author) and for each experiment

we perform insertions one at a time into the other document (see Figure 6.1). For

example we insert segments, one at a time from Bronte into Carroll and anomaly

detection is performed. Likewise we insert segments one at a time from Carroll into

Bronte and perform anomaly detection. Our experiment is always to test if we can

detect this inserted segment.

For each of the 56 combinations of authors we insert 30 randomly chosen segments

from one into the other, one at a time. We performed 56 pairs * 30 insertions each =

1,680 sets of insertion experiments. For each of these 1,680 insertion experiments we

also varied the segment size to test its effect on anomaly detection. We used segment

sizes of:

• 100 words

• 500 words

• 1000 words

We then count what percentage of the time truly anomalous paragraphs fall within

the top 1, top 3, top 5, top 10, and top 20 segments labelled by the program as

anomalous. The results shown here report the average accuracy for each segment size
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(over all authors and insertions). Tables and figures show the average percentage of

trials in which the anomalous segment is detected in the top n documents for the

TxtCompDist method (the accuracy of other methods is shown in Section 6.7).

Top n
Segments

Percentage of the
time found

Percentage of the
time found (stan-
dardized features)

Chance

Segment size: 100 words
1 13.54% 16.25% 1.96%
3 25.54% 31.25% 6.00%
5 32.61% 40.46% 10.21%
10 48.57% 52.04% 21.59%
20 63.79% 67.82% 49.16%

Segment size: 500 words
1 29.01% 37.79% 1.96%
3 46.04% 50.72% 6.00%
5 49.53% 60.59% 10.21%
10 61.67% 72.40% 21.59%
20 74.30% 83.88% 49.16%

Segment size: 1000 words
1 44.80% 48.02% 1.96%
3 54.98% 66.60% 6.00%
5 60.08% 74.07% 10.21%
10 76.26% 85.79% 21.59%
20 96.19% 97.88% 49.16%

Table 6.1: Summary of Author Results: Results presented in this table are the per-
centage of the time a truly anomalous segment is found in the top n segments returned,
for segment sizes of 100, 500, and 1,000 words.

The average percent of time we can detect anomalous segments in the top n

segments varies according to the segment size, and as expected, the average accuracy

increases as the segment size increases. For 1000 word segments, the anomalous

segment was found in the top 20 ranked segments about 97% of the time (85% in the

top ten, 74% of the time in the top 5, 66% of the time in the top three segments, and
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Figure 6.2: Average results for a top 5 ranking for the anomalous section (authorship).

48% returned first). For 500 word segments, average accuracy ranged from 83% down

to 38% and for 100 word segments it ranged from 68% down to 16%. Even though

the percentage of the time the anomalous segment is returned first is fairly low (38%

for 500 word segments), this is still far better that choosing the anomalous segment

by chance (1.96%). We believe that this task is particularly hard for our anomaly

detection methods, as we make use of no topical information (content words) which

could have greatly aided in the spotting the inserted segment. Our characterization

of texts (see Chapter 4) is comprised almost entirely of stylistic features which should

not differ greatly based on the topic.
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6.4 Fact versus Opinion

For these sets of experiments we are testing whether opinion can be detected in a

factual story. The test documents used come from similar sources (newspapers and

newswire), but the style of the writing should be different as some are factual news

stories and some are editorials. The opinion text is made up of editorials from 4

newspapers making up a total of 28,200 words:

• Guardian

• New Statesman

• New York Times

• Telegraph

Our factual text is a randomly chosen from the Gigaword and consists of four

different 78,000 word segments one each from one of the four news wire services (see

see Appendix B or a full description and examples of the corpora used):

• Agence France Press English Service

• Associated Press Worldstream English Service

• The New York Times Newswire Service

• The Xinhua News Agency English Service

Each opinion text segment is inserted into each news wire service one at a time for

at least 25 insertions on each newswire. Tests are performed like the authorship tests

using three different segment sizes. Results in this set of experiments were generally

better than the results in the Authorship experiments. The average accuracy for 1,000

word segments in the top 10 ranking was 99% (85% in the top 3 segments.) Small

segment sizes of 100 words also yielded good results and the anomaly was identified

in the top 20, 78% of the time (although only 46% of the time in the top 3.)
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Top n
Segments

Percentage of the
time found

Percentage of the
time found (stan-
dardized features)

Chance

Segment size: 100 words
1 26.50% 17.50% 1.96%
3 46.00% 36.00% 6.00%
5 49.50% 46.00% 10.21%
10 62.00% 64.00% 21.59%
20 78.50% 76.00% 49.16%

Segment size: 500 words
1 13.50% 22.00% 1.96%
3 50.50% 59.00% 6.00%
5 80.50% 73.00% 10.21%
10 90.50% 82.50% 21.59%
20 99.00% 96.00% 49.16%

Segment size: 1000 words
1 34.78% 53.26% 1.96%
3 85.87% 73.91% 6.00%
5 95.65% 80.43% 10.21%
10 98.91% 94.57% 21.59%
20 98.91% 98.91% 49.16%

Table 6.2: Summary of Factual Anomaly Detection: Results presented in this table
are the percentage of the time a segment taken from opinion texts is found in the top
n segments returned in a collection of factual articles, for segment sizes of 100, 500,
and 1,000 words.
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Figure 6.3: Average results for a top 5 ranking for the anomalous section (fact versus
opinion).
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6.5 Newswire versus the Anarchist Cookbook

In this set of experiments we test whether segments from the Anarchist Cookbook

(see Appendix B) can be detected in a collection of news wire. This experiment was

designed to test if we could identify very different genres using our anomaly detec-

tion techniques. The Anarchist Cookbook contains recipes for the manufacture of

explosives, instructions for building telecommunications phreaking devices and other

illegal activities. This writing is very procedural, as it is in the form of instructions

and recipes, and also informal (e.g. “When the fuse contacts the balloon, watch

out!!!”). This is very different from newswire text which is more formal, but the writ-

ing is less structured. We make use of 30,000 words from the Anarchist Cookbook

as the anomalous text. Our newswire text is randomly chosen from segments of the

Gigaword corpus made up of text from the four news wire services. Each Anarchist

Cookbook text segment is inserted into each news wire service for at least 30 inser-

tions on each random newswire document (of which we created 4 for each segment

size). All tests are run using the three different segment sizes.

As can be see in Table 6.3, our anomaly detection technique performs much better

(without standardizing the features beforehand) than on the previous experiments.

