Přeskočit na horní lištu
Přeskočit na hlavičku
Přeskočit na obsah
Přeskočit na patičku
EN
>
Machine learning and natural language processing
Interaktivní osnova
Machine learning and natural language processing
OBSAH
Machine learning and natural language processing
Nyní studovat
1 Course overview, project assignment overview. Overview of text pre-processing
Nyní studovat
2 ML techniques for NLP 1
Nyní studovat
3 Distributional semantics, LSA, word embeddings
Nyní studovat
4 Ne moc. Dis ease
Nyní studovat
5 ML techniques for NLP 2. Text clustering.
Nyní studovat
6 ML for NLP III: Recurrent NN. Outliers in text I.
Nyní studovat
Independent Czechoslovak State Day
Nyní studovat
8 LSTM. RNN/LSTM case studies. ILP
Nyní studovat
9 Poster session
Nyní studovat
10 Learning language in logic. Keyness. Summarization
Nyní studovat
11 Sentiment analysis (including lexicons of “sentiment words”)
Nyní studovat
12 Machine learning for knowledge extraction from text
Prohlédnout vše
2 ML techniques for NLP 1
White board Oct23
L2 Overview Of ML 1.
Penn Treebank (PTB)
On disambiguation. POS Tagging (State of the art). Flair
-> L5.2
READINGS: Categorization of Czech documents
READINGS: Fragments and Text Categorization
READINGS: A Primer on Neural Network Models for Natural Language Processing
QUESTIONS AND TASKS:
Text representations. When the ordering of words (does not) matter-s. Mining web
Main text mining tasks
ML for disambiguation
CNN for NLP
MATERIALS FOR THE LABS IN WEEK 02 (all necessary details in the notebook):
LAB 01 text mining pipeline
Předchozí
Následující
Machine learning and natural language processing
Nyní studovat
1 Course overview, project assignment overview. Overview of text pre-processing
Nyní studovat
2 ML techniques for NLP 1
Nyní studovat
3 Distributional semantics, LSA, word embeddings
Nyní studovat
4 Ne moc. Dis ease
Nyní studovat
5 ML techniques for NLP 2. Text clustering.
Nyní studovat
6 ML for NLP III: Recurrent NN. Outliers in text I.
Nyní studovat
Independent Czechoslovak State Day
Nyní studovat
8 LSTM. RNN/LSTM case studies. ILP
Nyní studovat
9 Poster session
Nyní studovat
10 Learning language in logic. Keyness. Summarization
Nyní studovat
11 Sentiment analysis (including lexicons of “sentiment words”)
Nyní studovat
12 Machine learning for knowledge extraction from text
Operace
Prohlédnout vše