
PV248 Python 1/49 January 10, 2022

PV248 Python
Petr Ročkai and Zuzana Baranová

Part A: Introduction
This document is a collection of exercises and commented examples
of source code (in Python). All of the source code included here is also
available as source files which you can edit and directly execute (we
will refer to these files as the source bundle). Additionally, this section
contains the rules and general guidelines that apply to the course as a
whole.
The latest version of this document along with the source bundle is
available both in the study materials in IS and on the student server
aisa:

• https://is.muni.cz/auth/el/fi/podzim2021/PV248/um/ – a PDF in
pv248.seminar.pdf and the source bundle in directories 01 through
12, t1 through t4 and sol – use the ‘download as ZIP’ option in the
sidebar to get entire directories in one go,

• log into aisa using ssh or putty, run pv248 update, then look under
~/pv248 (this chapter is in subdirectory 00).

We will update the files as needed, to correct mistakes and to include
additional material.1 On aisa, running pv248 update at any time will
update yourworking copies, taking care not to overwrite your changes.
It will also tell you which files have been updated.
Each of the following chapters corresponds to a single week of the
semester. The correspondence between exercises and the content of
the lectures is, however, somewhat loose, especially at the start of the
semester.
NB. If you are going to attend the lectures (you need to enroll separately,
subject code is PV288), all you need at the start is intuitive familiarity
with common programming concepts like classes, objects, higher-order
functions and function closures (which can be stored in variables), as
covered in e.g. PB006. You will get all the details that you may need in
the lectures. On the other hand, if you are not going to attend lectures,
you either need to already know all the theory, or you need to study it
in your free time (this subject is purely practical).

Part A.1: Course Overview

Welcome to PV248 Python Seminar.
Since this is a programming subject, most of the coursework – and
grading – will center around actual programming. There will be 2
types of programs that you will write in this seminar: tiny programs
for weekly exercises (around 10–30 minutes each) and small programs
for homework (a few hundred lines and anything from a few hours to
a day or two of work).
As you probably know by now, writing programs is hard and this
course won’t be entirely easy either. You will need to put in effort to
pass the subject. Hopefully, you will have learned something by the
end of it. Further details on the organisation of this course are in the
remaining files in this directory:

• 2_grading.txt – what is graded and how; what you need to pass,
• 3_tasks.txt – general guidelines that govern assignments,
• 4_reviews.txt – writing and receiving peer reviews.

Study materials for each week are in directories 01 through 12. Start
by reading 00_intro.txt. Assignments are in directories t1 through t4,

1 The exercises and tasks will be made available, at the latest, on the day before their ‘start date’
(see tables in the following sections). Of course, we will try to fill everything in sooner than
that.

one for each 4-week block and one extra for the examperiod. Theywill
be made available according to the schedule shown in 2_grading.txt.
The exercises for any givenweekwill make use of thematerial covered
in the lecture, though some weeks it will be a fairly loose fit. Especially
when the lecturematerial is broad (like inweeks 1, 2 and 5), the seminar
will mainly include general programming exercises. Topics will get
more specific and focused as the semester progresses. The lectures are
divided into 3 blocks, 4 lectures each. They will cover the following
topics:

block topic date

1 1. expressions, variables, functions 13.9.
2. objects, classes, types, mypy 20.9.
3. scopes, lexical closures 27.9.
4. iterators, generators, coroutines 4.10.

2 5. memory management, refcounting 11.10.
6. object and class internals 18.10.
7. generators & coroutines cont’d 25.10.
8. testing, profiling, pitfalls 1.11.

3 9. text, predictive parsing 8.11.
10. databases, relations vs objects 15.11.
11. asynchronous programming, http 22.11.
12. math and statistics 29.11.

Part A.2: Grading

To pass the subject, you need to meet the following criteria:

• complete 8 out of the 12 seminars, that is:
∘ submit at least 3 preparatory exercises
∘ attend the corresponding seminar

• complete 4 tasks selected from 3 or 4 sets
∘ the tasks must come from at least 3 different sets
∘ which tasks you pick is entirely up to you

• write 6 peer reviews for tasks:
∘ you can only review what you passed yourself
∘ you must cover 2 different tasks (with at least 2 reviews each)

The deadline for peer reviews is 13.2.2022 (the Sunday after the end
of the exam period, or a week and a half after the last deadline for the
last task set). Doing more work than required is always OK.

A.2.1 Seminars Each chapter in this exercise collection has 2 types of
exercises: ‘preparatory’ and ‘regular’. Completing a seminar, then, has
2 parts: working out 3 of the preparatory exercises and attending the
seminar, which will include the following (group) activities:

• analysis of some of the submitted solutions,
• making improvements to the same,
• solving some of the ‘regular’ exercises live.

In addition to the group activities, the teacher will live-solve one of
the regular exercises with comments, input and questions from you
as a group.
All weekly exercises have test cases enclosed: it is sufficient to pass
those test cases. Any bugs that slip bymay be dissected in the following
seminar. The submission deadlines for prep exercises are as follows:

PV248 Python 2/49 January 10, 2022

chapter lecture deadline seminar

01 13.9. 18.9. 23:59 20.9. –23.9.
02 20.9. 25.9. 23:59 27.9. –30.9.
03 27.9. 2.10. 23:59 4.10.– 7.10.
04 4.10. 9.10. 23:59 11.10.–14.10.

05 11.10. 16.10. 23:59 18.10.–21.10.
06 18.10. 23.10. 23:59 25.10.–28.10.
07 25.10. 30.10. 23:59 1.11.– 4.11.
08 1.11. 6.11. 23:59 8.11.–11.11.

