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Masaryk University
Czech Republic

1/54



Outline

1 Introduction and Motivation

2 Methodology
Biological Networks
Modelling Problems

3 Case Study

2/54



Outline

1 Introduction and Motivation

2 Methodology
Biological Networks
Modelling Problems

3 Case Study

3/54



Biology
Domain Roots

Biology

since ancient times

empirically studies life and living organisms

studied aspects: structure, function, growth, development
and evolution

used concepts:

the cell – the unit of life
the gene – the unit of inherited information
the evolution – the mechanism of species creation
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Biophysics and Theoretical Biology
Domain Roots

Biophysics

since the mid of 19th century

living organism = open (thermodynamic) system

the goal: why and how the living matter works?

uses mathematical apparatus

a fascinating phenomenon: homeostasis

maintain a stable condition in a changing environment
robust (up-to certain limits)
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Holistic Thinking and Systems Theory
Phylosophical Roots

reductionism
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Holistic Thinking and Systems Theory
Phylosophical Roots

holism

“A Whole is Greater Than the Sum of Its Parts.”
– Aristoteles
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Development of Systems Biology

“Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?”

Philip Merilees
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Motivation: Rigorously Answer Biological Questions

biology is goal-oriented

biological problems typically address complex processes

Examples of biological problems

How the bacteria cell utilises particular nutritions?

Which nutritions imply fastest growth under given conditions?

The answer should fullfil specific requirements

to formulate and analyse a biological problem holistically

to give mechanistic explanation based on known facts –
mechanistic means in the context of laws of physics/chemistry

to project the mechanistic details onto the genetic information
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From Biologist’s Table

slide credits: Pavel Krejč́ı (MUNI LF)
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From Biologist’s Table

slide credits: Pavel Krejč́ı (MUNI LF)

Biological Problem

Why a human fibroblast cell misinterprets a certain growth factor?
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Systems Approach: The Grand Challenge
Complex Organism as a System
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Systems Approach: A Moderate Challenge
Population of Bacteria as a System

for a particular set of genes G
FG : (environment exposure, nutrition)→ growth profile

slide credits: Ralf Steuer (HU Berlin)
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Systems View of Processes Driving the Cell

nutrients enzymes

metabolic products

signals

proteins

regulatory elements

METABOLISM PROTEOSYNTHESIS
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The Cell as a Complex Interaction Network

slide credits: David Gilbert (Brunel Univ.)
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The Paradigm of Computational Systems Biology

Assumptions

The biological reality (a biophysical process) is understood as
a biological system.

A biological system is given as a network N of biochemical
components connected by chemical/physical interactions.

The components include relevant genes and gene products.
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Biological Networks
CRNs

basic form: chemical reaction networks (CRNs)
elementary chemical reactions
represent the flow of the mass

example:

S + E
r1→←
r2

SE
r3−→ P + E

SBGN standard notation, see https://www.sbgn.org
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Biological Networks
Reaction-Influence Networks

simplified form: reaction-influence networks (RINs)
chemical reactions influenced by other molecules
represent the modulated flow of the mass

example:

S
r4−→ P ; E

SBGN standard notation, see https://www.sbgn.org
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Biological Networks
Influence Networks

abstract form: influence networks (INs)
represent positive/negative influences among molecules
well fit incomplete knowledge
typically gene regulatory networks, signalling pathways

example:

SBGN standard notation, see https://www.sbgn.org
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Biological Networks are Large

genetic regulatory network of E. coli

see https://reactome.org for more...

20/54

https://reactome.org


...But Organised

genetic regulatory network of E. coli

slide credits: Uri Alon
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The Goal of Computational Systems Biology

The General Goal

For a biological system given by a network N reconstruct the
system’s dynamics:

Define a function that encodes the information (signal) processing
occuring in all components of the system in time.

FN : (input stimuli, environment signals)→ response signals
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Model-Based Workflow

SBML, diferenciální rovnice, 
boolovská sít, Petriho sít, ...

biological knowledge databases

biological network

hypothesis

model analysis

analytical methods, model checking
static analysis, numerical simulation,

new hypothesis inference

gene reporters, DNA microarray,
mass spectrometry, ... emergent properties

model questions

hypothesis testing, property detection,

model validation

network reconstruction model specification

Petri Net, ODEs, rule-based, process 
calculus, Boolean network, …

computer
lab
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From Networks to Models

How to reconstruct the dynamics FN of a network N ?

