Compression techniques of neural networks applied on NMT

Martin Geletka, 456576

Outline

- NMT (results english <-> czech)
	- State of NMT
	- Tools used
	- Results and future work
- **•** Compression techniques
	- Quantization
	- Distillation
	- MobileBERT
	- Lottery ticket hypothesis

Neural Machine Translation

п

History

History

Ruled based systems

1950 - 1990

Statistical Machine

Translation 1990 - 2010 **Neural Machine Translation** $2010 -$

*for more info [Stanford CS224N course](https://www.youtube.com/watch?v=XXtpJxZBa2c&list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z&index=8)

Used tools / libraries

Tokenization: <https://github.com/google/sentencepiece>

Training and additional scripts: <https://github.com/pytorch/fairseq>

Evaluation: <https://github.com/alvations/sacremoses>

Logging: <https://wandb.ai/site>

Used data

Data:

and the control of the control of

- TRAINING:
	- czeng_train
- VALIDATION:
	- newstest 2018
	- tedtalk (first 10k sentences)
- TEST
	- newstest 2019
	- czeng test
	- tedtalk

Used hyper params

Architecture:

- Using Wasmani 2017 transformer
- 6 layers encoder, 6 layers decoder
- 16 heads per layer

Tokenization:

● BPE algorithm implemented in sentencepiece

Approach with 16-bit training

Original paper: <https://arxiv.org/abs/1806.00187>

Comparison with other

- Compare locally with sacremose but also submitted to Euro Matrix
- $Cs \rightarrow En$
	- Newstests 2019: http://matrix.statmt.org/matrix/systems_list/1866
- \bullet En -> Cs
	- Newstest 2017: http://matrix.statmt.org/matrix/systems_list/1867
	- Newstest 2019: http://matrix.statmt.org/matrix/systems_list/1896

Future 'base' experiments

Table 2: Automatic evaluation on (English->Czech) newstest2017. The three scores in parenthesis show BLEU difference relative to the previous line.

<https://www.aclweb.org/anthology/W18-6424.pdf>

Compression techniques

Quantization

Quantization as post processing

- 2011 Used and tested already in pre transformer era
- achieves a good compression rate with the additional benefit of accelerating inference on supporting hardware.
- But the errors made by these approximations accumulate in the computations operated during the forward pass, inducing a significant drop in performance

*[Improving the speed of neural networks on CPUs](https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37631.pdf)

Quantization as post processing

- 2011 Used and tested already in pre transformer era
- achieves a good compression rate with the additional benefit of accelerating inference on supporting hardware.
- But the errors made by these approximations accumulate in the computations operated during the forward pass, inducing a significant drop in performance
- Solution:
	- Quantized Aware Training

Q8BERT - Quantization Schema

$$
\text{Quantize}(x|S^x, M) := \text{Clamp}(\lfloor x \times S^x \rfloor, -M, M),
$$

$$
\text{Clamp}(x, a, b) = \min(\max(x, a), b)
$$

$$
M=2^{b-1}-1
$$

 $S^x = \frac{M}{\text{EMA}(\text{max}(|x|))} \qquad \qquad S^W = \frac{M}{\text{max}(|W|)}$

<https://arxiv.org/pdf/1910.06188.pdf>

Q8BERT: Results

QUANTIZATION NOISE FOR EXTREME MODEL COMPRESSION

- Traditional vector quantization = split the matrix W into its p columns and learn a codebook on the resulting p vectors.
- Product Quantization splits each column into m subvectors and learns the same codebook for each of the resulting $m \times p$ subvectors.
- \bullet Iterative PQ = quantize layers sequentially from the lowest to the highest, and finetune the upper layers as the lower layers are quantized
- Then combining fixed-point with product quantization

QUANTIZATION NOISE - Training

- Select just subset of block and apply quantization
- \bullet When selecting all blocks = QAT
- Advantage of selecting only subset = unbiased gradients continue to flow via blocks unaffected by the noise

<https://arxiv.org/pdf/2004.07320.pdf>

QUANTIZATION NOISE - Results

Distillation

Knowledge distillation

- a compression technique in which the student model is trained to reproduce the behaviour of the teacher model
- Training loss

○ Distillation loss

$$
L_{ce} = \sum_i t_i * \log(s_i)
$$

- Cosine Embedding loss
- Original training loss (f.e. e masked language modeling loss)

Distill BERT - student

- **● Architecture**
	- token-type embeddings and the pooler are removed while the number of layers is reduced by a factor of 2.