Anomalies can be detected as the most anomalous segment 70% of the time in 500

word segments. These results indicate that anomalies in text (at least on this type

of task) are well distinguished from the rest of the text using our methods. These

methods are clearly identifying the anomalous segment as unusual when compared to

other segments in the document as the segment is found in the top 10 segments 100%

of the time, for 500 word segments (this results an average of 4× 30 = 120 different



Chapter 6: Experiments on Detection of Anomalies 117

experiments using this segment size).

Top n
Segments

Percentage of the
time found

Percentage of the
time found (stan-
dardized features)

Chance

Segment size: 100 words
1 38.00% 34.00% 1.96%
3 68.00% 38.00% 6.00%
5 74.00% 46.00% 10.21%
10 88.00% 58.00% 21.59%
20 98.00% 82.00% 49.16%

Segment size: 500 words
1 70.00% 24.00% 1.96%
3 90.00% 58.00% 6.00%
5 92.00% 76.00% 10.21%
10 100.00% 78.00% 21.59%
20 100.00% 100.00% 49.16%

Segment size: 1000 words
1 88.78% 36.26% 1.96%
3 100.00% 58.00% 6.00%
5 100.00% 78.00% 10.21%
10 100.00% 94.00% 21.59%
20 100.00% 98.00% 49.16%

Table 6.3: Summary of Anarchist Cookbook Anomaly Detection: Results presented
in this table are the percentage of the time a segment taken from the Anarchist
Cookbook is found in the top n segments returned in a collection of newswire articles,
for segment sizes of 100, 500, and 1,000 words.
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Figure 6.4: Average results for a top 5 ranking for the anomalous section (newswire
versus Anarchist Cookbook).
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6.6 Newswire versus Machine Translations

In this set of experiments we test whether Chinese newspaper segments that have

been translated into English can be detected in a collection of English newswire.

The translations of Chinese news articles are a very similar genre to the English

newswire, but the translations are not perfect and so the language use is odd (see

AppendixB for an example). Our methods attempt not to utilize any features about

the topic of segments that would aid in anomaly detection as our features are mostly

style-based. These experiments go even further to guarantee that we are clearly not

detecting topical differences as our random samples of English newswire come from

a huge corpus spanning many years and from different news sources, including the

English news wire from the Xinhua News Agency (a Chinese news service) and so

contain extremely diverse topics. Likewise, the translated Chinese news stories were

chosen, by a native Chinese speaker, to be on a range of different topics. These results

should therefore indicate that our anomaly detection techniques are detecting stylistic

differences rather than more topical, author-based, or genre-based differences.

We use a corpus of 35,000 words of Chinese newspaper text that was translated

into English using Google’s Chinese to English translation engine. “Normal” text is

randomly chosen (four times for each segment size) from the Gigaword corpus and

consists of a 78,000 word segment made up of text from the four news wire services.

As in the other experiments, the Chinese translations are inserted one at a time into

the newswire data and anomaly detection methods were run (with three different

segment sizes).

The results for this task are very good. These are the best results for anomaly
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detection out of the different scenarios investigated. The results in Table 6.4 show

that for 500 word segments of text we detect the anomalous segment first 83.7% of

the time and that for 1000 word segments we will detect the anomaly first 96% of the

time. This indicates that this task is extremely well suited to our anomaly detection

technique and thus our characterization of text (features) effectively captures the

differences between these types of text. While the results here are for a single anomaly

detection method (TxtCompDist), in fact the accuracy of all of the best performing

methods is higher on this task as well. These results are shown in Section 6.7

Top n Seg-
ments

Percentage of the
time found

Percentage of the
time found (stan-
dardized features)

Chance

Segment size: 100 words
1 54.00% 36.00% 1.96%
3 60.00% 54.00% 6.00%
5 68.00% 58.00% 10.21%
10 74.00% 60.00% 21.59%
20 80.00% 76.00% 49.16%

Segment size: 500 words
1 83.67% 59.18% 1.96%
3 87.76% 69.39% 6.00%
5 89.80% 87.76% 10.21%
10 93.88% 93.88% 21.59%
20 100.00% 100.00% 49.16%

Segment size: 1000 words
1 96.00% 92.00% 1.96%
3 100.00% 96.00% 6.00%
5 100.00% 96.00% 10.21%
10 100.00% 100.00% 21.59%
20 100.00% 100.00% 49.16%

Table 6.4: Summary of Machine Translation Anomaly Detection: Results presented
in this table are the percentage of the time a segment taken from a machine translated
document is found in the top n segments returned in a collection of newswire articles,
for segment sizes of 100, 500, and 1,000 words.



Chapter 6: Experiments on Detection of Anomalies 121

Figure 6.5: Average results for a top 5 ranking for the anomalous section (newswire
versus Chinese translations).
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6.7 Extended Results

In this section we show a greater selection of the results for all methods over these

experiments.
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6.8 Conclusions from Anomaly Detection Experi-

ments

Results for detecting anomalous segments in documents are promising. We achieve

good results on all tasks and for large segments we can reliably detect anomalies as

the most anomalous segment with accuracy in the high 90’s for some tasks.
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Figure 6.6: This figure shows the average time segments are found in the top 1 or 3
segments across all test sets for a segments size of 1000 words. The TxtCompDist
method (Distance form the textual complement) performs best, but is closely followed
by the Stahel-Donoho based method.

The results show that identifying an inserted anomaly as the most anomalous

segment (Top 1) can be a difficult task. This is not surprising, given that in these

experiments there is only a 2% probability of choosing this segment by chance, but

we do far better than this, averaging 32% of the time for 100 word segments and

68% for one 1,000 word segments across all experiments. We do extremely well in

the case of inserting Chinese newswire translated with Google into English Newswire

where we can identify anomalies as the top segment returned 96% of the time for
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large segments. In practical terms this means that if you can only look at the top

segment returned by the system, you can be 96% certain you will have found the

anomaly in a document (if it has one).

Our techniques perform best when there is a large difference in the text type

(genre) or style as in the Anarchist Cookbook and Chinese Translation Experiments.

The task with the best overall results for all methods was detecting when a machine

translated news story was inserted into a collection of newswire, the worst was the

task of detecting different Victorian authors. Also, it should be mentioned that in all

experiments and with all detection methods results always improve as we increased

the length of our segments.