1 choose a modelling framework
2 associate every interaction in N with a suitable kinetic rule

describes how a state of affected components changes in time

3 build a computational model by combining kinetic rules
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Modelling Frameworks

continuous model

qualitative model

stochastic model

variables
continuous

abstracted

modeled
time

discrete

Monte Carlo simulation

Static analysis
Behavioral analysis

Simulation analysis

Steady state analysis

Numerical simulation
Simulation analysis

approximation

abstra
ctio

n abstraction

states

state-transition systems
states: discrete molecule numbers or qualities (on/off)

Continuous-Time Markov Chains
states: discrete molecule numbers

Ordinary Differential Equations
states: continuous concentrations
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Model Construction
Continuous View of CRNs

deterministic continuous-time dynamics of molecule population
molecules dissolved in the cell volume (a well-stirred “pool”)

molar concentration [M]=[mol · l−1]

A + B → AB
biophysical law of mass action kinetics:

v = k[A][B] [M · s−1]

d [A]
dt = −v
d [B]
dt = −v

d [AB]
dt = v

k [s−1] is a reaction-specific parameter

Waage, P.; Guldberg, C.M. (1864). Studier over Affiniteten. Forhandlinger i Videnskabs-selskabet i Christiania

(Transactions of the Scientific Society in Christiania) (in Danish): 35–45.
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Model Construction
Stochastic View of CRNs

stochastic continuous-time dynamics of molecule population
molecules distributed uniformly in the cell volume (well-stirred)

states describe molecules number (#)

A + B → AB
biophysical law of stochastic mass action describes an expected

rate of reaction event occurence:

v = k ·#A ·#B [s−1] #A = 5
#B = 2

#AB = 0

 v→

 #A = 4
#B = 1

#AB = 1


k [s−1] is a reaction-specific parameter, depends on cell volume

Gillespie, Daniel T. (1977). ”Exact Stochastic Simulation of Coupled Chemical Reactions”. The Journal of

Physical Chemistry. 81 (25): 2340–2361.
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Model Construction
Continuous View of INs

controlled synthesis of X and its pontaneous degradation

so-called (sigmoidal) Hill kinetics

β, γ ... production and degradation parameters;

K ... parameter of the influence
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Model Construction
Qualitative View of Influence Nets – Discrete Regulatory Networks

A ∈ {0, 1, 2}, B ∈ {0, 1}
tAA = 2, tAB = 1
KA,∅ = 2
KA,{A} = 0
KB,∅ = 0
KB,{A} = 1

introduced by René Thomas [1973]

refined by Chaouiya et al. [2003]
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Model Construction
Summary

for a given network a model is built on first principles

continuous models

denotational semantics defines the continuous flow

ẋ = f (x , p)

stochastic and qualitative models

operational semantics defines events execution
quantitative or discrete parameters

Challenges (for Computer Science!)

How to deal with large, potentially infinite networks?

How to deal with unknown parameters?

30/54



Model Construction
Summary

for a given network a model is built on first principles

continuous models

denotational semantics defines the continuous flow
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Model Specification
Comprehensive Modelling Platform (CMP)

https://e-cyanobacterium.org
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Model Specification
Example: Cyanobacteria Clock

https://e-cyanobacterium.org
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Syntax Matters
Programming Languages for Biological Systems

rule-based: generalise reactions to rules

components have states (e.g., phosphorylated sites)

rules are executed in a solution (soup of entities) in a
context-free manner (match → apply)

all kind of models can be generated

BCSL example:

S{u}::KaiC::KaiC6::cyt <=> S{p}::KaiC::KaiC6::cyt

executes on any serine site of any KaiC in a hexamer

Other Languages

Kappa, BNGL, Chromar, LBS, ... (rule-based)

SPiM, BioSPI, ... (process-algebraic)
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Required Knowledge
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Model Construction
Dealing with Unknown Parameters

traditional approaches – parameter estimation
⇒ finding a single “optimal” value fitting experimental data

computer science approach – parameter synthesis
⇒ finding values satisfying given dynamical properties/hypotheses

parameters

biological
process

computational
model

observed
properties

specified
properties

reconstruction

observation

reconstruction

formalisation

synthesis/tuning
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Temporal Logics for Biological Systems

qualitative properties (LTL, CTL, HCTL)

modalities (possibilities/necessities in future behaviour)
reachability of particular (sets of) states
temporal ordering of events, monotonicity
temporal correlations of model variables
stability (attractors, basins of attraction)

quantitative properties
deterministic (MTL, MITL, STL, STL*)

enhance modalities with (dense) time information
exact timing of events, time-bounds
value-freezing (HSB 2012)

stochastic (PLTL, PCTL, CSL)

probability of property satisfaction
stochasticity combined with time
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Problem Formulation
Parameter Synthesis for Dynamical Systems

parameter constraints

behavior constraints

p |=
Φ
I ∧
M

(p) |=
ϕ

ModelM(p) :

res
tri
ct
p

restrict f

ẋ = f (x , p)

