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Language Models 1

e Modeling variants

— feed-forward neural network
— recurrent neural network

— long short term memory neural network

e May include input context
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Recurrent Neural Language Model
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Predict the first word of a sentence
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Recurrent Neural Language Model
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Predict the second word of a sentence

Re-use hidden state from first word prediction
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Recurrent Neural Language Model A=
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Predict the third word of a sentence

... and so on
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Recurrent Neural Language Model
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Recurrent Neural Translation Model 7

e We predicted the words of a sentence

e Why not also predict their translations?
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Encoder-Decoder Model SN
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e Obviously madness

e Proposed by Google (Sutskever et al. 2014)
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What is Missing? 9

e Alignment of input words to output words

= Solution: attention mechanism
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neural translation model
with attention
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Input Encoding 1
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e Inspiration: recurrent neural network language model on the input side
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Hidden Language Model States 12

e This gives us the hidden states

e These encode left context for each word

e Same process in reverse: right context for each word
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Input Encoder 13
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e Input encoder: concatenate bidrectional RNN states

e Each word representation includes full left and right sentence context
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Encoder: Math 14
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e Input is sequence of words z;, mapped into embedding space F z;

e Bidirectional recurrent neural networks

;7 m,Ea:‘]
%

hy = f(h] 1, E xj)

e Various choices for the function f(): feed-forward layer, GRU, LSTM,, ...
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Decoder 15

e We want to have a recurrent neural network predicting output words

| Softmax Softmax Softmax ..
Prediction

Si RNN RNN RNN RNN Decoder State
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Decoder 16

e We want to have a recurrent neural network predicting output words
Evi Output Word
Embeddings
t' e e lee) eeion
i Softmax Softmax Softmax .
Prediction
Si m m RNN RNN Decoder State

e We feed decisions on output words back into the decoder state

Philipp Koehn Machine Translation: Neural Machine Translation 6 October 2020



Decoder 17

e We want to have a recurrent neural network predicting output words
Evi Output Word
Embeddings
t' e ) Hem) pdeton
i i Softmax i Softmax i Softmax e
Prediction
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Decoder State

Ci Input Context

e We feed decisions on output words back into the decoder state
e Decoder state is also informed by the input context
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More Detail 18

e Decoder is also recurrent neural network
over sequence of hidden states s;

Ey Output Word
Embeddings si = f(si—1, BEy_1,¢;)
yi Output Word @ Again, various choices for the function f():
ti () Output Word feed-forward layer, GRU, LSTM, ...
jj — Prediction 4 Output word y; is selected by computing a

s an )| Decoder State  VECHOI Ui (same size as vocabulary)

ti=W(Us;_1+VEy,_1+ Cc)

(H

Input Context
then finding the highest value in vector ¢;

e If we normalize ¢;,, we can view it as a
probability distribution over words

e [y, is the embedding of the output word y;
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Attention 19
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e Given what we have generated so far (decoder hidden state)

e ... which words in the input should we pay attention to (encoder states)?
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Attention 20

Si m RNN Decoder State
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e Given: — the previous hidden state of the decoder s,_ 1
— the representation of input words h; = (717, h;)

e Predict an alignment probability a(s;_1, h;) to each input word j
(modeled with with a feed-forward neural network layer)

Philipp Koehn Machine Translation: Neural Machine Translation 6 October 2020



Attention 21
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e Normalize attention (softmax)
 explalsiihy))
> expla(si-1, hi))
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Attention 22
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e Relevant input context: weigh input words according to attention: ¢; = ) .

] Oéijhj
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Attention 23
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e Use context to predict next hidden state and output word
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traimning
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Comparing Prediction to Correct Word =

yi - Output Word
- log ti[yi] Error
I Softmax Softmax Softmax .
Prediction

e Current model gives some probability ¢;|y;| to correct word y;

e We turn this into an error by computing cross-entropy: —log t;|v;]
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Computation Graph 26

e Math behind neural machine translation defines a computation graph

e Forward and backward computation to compute gradients for model training
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Unrolled Computation Graph 27
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Batching 28

o Already large degree of parallelism

— most computations on vectors, matrices

— efficient implementations for CPU and GPU
e Further parallelism by batching

— processing several sentence pairs at once
— scalar operation — vector operation

— vector operation — matrix operation

— matrix operation — 3d tensor operation

e Typical batch sizes 50-100 sentence pairs
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Batches 29

e Sentences have different length

e When batching, fill up unneeded cells in tensors

= A lot of wasted computations
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Mini-Batches 30

e Sort sentences by length, break up into mini-batches

e Example: Maxi-batch 1600 sentence pairs, mini-batch 80 sentence pairs
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Overall Organization of Training 3

e Shuffle corpus

e Break into maxi-batches

e Break up each maxi-batch into mini-batches
e Process mini-batch, update parameters

e Once done, repeat

o Typically 5-15 epochs needed (passes through entire training corpus)
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o,

deeper models
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Deeper Models 33

e Encoder and decoder are recurrent neural networks
e We can add additional layers for each step

e Recall shallow and deep language models
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Shallow Deep Stacked Deep Transitional

e Adding residual connections (short-cuts through deep layers) help
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Deep Decoder

e Two ways of adding layers

— deep transitions: several layers on path to output
— deeply stacking recurrent neural networks

e Why not both?
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Deep Encoder 35

e Previously proposed encoder already has 2 layers

— left-to-right recurrent network, to encode left context
— right-to-left recurrent network, to encode right context

= Third way of adding layers
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