On the whole our experiments show that the standardizing the scores on a scale

from 0 to 1 does indeed produce better results for some types of anomaly detection,

but not for all tasks we performed. The cases where it performed better than the

standard raw scores were cases where the genre distinction was small (as in the

authorship tests). Many of the readability formulas, for instance, distinguish these

genre differences quite well but their effects on anomaly detection are greatly reduced

when we standardize these scores.

The results from the testing of different procedures for detecting anomalies indi-

cate that the TxtCompDist (Distance from the textual complement) method performs

best, but the the SDEDist method also works very well. The other three methods do

considerably worse. Figure 6.6 and Table 6.8 show the average over all experiments

for these different methods using a segment size of 1000 words. While the SDEDist

estimator is close to the accuracy of the TxtCompDist approach, it also is much slower
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and required more than four times as long as other methods to compute.

Top 1 Top 3
ClustDist 14.95 30.40
MeanComp 40.57 54.88
SDEDist 60.87 82.02
PCOut 43.76 47.13
TxtCompDist 65.89 85.21

Table 6.8: Results for the best performing method on 1000 words of text. This is the
average over all experiments and test sets.

These results are promising, but this experimental setup makes the assumption

that there is an anomaly to be identified in the document because we always return

at least one segment. One could use this method to isolate segments or documents

that might possibly be anomalous and our experiments show that if there were any

truly anomalous segments then this strategy would be of great help. However, even

picking only the single segment we judge to be most anomalous could create a lot

candidate segments to be reviewed if this technique is to be applied to many different

collections of data. In the next Chapter we look at solving this problem by examining

the recall and precision figures for this type of anomaly detection and experimenting

with whether it is possible to say with certainty that a segment is anomalous.



Chapter 7

Refinements: Thresholds and

Feature Selection

7.1 Overview

Results presented in the previous chapter are promising and show that we can con-

sistently mark anomalous segments in documents at a level much higher than chance.

Specifically we showed that we could reliably identify many types of anomalies in

documents if we could return five to ten segments from a document. The assumption

is that other means could be used to review those five or ten segments, but you could

be relatively sure all possible anomalies had been identified. This would be very use-

ful to a human who knows that there is likely an anomaly in a document or collection

because it significantly reduces their search space. It also has the advantage of high

recall, that is, it insures that true anomalies will not be missed.

This methodology of returning many candidate anomalous segments has the ad-

129
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vantage of good recall, but if you have no prior knowledge about whether a corpus

or document contains an anomaly then this process may lead to far too much data

being marked as “anomalous”, with no indication of the degree to which we believe

the data to be anomalous. It might be more useful in many situations to have an

idea of the likelihood that a segment is anomalous so that only segments with a high

probability of being anomalous will be marked. In this chapter we look at tailoring

our unsupervised anomaly detection procedure to identify anomalies precisely. We

examine choosing a threshold for anomaly scores above which the probability of true

anomalies is very high by examining recall and precision, as we have defined them for

anomaly detection. In the final section in this chapter we examine the usefulness of

features across different dimensions of anomaly and on different sizes of text.

7.2 Defining Recall and Precision

In the previous experiments we computed a score for a segment’s distance from its

complement in a document. This score was then used to rank the segments by their

degree of anomaly (with respect to that document). In this section we examine this

score and whether it is possible to use it to pick a global threshold above which one

can reliably assume a segment to be anomalous. A segment’s difference from the rest

of the document is computed as the city block distance of the vector representing that

segment with the vector representing the rest of the document. In these experiments

we set a threshold on this number and only mark segments as anomalous if they are

above that threshold. Our hope was that a threshold could be set above which only

actual anomalies would be identified.
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Another way to think about making this unsupervised anomaly detection more

precise is that we would like to pick a threshold that will have 100% precision while

maximizing recall. We define recall at a given threshold as the total number of

anomalous segments correctly identified across all experiments divided by the total

number of anomalies.

We define precision at a threshold as the total number of segments correctly

identified as anomalous in experiments using that threshold divided by all segments

in all documents that have a score above that threshold.

Recall =
Anomalous segments correctly identified

Total # of Anomalous segments
(7.1)

Precision =
Anomalous segments correctly identified

Segments marked as anomalous
(7.2)

We also make use of F-measure and use it as is most common in Information Retrieval

with Recall and Precision weighted equally.

F =
2× Precision× Recall

Recall + Precision
(7.3)

7.3 Varying the Threshold

Figures 7.1 and 7.2 illustrate what happens to recall and precision as we decrease

our threshold on the distance score computed for each 1,000 word segment. For

example, in the case of the Fact vs Opinion detection experiments (Figure 7.1) we

can see that if we set the threshold to give 100% recall we achieve only 52% precision,

meaning we identify all anomalous segments but half of the segments we return are not

anomalous. We however are interested at the point where precision is at its maximum
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Figure 7.1: Precision versus Recall for Fact versus Opinion Experiments
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Figure 7.2: Precision versus Recall for Chinese Translation Experiments

and recall is as high as possible. These figures show how tailoring the threshold to a

given experiment could increase precision and still maintain high recall. In the case

of newswire with Chinese translations inserted, the chart shows that the optimum

threshold where we achieve 100% precision will detect 93% of anomalies of this type.

Obviously in a completely unsupervised scenario it wouldn’t be possible to pick a
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threshold that truly maximizes precision for new data and these Figures simply show

the optimum possible for this data and this anomaly detection procedure.

7.4 Choosing Thresholds

A portion of the data used in the anomaly detection experiments was “held out”

and used to choose thresholds automatically for the identification of anomaly. We

automatically picked thresholds for each flavor of anomaly detection and the three

different segment sizes and also experimented with picking a global threshold to use

as an experiment for all segment sizes and types of anomaly detection.

Ten percent of the data was set aside to use as testing and the remaining 90% of

data was used as training data to pick our thresholds. The full training data (including

different genre experiments and segment sizes) consists of results for 11,880 segments,

half of which are anomalous. The testing data consists of 1,320 segments, half of which

are also anomalous.

We use the training data to select a threshold that gives the highest precision

(usually 100%) while keeping recall as high as possible. We then fix this threshold

and apply it to the segments in the testing data to see how precise and accurately

we can identify anomaly. Figure 7.3 shows the results of these experiments. The

figures in the “all” column show the highest threshold (most precision) for a group of

experiments was picked form the training data and used across the set of test data.