ϕ

ΦI

Parameter Synthesis Problem

Assume P is the admissible parameter space. Given a behaviour
constraint ϕ, parameter constraint ΦI , and a parameterised
model M, find the maximal set P ⊆ P of parameterisations
such that p |= ΦI and M(p) |= ϕ for all p ∈ P.
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Parameter Synthesis Workflow

behaviour
constraints

parameter
constraints

model

parameterised
Kripke structure

temporal formulae

valid parameter
valuations

Coloured
Model

Checking

formalisation
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Parameterised Kripke Structures
State Transition Systems with Parameters

Transitions with Parameters (coloured transitions)

••

••••

••

••

•••• ••

••

••
•

•••

••

••

••••

each parameter valuation represents one Kripke structure

shared state space, different transition space

symbolic representation of parameters

symbolic PKS: every transition is associated with a formula
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From ODE Models to Kripke Structures

(Rectangular Abstraction Transition System)

set discrete value domains per each variable

overapproximation by RATS

Xa Xb

piece−wise affine ODEs

[Belta, Habets, Schuppen] [de Jong, Batt]
Rectangular Abstraction of Reaction Kinetics Rectangular Abstraction of Regulatory Kinetics

multi−affine ODEs
Hill kinetics

per each reactant species
with limitation of 1 molecule

mass action kinetics

Xb
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Coloured Model Checking
Symbolic Parameter Space

Φstate00→state10 := −2.5 · k1 > 0 ∨ −2.5 · k1 + 2.5 · k2 > 0

The transition exists if and only if the formula is satisfiable.
Local parameter constraints are predicates over reals.
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Pithya Tool

http://pithya.ics.muni.cz [CAV 2017]
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Case Study: Cell Cycle Control System

Example: decision making in living cells
— to divide or not to divide?

E2F1pRB

[Swat et al. 2004]

decisions implemented by circuits of positive and negative interactions
modelling of cell cycle since 1970 [Goldbetter et al.]
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Case Study: Cell Cycle Control System
Parameterised Non-Linear Mathematical Model

ẋ = f (x(t), p)

f ... phase space (vector field), f : Rn × Rm → Rn

x ... state vector (Rn)

p ... parameter vector (Rm)

0 0,8 1,6 2,4 3,2 4 4,8 5,6 6,4 7,2 8 8,8 9,6 10,4 11,2 12 12,8 13,6 14,4 15,2 16 16,8 17,6 18,4 19,2

0,8

1,6

2,4

3,2

4

4,8

5,6

6,4

7,2

8

8,8

9,6

10,4

11,2

12

12,8

Insert text here

pRB

E2F1

0 0,8 1,6 2,4 3,2 4 4,8 5,6 6,4 7,2 8 8,8 9,6 10,4 11,2 12 12,8 13,6 14,4 15,2 16 16,8 17,6 18,4 19,2

0,8

1,6

2,4

3,2

4

4,8

5,6

6,4

7,2

8

8,8

9,6

10,4

11,2

12

12,8

Insert text here

pRB

E2F1

p = 0.006 p = 0.012
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Properties Specification: HCTL

HCTL — hybrid CTL with past

state formulae

ϕ ::= true | p | ¬ϕ | ϕ ∧ ϕ | Eψ | Aψ |
Êψ | Âψ | x | ↓ x .ϕ | @x .ϕ | ∃x .ϕ

path formulae

ψ ::= Xϕ | ϕUϕ
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Properties Specification: HCTL

Single-state patterns

sink (stable steady state): ↓ s.AX s

source (only self-loops, no other incoming): ↓ s. ÂX s

Multi-state patterns

state in a nontrivial SCC: ↓ s.EX EF s

state in a final SCC (generalised sink): ↓ s.AG EF s

Relations among patterns

at least two sinks in the whole system:
∃s.∃t.(@s.¬t ∧ AX s) ∧ (@t.AX t)
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Case Study: Regulation of G1/S Cell Cycle Transition

E2F1pRB

[Swat et al. 2004]

d [pRB]
dt

= k1
[E2F1]

Km1+[E2F1]
J11

J11+[pRB]
− φpRB [pRB]

d [E2F1]
dt

= kp + k2
a2+[E2F1]2

K2
m2+[E2F1]2

J12
J12+[pRB]

