
PV181 Laboratory of security

and applied cryptographyand applied cryptography

Random values and Random Random values and Random

Number Generators

Marek Sýs

sysox@mail.muni.cz, A405

You will learnYou will learn

• What types of RNG you can find in libraries.

• What RNGs are (in)apropriate for crypto.

• bitwise operations (heavily used in crypto).• bitwise operations (heavily used in crypto).

• How to improve randomness of RNG output.
– using hash function and bitwise XOR– using hash function and bitwise XOR

• How to generate secure random values:
– in python, C, C++– in python, C, C++

• Why standard rand() and others (e.g. Mersenne

Twister) are insecure.Twister) are insecure.

RNG types RNG types

1. True random (TRNG)1. True random (TRNG)
● Source: physical device (noise)

radio decay, thermal noise, …

● non-deterministic, aperiodic, slow

1. Pseudo random (PRNG)
● Source: software function● Source: software function

● deterministic, periodic, very fast

3

PRNG PRNG

defined by 3 functions: Init, Transform, Output defined by 3 functions: Init, Transform, Output

State = Init(Seed)State = Init(Seed)

State = Trans(State)

rnd = Out(State) rnd = Out(State)

Cryptographically secure (CSPRNG) - generated rnd

values give no information about next or previousvalues give no information about next or previous

rnd values no info about Seed, State

4

Standard library functionsStandard library functions

ANSI C(rand), Java(java.util.random),... - uses fast ANSI C(rand), Java(java.util.random),... - uses fast

but very insecure LCG generator

Linear Congruential Generator(LCG)

● s =a*s +b mod m (fixed constants a,b,c)● sn+1=a*sn+b mod m (fixed constants a,b,c)

Out is identity (id) func. i.e., generated rnd=StateOut is identity (id) func. i.e., generated rnd=State

next rnd values easily computednext rnd values easily computed

Trans is linear: f(x) = ax+b mod m

previous rnd values can be computed easily previous rnd values can be computed easily

5

Example

ANSI C portable functionsANSI C portable functions

6

PracticePractice

PRNG values:PRNG values:

• CSPRNG seeded by TRNG

TRNG (entropy source):

typically combined internally • typically combined internally

with PRNGwith PRNG

• output stored in “entropy pool”
– depends on all previous generated– depends on all previous generated

rnd values (chaining of values,

not replacement)

7

TRNGTRNG

Linux: two entropy pools (files) dev/(u)randomLinux: two entropy pools (files) dev/(u)random

• keyboard timings, mouse movements, IDE timings

Windows: similar to Linux

• binary register • binary register HKEY_LOCAL_MACHINE\SYSTEM\RNG\Seed

Additional entropy sources (if available):

• TPM, RNRAND instruction, hardware system clock • TPM, RNRAND instruction, hardware system clock

(RTC), Interrupt timings, havege daemon

8

Weak generatorsWeak generators

Python random() - “Mersenne Twister(MT) as the Python random() - “Mersenne Twister(MT) as the

core generator. It produces 53-bit precision floats and

has a period of 2**19937-1”has a period of 2**19937-1”

C rand(): LCG generators (+ some tweaks)C rand(): LCG generators (+ some tweaks)

• glibc (used by GCC) rand() - LCG and “linear

additive feedback” (r[i] = r[i-31] + r[i-3])

C++: LCG or MT or Lagged fibonacciC++: LCG or MT or Lagged fibonacci

• minstd_rand(0 or 1), mt19937(_64),

9

Unix infrastructureUnix infrastructure

Special files - reading files provides random data Special files - reading files provides random data

• /dev/random
– always produces entropy but,– always produces entropy but,

– blocking - can block the caller until entropy available

(entropy estimation)(entropy estimation)

• /dev/urandom
– amount of entropy not quaranteed– amount of entropy not quaranteed

– always returns quickly (non blocking)

Usage:Usage:

• /dev/urandom preferred, only shortly after boot use

/dev/random (see Myths about dev/urandom)/dev/random (see Myths about dev/urandom)

10

Linux RNG designLinux RNG design

• 3 entropy pools (store random data)

w
it
h

 n
ic

e
 s

c
h

e
m

e

• 3 entropy pools (store random data)

• can be viewed as PRNG - “Init” func mixes

(using SHA1) input rnd data to the state state

w
it
h

 n
ic

e
 s

c
h

e
m

e

(using SHA1) input rnd data to the state state

depends input data and all previous states!!

• input_pool (state of 4096 bits)w
it
h

 n
ic

e
 s

c
h

e
m

e

• input_pool (state of 4096 bits)
• accumulate (collects, compress) the entropy from

hardware events to the state’s
 b

lo
g

w
it
h

 n
ic

e
 s

c
h

e
m

e

hardware events to the state

• feeds exclusively (no access to this pool)
– blocking_pool (state of 1024 bytes)G

a
u
v
r
it

’s

– blocking_pool (state of 1024 bytes)

– non-blocking_pool (ChaCha20 stream cipher)

• only key (256) is fed by true rnd values S
e

e

G
a
u
v
r
it

• only key (256) is fed by true rnd values

– state (“seed” for other pools) is saved at shutdown
11

Unix infrastructureUnix infrastructure

Operations on files: Operations on files:

• to get entropy just open and read from the file

use read(2) but always check if returned value == – use read(2) but always check if returned value ==

requested number of bytes (reading can be requested number of bytes (reading can be

interrupted!!!)

• It is also possible to write to /dev/random• It is also possible to write to /dev/random

– privileged (harmless) user can mix random data into the

pool - entropy is increased (but not entropy counter)

• information about the pool: proc/sys/random/*• information about the pool: proc/sys/random/*

12

Unix: methods and qualityUnix: methods and quality

Good sources(C):Good sources(C):

• direct read from initialized random/urandom

• getrandom() + flags: • getrandom() + flags:
– source: random or urandom

– blocking or non-blocking (also blocks until initialised)– blocking or non-blocking (also blocks until initialised)

• get_random_bytes() - kernel space

• similar in Python: os.urandom(), os.getrandom(), • similar in Python: os.urandom(), os.getrandom(),

secrets.token_bytes()

Weak sources:Weak sources:

• rand, time(rdtsc instruction, clock func,...),

uninitialized urandom uninitialized urandom
13

PracticePractice

1. Go to https://mybinder.org1. Go to https://mybinder.org

2. Copy link https://github.com/sysox/PV181_RNG/ to

Github field, press launchGithub field, press launch

3. Start with PV181_RNG_python.ipynb

4. Then PV181_RNG_C.ipynb4. Then PV181_RNG_C.ipynb

5. Write down the answers to Questions - they will be

discussed at the end of seminar. discussed at the end of seminar.

14