This gives an idea of how many anomalies we can expect to detect when we focus

on making precise judgements (high precision) at the expense of recall. This might

be desirable in a fully automatic system where a program is making decisions based
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on whether something is labeled anomalous and we might want to err on the side of

caution. For example, if an automatic system was determining whether the addition

of text to an article on a website like wikipedia was anomalous or not, we would

probably rather not block this addition unless we were sure it was not in keeping

with the rest of the data.
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Figure 7.3: Results on test data from learning the optimum threshold to maximize
precision. The values in each cell show Recall/Precision and then the actual numerical
value of the threshold used in parentheses. Note that 100% precision was achieved in
all cases.

As we can see from Figure 7.3, the thresholds chosen to maximize precision on the

training set give very good results for precision on the test set. In fact the automatic

thresholds were high enough that the system only ever picked out truly anomalous

segments. This means that on all of the unseen test documents the method scored

100% precision, but that not all anomalies were identified so their recall scores are

lower. The table also shows results for using the highest threshold in each column

and row for all experiments at the end of that column or row. The results are good

for large segments as we can achieve 76% recall with 100% precision for 1,000 word
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segments, but the recall drops to 44% for 100 word segments.

The threshold numbers (shown on the chart in parentheses) or the exact threshold

value we learned from the training data. They indicate that there is very little

difference in the optimal thresholds across different test collections, but the threshold

values do change considerably between segment sizes. This indicates that to achieve

high precision for short segments the threshold must be raised, as the measure is less

accurate. Likewise, when the segment size is large, the threshold can be lowered while

still achieving 100% precision.

These results are promising and show that for a given segment size similar thresh-

olds apply and that it is possible to achieve high precision and with a good recall

even for moderately sized segments.

7.5 Feature Selection for Unsupervised Anomaly

Detection

Our approach for identifying anomaly at the segment level with no training data

has proven fairly successful, but we may be interested in what features are best at

distinguishing these segments across different experiments. In this section we examine

the features that contribute most to this type of unsupervised anomaly detection

as well as the features that contribute least. We are identifying the features that

discriminated well in the experiments (actually the average over many experiments).

The set of features that make something more or less anomalous are closely tied to

the anomaly detection technique used and we calculated the impact that each feature
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had in the context of the anomaly detection experiments in Chapter 6 using our best

performing method. This tells us the value of these features on actual tasks which

gives us an indication of the features that best separate different types of documents

as well as insight into how the feature set could be improved for certain tasks (or all

tasks).

In our experiments we used 166 features to characterize a segment of text. Here

we measured the difference in the range of values each feature took across all segments

in the entire document. Features that do not change very much (i.e. are consistent)

across normal and anomalous segments will not aid in the detection, of anomaly, but

also will not hinder it. Features that do change wildly can either greatly improve

unsupervised anomaly detection if they do so in line with anomaly, or they can harm

it if they do so sporadically.

Features were ranked based on their ability to separate anomalous segments from

normal segments in a collection of experiments based on their contribution to dif-

ferentiating anomalies. This is done, for every feature, by computing the average

difference this feature has between an anomalous segment and its complement and

subtracting the average difference normal segments had from their complements for

the same feature. Let a and o be vectors that are of length, p, the number of variables.

The vector a will contain the average difference from all anomalous segments’ features

to their complements in a set of experiments. Likewise, o will be the difference from

normal segments’ feature scores to their complements’ scores (we chose ‘o’ here for

ordinary instead of an ‘n’ for normal because n will be used as in previous chapters
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to denote the number of observations). To compute a, for a single test set, we have:

aj =
1

na

na∑
i=1

∣∣xij − cxj ∣∣ , for j = 1, ..., p and x ∈ Anomalies (7.4)

where

xij is the jth feature of the ith anomaly to be tested for this
test set

cxj is the jth feature of the textual complement of x
na is the number of anomalies to tested
Anomalies is the set of all anomalies to be tested

An equivalent formula is given for o measuring the difference from normal seg-

ments’ features to their complements’ features.

oj =
1

no

no∑
i=1

∣∣xij − cxj ∣∣ , for j = 1, ..., p and x ∈ Normal (7.5)

where

xij is the jth feature of the ith normal segment
cxj is the jth feature of the textual complement of x (which

will contain an anomaly)
na is the number of normal segments
Normal is the set of all normal segments

We compute a feature, j’s contribution to the detection of anomalies in this test

set as aj − oj. This contribution was averaged across all test sets to give the average

contribution for a large group of experiments. This measure will be large positive

number for features that are good at discriminating between anomalies and normal

segments. If the measure is a large negative number for a feature, then the feature

often hinders anomaly detection and is a bad discriminator. When this contribution

measure is close to zero for a feature then it does not affect anomaly detection results

overall. A feature’s contribution could be close to zero if either this feature tends
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not to vary much across normal and anomalous segments or if it tends to vary so

randomly that it is good and bad about the same amount of time.

All Experiments

Rank

100 word segment 

size

500 word segment 

size

1000 word segment 

size All segment sizes

1 fogindex fogindex fogindex fogindex

2 passivesen passivesen passivesen passivesen

3 fleschease fleschease fleschease fleschease

4 perlongsen perlongsen perlongsen perlongsen

5 lix lix lix lix

6 avgsenlength avgsenlength avgsenlength avgsenlength

7 ari perc1syll pershortsen ari

8 fleschgrade pershortsen perc1syll perc1syll

9 gig300k per6orMoreLetter per6orMoreLetter pershortsen

10 gig200k ari ari per6orMoreLetter

11 gig100k gig300k gig300k gig300k

12 gig50k gig200k gig200k gig200k

13 gig5k gig100k gig100k gig100k

14 gig10k gig50k gig50k fleschgrade

15 nouns fleschgrade fleschgrade gig50k

Figure 7.4: The most effective features for all experiments.

We examined the features that did best overall across all genres and experiments

by calculating the measure above for all experiments (only keeping experiments with

different segment sizes separate). Figure 7.4 shows that the top 15 most useful features

for detecting anomaly in all experiments are fairly consistent across segment sizes. A

key for the abbreviations in Figure 7.4 as well as in Figures 7.5, 7.6, and 7.7 can be

found in Appendix C.