− φE2F1[E2F1]

unknown parameter: φpRB

• ϕ1 := ∃s.∃t.(@s.AG EF s) ∧ (@t.¬EF s ∧ AG EF t)

• ϕ2 := ¬ϕ1 ∧ ↓ s.AG EF s ∧ E2F1 < 4

• ϕ3 := ¬ϕ1 ∧ ↓ s.AG EF s ∧ E2F1 > 4
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Case Study: Results
E

2
F

1

pRB

ϕ2 ϕ1 ϕ3

φpRB = 0.0075 φpRB = 0.0115 φpRB = 0.014
[0.002, 0.011] [0.011, 0.0136] [0.0136, 0.5]

results agree with numerical methods up-to precision of
approximation/discretisation
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Parameter Synthesis Chronology

Related Work

Batt et al. 2007: RoverGene, BDD/Polytopes-based approach

Batt et al. 2010: GNA, symbolic approach, piecewise affine

Grosu et al. 2011: RoverGene revisited, approximation improved

Bogomolov et al. 2015, SpaceEx, multi-affine hybrid automata

Our Contribution

HIBI 2010, TCCB 2012: coloured LTL model checking, piecewise
multi-affine, parallel algorithm

CMSB 2015: coloured CTL model checking, piecewise multi-affine,
parallel algorithm

ATVA 2016, CMSB 2016: parameters represented in first order
logic, SMT solver employed, interdependent parameters

HSB 2015, FM 2016: discrete bifurcation analysis

CMSB 2017, ICCTCS 2018: analysis of terminal SCCs, application
to cyanobacteria models

TACAS 2019: application to bifurcation analysis of TCP
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Contribution Overview
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Conclusions

using methods of computer science we can specify biological
systems rigorously

formal methods allow exhaustive exploration of models under
parameter uncertainty

use of formal methods is important for synthetic biology – we
want to know what we construct!

analysis becomes a push-button technology

applications in cyber-physical systems

problems:

the grand challenge not yet targeted
modellers trained in biophysics and computer science needed
scalability
we need methods giving results up to given precision instead of
insisting on exact results

Machine Learning to learn FN ?
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Parameter Exploration of Stochastic Models

pRB E2F1

Gene a interactions Gene b interactions
a → a + A 1 b → b+ B 0.05

aB → aB + A 1 bB → bB + B 1
A + a ↔ aA 100; 10 A + b ↔ bA 100; 10
B + a ↔ aB 100; 10 B + b ↔ bB 100; 10

Proteins degradation
A → γA B → γB

CTMC with 1078 states and 5919 transitions

hypothesis about stability of B in low/high population

expected time spent in states with low/high population of B

formalization in CSL using cumulative rewards

R=?[C≤1000](B < 3), R=?[C≤1000](B > 7)
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Parameter Exploration of Stochastic Models

Robustness analysis - stability in low population of B

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0 0

100 100

200 200

300 300

400 400

500 500

600 600

700 700

800 800

900 900

1000 1000

R
=

?
 [

C
<

=
10

00
] 

(B
<

3)

State #17 (A=0, B=1, a=1, b=1, aA=0, aB=0, bA=0, bB=0)

Robustness = 52.277895 ± 0.812319
PLA of robustness = 52.276979 ± 0.023224

Robustness = 304.658784 ± 2.900726
PLA of robustness = 304.674472 ± 0.191669

Robustness = 627.991011 ± 3.398032
PLA of robustness = 628.007720 ± 0.335658

γA

γB = 0.15

γB = 0.10

γB = 0.05

γB= 0.15

γB= 0.10

γB= 0.05

in average 3.0 · 106 reaction steps, 100 subspaces, 7 hours
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Parameter Exploration of Stochastic Models

Robustness analysis - stability in high population of B

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0 0

100 100

200 200
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400 400
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R
=

?
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C
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=
10

00
] 

(B
>

7)

State #17 (A=0, B=1, a=1, b=1, aA=0, aB=0, bA=0, bB=0)

Robustness = 745.90669 ± 2.289315
PLA of robustness = 745.89886 ± 0.229235

Robustness = 253.440577 ± 3.133557
PLA of robustness = 253.400837 ± 0.238478

Robustness = 49.212717 ± 2.494463
PLA of robustness = 49.088951 ± 0.243332

γA

γB = 0.15

γB = 0.10

γB = 0.05

in average 3.0 · 106 reaction steps, 100 subspaces, 7 hours
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