Unsupervised Detection of Anomalous Text Pavel Veselý

Source

- "Unsupervised Detection of Anomalous Text" by David Guthrie
 - PHD thesis at University of Sheffield, 2008

Dictionary (TODO Change)

- Anomaly a deviation from the common rule, type, arrangement, or form
- Texts documents or segments of documents (in this thesis segments of 100, 500 and 1000 words)
- Unsupervised detection -

Motivation

- Detecting plagiarism without access to source text
 - Koppel, Seidman Automatically Identifying Pseudepigraphic Texts
 - Klára Kufová Anomaly Detection in Text
- Getting more homogeneous text set
 - Guthrie, Guthrie, Wilks An Unsupervised Approach for the Detection of Outliers in Corpora
- Out of topic posts in forums

Process

- 1. Represent texts as numerical vectors
- 2.Measure distance of vectors from rest of set
- 3. Set threshold for anomaly

Text representation

- Numerical vector of 166 features
 - 1. Simple Surface Features (19)
 - 2. Readability Measures (7)
 - 3. Obscurity of Vocabulary Features (7)
 - 4. Part of Speech and Syntax Features (11)
 - 5. Rank Features (8)
 - 6. Emotional Tone Features (114)

Simple Surface Features I

- 1. Average sentence length
- 2. Average word length
- 3. Average number of syllables per word
- 4. Percentage of all words that have 3 or more syllables
- 5. Percentage of all words that only have 1 syllable
- 6. Percentage of long sentences (sentences greater than 15 words)
- 7. Percentage of short sentences (sentences less than 8 words)
- 8. Percentage of sentences that are questions
- 9. Percentage of all characters that are punctuation characters
- 10. Percentage of all characters that are semicolons

Simple Surface Features II

- 11. Percentage of all characters that are commas
- 12. Percentage of all words that have 6 or more letters
- 13. Percentage of word types divided by the number of word tokens
- 14. Percentage of words that are subordinating conjunctions (then, until, while, since, etc.)
- 15. Percentage of words that are coordinating conjunctions (but, so, but, or, etc.)
- 16.Percentage of sentences that begin with a subordinating or coordinating conjunctions
- 17. Percentage of words that are articles
- 18. Percentage of words that are prepositions
- 19. Percentage of words that are pronouns

Readability Measures

- 1. Flesch-Kincaid Reading Ease
- 2. Flesch-Kincaid Grade Level
- 3. Gunning-Fog Index
- 4. Coleman-Liau Formula
- 5. Automated Readability Index
- 6.Lix Formula
- 7. SMOG Index

Obscurity of Vocabulary Usage

- Number of words in text, that have relative frequency in corpus (Gigaword) as follows:
 - 1. Top 1000 words
 - 2. Top 5000 words
 - 3. Top 10,000 words
 - 4. Top 50,000 words
 - 5. Top 100,000 words
 - 6. Top 200,000 words
 - 7. Top 300,000 words

Part of Speech and Syntax Features

- 1.Percentage of words that are adjectives
- 2.Percentage of words that are adverbs
- 3. Percentage of words that are interrogative words (who, what, where when, etc.)
- 4. Percentage of words that are nouns
- 5.Percentage of words that are verbs
- 6.Ratio of number of adjectives to nouns
- 7.Percentage of words that are proper nouns
- 8.Percentage of words that are numbers (i.e. cardinal, ordinal, nouns such as dozen, thousands, etc.)
- 9. Diversity of POS tri-grams

$$POSTrigram\ Diversity = (\frac{number\ of\ different\ POStrigrams}{total\ number\ of\ POStrigrams})\ x\ 100$$

Rank Features

- 1.Distribution of POS tri-grams list
- 2.Distribution of POS bi-gram list
- 3.Distribution of POS list
- 4. Distribution of Articles list
- 5. Distribution of Prepositions list
- 6.Distribution of Conjunctions list
- 7. Distribution of Pronouns list
- 8.Distribution of Adverbs list

General Inquirer Dictionary

- Capturing sentiment of text
- Quantify the connotative meaning of isolated words
- 13,000 root words mapped into 114 categories
 - most words assigned to more than one category
 - The two largest categories are 'positive'
 (1,915 words) and 'negative' (2,291 words)

Measuring the distances

ClustDist

A distance based on average linkage clustering

SDEDist

The Stahel-Donoho Estimator distance

Pcout

- The weights calculated by the PCout algorthim

MeanComp

- Distance from the mean of all other segments in the data

TxtCompDist

Method developed by authors that uses the distance from the textual complement

SDEDist

- Projection can give an scalar distance to the center of all observations
- Find the direction that, when used for projection, gives maximum distance

SDEDist
$$(\vec{x}, V) = \max_{\vec{a}} \frac{\vec{x}^T \vec{a} - median(V\vec{a})}{mad(V\vec{a})}$$

 Infinitely many directions – problem of finding good direction set

TxtCompDist

 Distance from textual complement (the union of the remaining texts)

$$TxtCompDist(\vec{x}, V) = d(\vec{x}, \vec{c}_x)$$

- Designed by authors
- Better use of features requiring larger texts (POS trigrams, adverb preference)

Experiment Data

- Artificial data set
 - Documents of 51 segments, 1 of which is anomalous
 - Created as random bag of segments from 2 sources (50 segments by 1)
- Segments of length 100, 500 and 1000 words

Authorship Tests

Average percentage of the time anomoly is returned in the Top 5 segments

 8 Victorian authors

Fact versus Opinion

Average percentage of the time anomoly is returned in the Top 5 segments

Factual news versus editorials

Genre Difference

Average percentage of the time anomoly is returned in the Top 5 segments

 Newswire versus Anarchist Cookbook

Machine Translation

 English Newswire versus Chinese newswire translated by 2008 Google **Translate**

Average percentage of the time anomoly is returned in the Top 5 segments

Experiment Conclusion I

- Finding anomaly as top 1
 - Random chance 2%
 - Average on 100 words 32%
 - Average on 1000 words 68%
- Best on Google Translate (2008) 96%
- Works very well on anomalies different in style or genre

Experiment Conclusions II

- Best metric TxtCompDist
- Stahel-Donoho based method close second

Precision and Recall

- Setting threshold of anomaly score
- Compromise between precision and recall

Fact Vs Opinion 1,000 words

Thresholding

Fixed 100% precision, maximizing recall

	Segment Size	Chinese Translations	Fact vs Opinion	Anarchists Cookbook	all
Recall/Precision (Threshold)	100	52%/100% (369)	46%/100% (369)	36%/100% (371)	44%/100% (371)
	500	83%/100% (279)	38%/100% (280)	66%/100% (280)	62%/100% (280)
	1000	96%/100% (252)	43%/100% (252)	88%/100% (252)	76%/100% (252)
	all	46.3%/100% (370)	22.2%/100% (370)	30%/100% (370)	33%/100% (370)

Feature Selection

- Based on ability to differentiate anomalies
- Best features are the same over all experiments
 - 1. Gunning-Fog Index
 - 2. Number of passive sentences
 - 3. Flesch-Kincaid Reading Ease
 - 4. Percenteage of sentences over 15 words
- Worst features differ, but mostly sentiment based

Real Data Experiments

- TODO
- Klára
- Guthrie corpora

Summary

• TODO