Figure 7.5 shows features that contribute negatively to all experiments. Removing

these features from the feature vectors will improve the results of the unsupervised

anomaly detection program. They vary a little more than the best features did across

segments, but there is still a fair amount of consistency in a group of the emotional
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All Experiments

Rank

100 word segment 

size

500 word segment 

size

1000 word segment 

size All segment sizes

1 econ ritual kin econ

2 male land ani kin

3 kin kin ritual ritual

4 ritual exprs food fetch

5 fetch intrj intrj land

6 ord ani posTRIlist male

7 exert sky sky exprs

8 land fetch decr exert

9 exprs aquatic exch bldgpt

10 bldgpt posTRIlist you route

11 route exch rise ani

12 place you travel rise

13 bodypt think posBIlist aquatic

14 pleasur feel fail fail

15 hostile travel land pleasur

Figure 7.5: The least effective features for all experiments.

tone based features that do not aid in anomaly detection.

We can also look at the features that contribute most in each task setting. Fig-

ure 7.6 shows the best features for each task scenario averaged over all experiments

and all segment sizes.

While the features that negatively impact anomaly detection performance with in

each setting are shown in Figure 7.7.

These contribution scores showed us that although the majority of the features

do contribute positively to anomaly detection, it is usually the top 15 that make

the biggest difference. Likewise for each anomaly detection experiment there are

approximately 5 to 10 of the 166 features that negatively impact performance, but

not as consistently. These results are interesting as they can guide the search for

important or unhelpful features in anomaly detection and also give an indication of
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All segment sizes

Rank Authorship Fact vs Opinion

Newswire vs 

Anarchists Cookbook

Newswire vs Chinese 

Translations

1 fogindex fogindex passivesen fogindex

2 pershortsen passivesen fogindex fleschease

3 fleschease avgsenlength gig300k perlongsen

4 passivesen perlongsen gig200k lix

5 perlongsen fleschease gig100k avgsenlength

6 lix lix gig50k ari

7 avgsenlength ari gig10k perc1syll

8 perc3syll nouns gig5k per6orMoreLetter

9 ari fleschgrade avgsenlength fleschgrade

10 per6orMoreLetter gig300k perlongsen pershortsen

11 fleschgrade gig200k per6orMoreLetter perc3syll

12 perc1syll gig100k gig1k polit

13 punct gig50k perc1syll smog

14 smog perc1syll lix coleman

15 pronouns gig5k nouns pronouns

Figure 7.6: Most effective features across anomaly detection tasks.

All segment sizes

Rank Authorship Fact vs Opinion

Newswire vs 

Anarchists Cookbook

Newswire vs Chinese 

Translations

1 posBIlist pos yes yes

2 posTRIlist travel rise you

3 yes route you race

4 race vehicle travel kin

5 exch fall race intrj

6 aquatic land fail female

7 decr ritual kin color

8 feel stay intrj decr

9 rise dist female fall

10 nonadlt goal decr think

11 vehicle rise think posBIlist

12 fall exprs sv punct

13 ritual food posBIlist exch

14 artlist aquatic bldgpt semi

15 exprs strng land self

Figure 7.7: Least effective features across anomaly detection tasks.

the best features for distinguishing anomalies in different task settings.
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7.6 Summary

The beginning of this chapter focuses on the problem of increasing the precision

of our anomaly detection methods. It is often desirable in real world situations to

have methods that may miss a few instances of anomalies, but when they identify

an anomaly you can be certain it is truly anomalous. Using a supervised approach,

we held out a portion of the data to use for learning the thresholds which returned

the highest recall while maximizing precision. This method proved successful and we

showed that on held out data we could achieve perfect precision while maintaing high

recall on many tasks.

In the final section of this chapter we examined the impact each of our features

had on the task of anomaly detection. We examined how well each feature performed

across all experiments as well as within individual scenarios and at certain segment

sizes. Features that performed particularly well on all experiments were the readabil-

ity measures, sentence length, percentage of passive sentences, and the obscurity of

vocabulary features.



Chapter 8

Conclusions and Future Work

8.1 Summary of Conclusions

Detecting an anomalous document (or segment of a document) when no train-

ing examples are available is a challenging research area with significant application

potential. The techniques developed in this thesis are applicable to the detection

of many types of “outliers” or anomalies that could occur in electronic text and do

not require prior specification or training examples of what those anomalies might

be. Methodologies and implementations were developed and extensively investigated

for identifying textual anomalies of various sizes and types while examining the fea-

tures used for this detection. We introduced a novel method for anomaly detection

in text that performs better than even advanced multivariate outlier detection meth-

ods. Accuracy was shown to improve as we increased the size of the text, especially

long documents of around 1,000 words, but worked well on small 100 word segments,

still detecting anomalies with an accuracy well above chance. The features used to

142
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characterize text and thus identify unusual text have been ranked by their usefulness

in detecting anomalies of different types and in different sizes of texts. This is an

exciting technique with a vast range of potential applications.

Main contributions of this research:

• Variations in text can be viewed as a type of anomaly or outlier and can be

successfully detected using automatic unsupervised techniques without the use

of content words. (Sections 1.1 and 6.8)

• Detection strategies that measure a piece of text’s distance from its complement

(see TxtCompDist in 5.2.5) are the best performing methods for detection of

anomaly when no training data is available. (Sections 5.2.5 and 6.7)

• Accuracy for anomaly detection improves considerably as we increase the length

of our segments. (Chapter 6)

• Stylistic features and distributions of the rarity of words are a good choice for

characterizing text and detecting a broad range of anomalies. (Section 7.5)

• The most accurate unsupervised anomaly detection is possible when the anoma-

lies are a different writing style or genre when compared to the ‘normal’ data

(as opposed to different topic, tone or authorship). This confirms work which

indicates that stylistic features are useful for genre detection. (Section 3.4)

• Thresholds for unsupervised anomaly detection can be reliably learned to max-

imize precision. (Section 7.4)
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8.2 Future Work

Anomalous Sentences

One aim for the future of our unsupervised anomaly detection is to adapt the pro-

cedure to work on very small segments about the size of a sentence. We are currently

working on a modified version of our unsupervised anomaly detection program that

only uses features that scale down to as little as ten words so that we can attempt to

recognize when a single sentence is anomalous with respect to its surrounding con-

texts. The collection of feature analysis techniques developed in this report makes

it easy to determine which features are useful at this level and modify our approach

accordingly. Furthermore we are also developing new sentence level unsupervised

techniques that are more appropriate for unsupervised detection at the word and

sentence level.

Multiple Anomalies

Our experiments in this thesis assume that there is only one anomalous segment

in a document (or collection). We showed that it is possible to achieve good accuracy

detecting that anomaly, but it would be interesting to see exactly how much that

accuracy is impacted when documents contain more than one anomaly. If documents,

for example, contained two anomalous segments then we are fairly certain this would

have very little impact on our measure (especially for long documents that have 50 or

more segments). On the other hand, documents that have almost 50% outliers may

effect the accuracy our methods more drastically. We have strived to create methods

that are robust, and thus not overly sensitive to outliers in the data, but it remains
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to be seen exactly how resistant they are on real data that contains many anomalous

segments.