● Initialization

○ initialize the student from the teacher by taking one layer out of two

Distill BERT - results

● has 40% fewer parameters than BERT and is 60% faster than BERT

Table 1: DistilBERT retains 97% of BERT performance. Comparison on the dev sets of the GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the medians of 5 runs with different seeds.

Distill BERT - Ablation study

Table 4: Ablation study. Variations are relative to the model trained with triple loss and teacher weights initialization.

Mobile BERT

Architecture

Figure 1: Illustration of three models: (a) BERT; (b) Inverted-Bottleneck BERT (IB-BERT); and (c) MobileBERT. In (b) and (c), red lines denote inter-block flows while blue lines intra-block flows. MobileBERT is trained by layer-to-layer imitating IB-BERT.

https://arxiv.org/abs/2004.02984

Architecture

Table 1: The detailed model settings of a few models. h_{inter}, h_{FFN}, h_{embedding}, #Head and #Params denote the inter-block hidden size (feature map size), FFN intermediate size, embedding table size, the number of heads in multi-head attention, and the number of parameters, respectively.

Training

Figure 2: Diagrams of (a) auxiliary knowledge transfer (AKT), (b) joint knowledge transfer (JKT), and (c) progressive knowledge transfer (PKT). Lighter colored blocks represent that they are frozen in that stage.

Results

 $\sim 10^{11}$ m $^{-1}$.

Lottery ticket hypothesis

Idea

- In general the sparser the network, the slower the learning and the lower the eventual test accuracy
- But

Idea

- In general the sparser the network, the slower the learning and the lower the eventual test accuracy
- But may be there exist smaller subnet works which train from the start and learn at least as fast as their larger counterparts while reaching similar test accuracy

LTH - formal definition

- \bullet Consider a dense feed-forward neural network f(x; θ) with initial parameters θ = θ₀ ~ D_θ.
- When optimizing with stochastic gradient descent (SGD) on a training set, f reaches minimum validation loss *l* at iteration *j* with test accuracy *a* .
- \bullet In addition, consider training f(x; m . θ_0) with a mask m ∈ {0, 1} θ on its parameters such that its initialization is m $\; \theta_{\rm o}$. When optimizing with SGD on the same training set (with m fixed), f reaches minimum validation loss *l'* at iteration *j'* with test accuracy *a'*
- The lottery ticket hypothesis predicts that ∃ m for which *j' ≤ j* (commensurate training time), *a' ≥ a* (commensurate accuracy), and $\left|\left|\text{m}\right|\right|_0$ << $\left|\theta\right|$ (fewer parameters).

Identifying winning tickets

- Randomly initialize a neural network with params D_{ρ}
- Train the network for j iterations, arriving at parameters θ ^{*i*}
- Prune *p%* of the parameters in *θj* , creating a mask *m*
- \bullet Reset the remaining parameters to their values in θ_o , creating the winning ticket.
- "Upgrade":
	- iterative pruning
	- train, prune, and reset the network over n rounds

Figure 3: Test accuracy on Lenet (iterative pruning) as training proceeds. Each curve is the average of five trials. Labels are P_m —the fraction of weights remaining in the network after pruning. Error bars are the minimum and maximum of any trial.

Iterative vs One shot pruning

Figure 4: Early-stopping iteration and accuracy of Lenet under one-shot and iterative pruning. Average of five trials; error bars for the minimum and maximum values. At iteration 50,000, training accuracy $\approx 100\%$ for $P_m \ge 2\%$ for iterative winning tickets (see Appendix D, Figure 12).

Iterative vs One shot pruning

- Iterative pruning extracts smaller winning tickets, but their are costly to find
- One-shot pruning makes it possible to identify winning tickets without this repeated training
- One-shot indeed can find winning tickets, but iteratively-pruned winning tickets learn faster and reach higher test accuracy at smaller network sizes

Lottery tickets and NMT

- Tools used
	- Fairseq
	- Checkpoint averaging
	- Testing on newstests 2014
- Used 2 models Transformer Base and Transformer Base & Transformer Big
- In contrast with original paper:
	- Used late rewinding

Figure 2: Winning ticket initialization performance for Transformer Base models trained on machine translation.

Figure 3: Winning ticket initialization performance for Transformer Big models trained on machine translation.

Questions?