Using Document Flow

Another possibility for the future of unsupervised anomaly detection is to tailor

the procedure to only detect anomalies within documents. We identified anomalies

within documents (Chapter 6), but the goal of our research was to develop a broad

anomaly detection technique that could be used successfully both within documents

and within collections of documents. We made no attempt to tailor our procedure

specifically to anomalies in single documents. All of the procedures we developed

can be seen as “bag of segments” techniques because segments can have any ordering

and the results will be the same. If we take the ordering of segments into account

this may give us information about the structure of a document that might aid in

anomaly detection.

Documents have an implicit structure or flow in their text and it may be possible

to exploit this fact to pinpoint where this flow is broken. Our anomaly detection

techniques, thus far, treat each segment or document independently and uniformly

measure its distance from all other text in a document or collection. If we focus on

pieces of text within documents we might be able to gain something by taking into

account a document’s structure. For instance, it is likely that the second and third

paragraphs in a document are more similar to each other in terms of content than

the second and twentieth paragraphs would be. This is an assumption made in text

tiling research [Hearst, 1997] and we believe that it could be a very beneficial addi-
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tion to anomaly detection. This information could help you to spot anomalies more

accurately because you could gain information about where the flow in a document

is broken rather that what stands out most overall. Possible research could include

adapting anomaly detection techniques to take into account the position of segments

in documents. In this approach, we might weight the distance between segments,

so that are segments that are closer to each other in a document are assumed more

likely to be similar. The assumption that closer segments are more similar seem to

be valid in terms of topic and context words, but it remains to be seen whether this

would also hold true for an author’s writing style or tone and thus for the techniques

developed in this thesis.
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Appendix A

Clustering Text

While clustering is not appropriate for anomaly detection in an unsupervised sce-

nario (see Sections 1.3 and 3.4), because its usefulness depends on the assumption

that anomalies are more similar to each other than to normal segments, it is nonethe-

less useful for visualizing the impact of features in controlled experiments. Clustering

has been used successfully in the closely related problem of genre identification using

stylistic features [Rauber and Müller-Kögler, 2001; Clough, 2000] and thus we thought

it worthwhile to investigate it.

This appendix shows some of the initial experiments we conducted analyzing the

usefulness and suitability of the all features described in chapter 4 by letting a clus-

tering algorithm attempt to group segments with similar features. These small-scale

experiments gave us insight into which features were the most beneficial for charac-

terizing text at the segment level.

For each of these tests we analyzed segments of text (either paragraphs or docu-

ments) using of all the stylistic features described in 4.2 – 4.7 above as well as the

158
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largest 148 categories from the General Inquirer dictionary.

A.1 Multiple Authors

In this experiment we take segment to mean an entire document and compute all

features over all documents. We then use SPSS statistical package to perform the

clustering. We used 21 texts by 11 different authors. We made use of the full texts

obtained from project Gutenberg. The texts used are shown in table A.1.

Author Texts

Louisa May Alcott
Eight Cousins
Little Women

Jane Austin

Pride and Prejudice
Emma
Sense and Sensibility
Persuasion

Forefathers (Jefferson et al.) Declaration of Independence
Homer Odyssey

Washington Irving
Crayon Papers
Legend of Sleepy Hollow

Franz Kafka Metamorphosis
Karl Marx Communist Manifesto

Friedrich Nietzsche
Behond Good and Evil
Thus Spake Zarathustra

Plato Republic

Jonathan Swift

Gulliver’s Travels
Drapier’s Letters
Modest Proposal
Tail of a Tub

Mark Twain
The Adventures of Tom Sawyer
The Adventures of Huckleberry Finn

Table A.1: The authors and texts used for clustering analysis

All of the values for our features were normalized to z-score (described in sec-
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tion 5.3) so they would all receive equal weighting regardless of their magnitude.

We used Ward’s method of clustering Ward [1963] which starts by treating each

observation as a cluster and then iteratively looks to merge the clusters that (when

combined) will have the smallest squared distances from their mean. To determine the

clusters to combine at every step, a distance based on this residual is calculated and

the clusters that have the smallest distance are merged into one cluster. This process

iterates until there in only one cluster left. The distance formula for determining

whether to merge two clusters, x and y, into a cluster xy is given by:

dist(x,y) = r(xy)− (r(x) + r(y))

where r is the function to compute squared residuals of a cluster, given by:

r(x) =
n∑
i=1

|xi − x̄|2

where n is the number of observations in the cluster x and x̄ is the mean of cluster

x. This mean is computed in the standard way ( 1
n

∑n
i=1 x).

The results of this clustering is shown in figure A.1. This figure shows that using

Wards clustering with these features is not perfect (some clusters include books by

two different authors) yet nonetheless it is a promising result.
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Figure A.1: Hierarchical clustering of 21 texts written by 11 authors
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A.2 Different Genres

For this simple exploratory experiment we randomly chose 15 small segments

from the from the Gigaword newswire corpus (ranging in size from 40 to 60 words)

and inserted a random 30 word segment from the Medline corpus (not breaking across

sentence boundaries). We performed the same clustering procedure as in the previous

experiment. Figure A.2 shows that the result of this clustering is a clear separation

between the two genres.
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Figure A.2: Hierarchical clustering of Gigaword paragraphs with a Medline paragraph
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A.3 Journal Articles

Articles from the International Journal of Corpus Linguistics were analyzed by

paragraph to determine if it is possible to distinguish authors’ writing at the para-

graph level. We chose two articles on a similar topic from a single issue of the pub-

lication. These articles’ genres are identical and both were on similar topics so this

experiment gives good gauge of which features distinguish authors based primarily

on their writing style. We randomly chose five paragraphs from each journal article

and performed the automatic clustering as above. The results in Figure A.3 show

nearly perfect grouping of the paragraphs by the same authors with the exception of

one paragraph in article #2 that seems to be very different from all other articles.

!

Figure A.3: Hierarchical clustering of paragraphs from articles in the International
Journal of Corpus Linguistics

We also used the two journal articles described above to compute the information

gain (see Mitchell [1997]) between the features of their observations using the WEKA

machine learning toolkit. This gives us an idea of which of our features would be most

useful for classifying these two journal articles to their appropriate author. Table A.2

shows the top ranked features.
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Score Attribute Examples/Description

0.2706 Hostile criticism, inhibit, avoid, argument
0.2245 Wordlen Average word length
0.2218 Object table, corpus, marker, text
0.2216 Overstated very, every, quite, large
0.2199 Coleman-Liau Readability Index
0.2124 DescriptiveVerbs do, use, increase, play
0.1867 Perc3syll Percentage of 3 or more syllable words
0.1615 Political capitol, candidate, country
0.1612 CommonObject mark, list, report
0.1606 Work drive, use, done, produce
0.1562 Perc1syll Percentage of 1 syllable words
0.1492 NegativeOutlook complex, difficult, lack, decrease
0.1481 Academic statistical, experiment, scientific
0.1459 NegativeH4 uncomfortable, hard, inadequate
0.1448 Fleschease Readability measure
0.1354 SmogGraiding Readability measure
0.1245 Communicate thank, joke, praise

Table A.2: Feature Ranking for Clustering Experiments



Appendix A: Clustering Text 166

A.4 Conclusion for Clustering Experiments

Clustering using z-scores and Ward’s clustering method proved useful for visu-

ally testing features and showed us that grouping instances based on their feature’s

standard deviation from the mean has very genuine benefits. It is also clear from

our analysis of these features that some contribute much more than others. This

steered us to develop methods of anomaly detection that would use this information

effectively.
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Corpora

The selection of suitable corpora for the study of anomaly detection depends upon

the precise definition of anomaly. For example, a document might be anomalous

because it is a different genre, a different topic, or a different style of writing from the

other texts in the collection. These corpora allow models of language to be defined,

and techniques to be evaluated for detecting anomalous documents or segments. In

this Appendix we describe all corpora used in this thesis and give examples of each.

B.1 English Gigaword

The Gigaword English Corpus is a large archive of newswire text data acquired by

the Linguistic Data Consortium. The total corpus consists of over 1.7 billion words

from four distinct international sources of English newswire ranging from approxi-

mately 1994-2002:

- Agence France Press English Service (afe) 1994-2002

167
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- Associated Press Worldstream English Service (apw) 1994-2002

- The New York Times Newswire Service (nyt) 1994-2002

- The Xinhua News Agency English Service (xie) 1995-2001

7%

10%

31%

52%

XIE AFE APW NYT

Figure B.1: Gigaword Corpus Distribution

A sample of the Gigaword corpus follows:

<DOC id="XIE20011101.0001" type="story" >

<HEADLINE>

Food Assistance Expedited to Ease Starvation in

Afghanistan: WFP Spokesman

</HEADLINE>

<DATELINE>

PESHAWAR (Pakistan), October 31 (Xinhua)

</DATELINE>

<TEXT>

<P>

As the freezing winter is in the offing in Afghanistan, the World Food

Programme (WFP) has picked up food assistance to hundreds of thousand

Afghans trapped in hunger and warfare in an all-out effort to avoid

famine which could trigger a humanitarian disaster.

</P>

<P>

During an interview made here on Wednesday, WFP spokesman Huggins told

Xinhua that 1,535 metric tonnes of food was leaving for afghanistan’s

central highland (CHL) where a estimated population of half a million

Afghans remain in serious malnutrition for lack of daily feeding,

counting a total amount of 13,000 tonnes that have been sent in the

last 10 days from Peshawar.

</P>
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B.2 Medline

Medline is a bibliographic database covering the fields of medicine, nursing, den-

tistry, veterinary medicine, the health care system, and the preclinical sciences.

Medline contains bibliographic citations and author abstracts from more than 7,300

biomedical journals published in the United States and 70 other countries from 1950

to the present. In all, it comes to more than 1.2 billion words of English text. A

sample abstract follows (omitting the metadata):

AIM: Model of End-stage Liver Disease (MELD) score has recently

gained wide acceptance over the old Child-Pugh score in predicting

survival in patients with decompensated cirrhosis, although it is

more sophisticated. We compared the predictive values of MELD,

Child-Pugh and creatinine-modified Child-Pugh scores in

decompensated cirrhosis.

METHODS: A cohort of 102 patients with decompensated cirrhosis

followed-up for a median of 6 mo was studied. Two types of modified

Child-Pugh scores estimated by adding 0-4 points to the original score

using creatinine levels as a sixth categorical variable were evaluated.

RESULTS: The areas under the receiver operating charac-teristic

curves did not differ significantly among the four scores, but none had

excellent diagnostic accuracy (areas: 0.71-0.79). Child-Pugh score

appeared to be the worst, while the accuracy of MELD was almost

identical with that of modified Child-Pugh in predicting short-term and

slightly better in predicting medium-term survival.

In Cox regression analysis, all four scores were significantly associated

with survival, while MELD and creatinine-modified Child-Pugh scores had

better predictive values (c-statistics: 0.73 and 0.69-0.70) than

Child-Pugh score (c-statistics: 0.65). Adjustment for gamma-glutamate

transpeptidase levels increased the predictive values of all systems

(c-statistics: 0.77-0.81). Analysis of the expected and observed survival

curves in patients subgroups according to their prognosis showed that all

models fit the data reasonably well with MELD probably discriminating

better the subgroups with worse prognosis.

CONCLUSION: MELD compared to the old Child-Pugh and particularly to

creatinine-modified Child-Pugh scores does not appear to offer a clear

advantage in predicting survival in patients with decompensated cirrhosis

in daily clinical practice.

B.3 The Anarchist Cookbook

The Anarchist Cookbook is a set of recipes and instructions for small-scale acts

of terrorism, originally written in 1969 by William Powell (often referred to by his
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pseudonym, the Jolly Roger). Later editions (with additions from other authors) have

expanded, encompassing more modern themes like computer hacking techniques and

identity fraud. A sample recipe from the cookbook follows:

Making Plastic Explosives from Bleach by The Jolly Roger

Potassium chlorate is an extremely volatile explosive compound, and has been

used in the past as the main explosive filler in grenades, land mines, and

mortar rounds by such countries as France and Germany. Common household

bleach contains a small amount of potassium chlorate, which can be extracted

by the procedure that follows.

First off, you must obtain:

[1] A heat source (hot plate, stove, etc.)

[2] A hydrometer, or battery hydrometer

[3] A large Pyrex, or enameled steel container (to weigh chemicals)

[4] Potassium chloride (sold as a salt substitute at health and nutrition

stores)

Take one gallon of bleach, place it in the container, and begin heating it. While

this solution heats, weigh out 63 grams of potassium chloride and add this to the

bleach being heated. Constantly check the solution being heated with the hydrometer,

and boil until you get a reading of 1.3. If using a battery hydrometer, boil until

you read a FULL charge.

Take the solution and allow it to cool in a refrigerator until it is between room

temperature and 0 degrees Celcius. Filter out the crystals that have formed and

save them. Boil this solution again and cool as before. Filter and save the

crystals.

Take the crystals that have been saved, and mix them with distilled water in the

following proportions: 56 grams per 100 milliliters distilled water. Heat this

solution until it boils and allow to cool. Filter the solution and save the crystals

that form upon cooling. This process of purification is called "fractional

crystalization". These crystals should be relatively pure potassium chlorate.

Powder these to the consistency of face powder, and heat gently to drive off all

moisture.

Now, melt five parts Vaseline with five parts wax. Dissolve this in white gasoline

(camp stove gasoline), and pour this liquid on 90 parts potassium chlorate (the

powdered crystals from above) into a plastic bowl. Knead this liquid into the

potassium chlorate until intimately mixed. Allow all gasoline to evaporate.

Finally, place this explosive into a cool, dry place. Avoid friction, sulfur,

sulfides, and phosphorous compounds. This explosive is best molded to the desired

shape and density of 1.3 grams in a cube and dipped in wax until water proof. These

block type charges guarantee the highest detonation velocity. Also, a blasting cap

of at least a 3 grade must be used.

The presence of the afore mentioned compounds (sulfur, sulfides, etc.) results in

mixtures that are or can become highly sensitive and will possibly decompose

explosively while in storage. You should never store homemade explosives, and you

must use EXTREME caution at all times while performing the processes in this article.
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B.4 Google Translations (Chinese to English ma-

chine translations)

Seven different Chinese newspaper articles of approximately 500 words each were

chosen and run through the Google automatic translation engine to produce En-

glish texts. Web translation engines are known for their inaccuracy and ability to

generate extremely odd phrases that are often very different from text written by a

native speaker. The intention was to produce highly unusual texts, where meaning is

approximately retained but coherence can be minimal.

A sample translation follows:

BBC Chinese net news: CIA Bureau Chief Gauss told USA the senator, the card you reaches

still is attempting to avoid the American information authority, implemented the attack

to the American native place goal. Gauss said, the card you will reach or if have the

relation other terrorist organizations sooner or later must use the biochemistry or

the nuclear weapon attack USA, this possibly only will be the time question. But he

said, the card you reach only only are a holy war organization more widespread threat

on the one hand. He said, in Iraq, the radical member grips the card dimension is

using conflicts carries on the scope is more widespread, cross national boundary terror

activity. American Federal Bureau of Investigation bureau chief said, at present his

organization urgent matter is copes with conceals you reaches in USA’S card organizes

the member. He said, at present in the jail and the radical church, many Muslim religion’s

person is regarded as the object which the radical organization recruits.
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Feature Abbreviations

Abbreviation Description

ani References to animals, fish, birds, and insects, including their

collectivities

aquatic References to water, including things that hold water. (e.g.

beaker, steam, gulf)

ari Automated Readability Index (see Section 4.3)

artlist Rank list feature of the Articles

avgsenlength Average Sentence Length

bldgpt References to buildings, rooms, and parts of buildings

bodypt References to parts of the body

coleman Coleman-Liau (see Section 4.3)

color References to color words

172
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decr Words that describe a decreasing change (e.g. abate, subside,

cheapen)

dist Words referring to distance and its measures

econ Words of an economic, commercial, industrial, or business

orientation

exch Words concerned with buying, selling and trading

exert Words concerned with bearing force or influence

exprs Words associated with the arts, sports, and self-expression

fail Words indicating that goals have not been achieved

fall Words concerned with downward movement (e.g. fall, col-

lapse, dive)

feel Words describing particular feelings (e.g. gratitude, apathy)

female words referring to women and social roles associated with

women

fetch Words concerned with fetching or carrying

fleschease Flesch-Kincaid Reading Ease (see Section 4.3)

fleschgrade Flesch-Kincaid Grade Level (see Section 4.3)

fogindex Gunning-Fog Index (see Section 4.3)

food Words concerning food

gigNk Percentage of words occurring in top N thousand words in

the Gigaword Corpus

goal Names of end-states towards which muscular or mental striv-

ing is directed
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hostile Words indicating an attitude or concern with hostility or ag-

gressiveness

intrj Interjections and exclaimations

kin Terms denoting kinship

land Words for places occurring in nature

lix Lix Formula (see Section 4.3)

male Words referring to men and social roles associated with men

nonadlt Words associated with infants through adolescents

nouns Percentage of words that are nouns

ord Percentage of words that are ordinal numbers

passivesen Percentage of sentences that are passive

per6orMoreLetter Percentage of words that have six or more letters

perc1syll Percentage of words that are only one syllable

perc3syll Percentage of words that have 3 or more syllables

perlongsen Percentage of sentences greater than 15 words

pershortsen Percentage of sentences greater than 8 words

place References to places

pleasur Words indicating the enjoyment of a feeling, including words

indicating confidence, and interest

polit Words having a clear political character, including political

roles, collectivities, and acts

pos Words for position

posBIlist Rank list feature of the part-of-speech bi-grams
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posTRIlist Rank list feature of the part-of-speech tri-grams

pronouns Percentage of words that are pronouns

punct Percentage of all characters that are punctuation

race Words referring to racial or ethnic characteristics

rise Words concerned with upward movement (e.g. climb, fly,

jump)

ritual Words for non-work social rituals

route Words concerned with the route between places

self Pronouns referring to ones singular self

semi Percentage of all characters that are semicolons

sky Words for all aerial conditions, natural vapors and objects in

outer space

smog SMOG Index (see Section 4.3)

stay Words concerned with no movement (e.g. await, lie, adhere)

strng Words implying strength

sv State verbs describing mental or emotional states (e.g. love,

trust)

think Words referring to the presence or absence of rational thought

processes

travel Words for all physical movement and travel from one place

to another in a horizontal plane

vehicle Words concerned with vehicle objects

yes Words directly indicating agreement
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you Pronouns indicating another person is being addressed di-

rectly

Table C.1: Key to feature abbreviations used in Chap-

ter 7
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