09 8.11. 13.11. 23:59 15.11.–18.11.
10 15.11. 20.11. 23:59 22.11.–25.11.
11 22.11. 27.11. 23:59 29.11.– 2.12.
12 29.11. 4.12. 23:59 6.12.– 9.12.

If your seminar falls on a holiday (this affects Tuesday 28.9., Thursday
28.10. andWednesday 17.11.), you can attend with a different group
that week.

A.2.2 Tasks There will be 4 sets of 3 tasks each. As mentioned earlier,
you are required to complete, at minimum, 4 tasks covering at least
3 of the sets. Submitting more is of course allowed and encouraged.
There are 8 deadlines for each set, summarised in the next section.
Please remember that the test suite is strictly binary: you either pass
or you fail, and that the deadlines are firm. More details and guidelines
are in 3_tasks.txt.

A.2.3 Peer Review Reading and understanding code is an important
skill, and even though it’s not easy to practice, we are going to at least
try. You will be required to read, understand and provide feedback for
6 task solutions written by your classmates. The rules for peer review
are as follows:

• only tasks are eligible for reviews (not the weekly exercises),
• you can submit any code (even completely broken) for peer review,
• to write a review for any given submission, you must have already

passed the respective task yourself,
• there are no interim deadlines for requesting or providing peer

reviews (only the deadline at the end of the exam period).

It is okay to point out correctness problems during peer reviews, with
the expectation that this might help the recipient complete the task.
This is the only allowed form of cooperation (more on that below).

A.2.4 Plagiarism Copying someone else’swork or letting someone else
copy yours will cause that item to be crossed off your achievements,
alongwith onemore of the samekind. That is, if you ‘borrow’ a solution
to a preparatory exercise, that weekwon’t count toward the 8 seminars
that you need to complete, and youwill be required to complete 9 other
seminars, instead of 8. Likewise, if you borrow a solution to a task, that
taskwill be crossed off. Youwill then have to solve 4 tasks in 3 different
sets to pass the subject.
You are also responsible for keeping your solutions private. If you only
use the pv248 command on aisa, it will make your ~/pv248 directory
inaccessible to anyone else (this also applies to school-provided UNIX
workstations). Keep it that way. If you work on your solution using
other computers, make sure they are secure. Do not publish your
solutions anywhere (on the internet or otherwise). All parties in a
copying incident will be treated equally.
No cooperation is allowed (not even design-level discussion about how
to solve the exercise) on tasks and on weekly exercises which you
submit. If you want to study with your classmates, that is okay – but
only cooperate on code which is not going to be submitted by either
party. If you want to be sure of this, limit teamwork to the ‘regular’
exercises (in files called rN_*.py).

Part A.3: Tasks

A.3.1 Schedule There are 4 sets of tasks and each has a 4-week win-

dowwhen it can be handed in. The dates are as follows (both start and
end are at the midnight which ends the given day):

set start end

T.1 24.9. 0:00 21.10. 23:59
T.2 22.10. 0:00 18.11. 23:59
T.3 19.11. 0:00 16.12. 23:59
T.4 7.1. 0:00 3.2. 23:59

A.3.2 Evaluation There are three sets of automated tests which are
executed on the solutions you submit:

• The first set is called syntax and runs immediately after you submit.
Only 2 checks are performed: the code can be loaded (no syntax
errors) and it passes mypy.

• The next step is sanity and runs every noon andmidnight. Its main
role is to check that your program meets basic semantic require-
ments, e.g. that it recognizes correct inputs and produces correctly
formatted outputs. The ‘sanity’ test suite is for your information
only and does not guarantee that your solution will be accepted.
The ‘sanity’ test suite is only executed if you passed ‘syntax’.

• Finally the verity test suite covers most of the specified functional-
ity and runs twice a week – every Thursday and Monday at mid-
night, right after the deadline. If you pass the verity suite, the task
is considered complete. The verity suite will not run unless the
code passes ‘sanity’.

Only the most recent submission is evaluated, and each submission
is evaluated at most once in the ‘sanity’ and once in the ‘verity’ mode.
Youwill find your latest evaluation results in the IS in notepads (one per
assignment). You can still submit new versions after you pass ‘verity’
on a given task (e.g. because you want to improve the code for review).
If your later submission happens to fail tests, this is of no consequence
(the task is still considered complete).
The deadlines for verity tests are as follows:

try day T.1 T.2 T.3 T.4

start Fri 24.9. 22.10. 19.11. 7.1.

1 Mon 27.9. 25.10. 22.11. 10.1.
2 Thu 30.9. 28.10. 25.11. 13.1.

3 Mon 4.10. 1.11. 29.11. 17.1.
4 Thu 7.10. 4.11. 2.12. 20.1.

5 Mon 11.10. 8.11. 6.12. 24.1.
6 Thu 14.10. 11.11. 9.12. 27.1.

7 Mon 18.10. 15.11. 13.12. 31.1.
8 Thu 21.10. 18.11. 16.12. 3.2.

A.3.3 Submitting Solutions The easiest way to submit a solution is
this:

$ ssh aisa.fi.muni.cz

$ cd ~/pv248/t1

<edit files until satisfied>

$ pv248 submit t1_splay

The number of times you submit is not limited (but not every submis-
sion will be necessarily evaluated, as explained above).
NB. Only the files listed in the assignment will be submitted and eval-
uated. Please put your entire solution into existing files.
You can check the status of your submissions by issuing the following
command:

$ pv248 status

In case you already submitted a solution, but later changed it, you can
see the differences between your most recent submitted version and
your current version by issuing:

PV248 Python 3/49 January 10, 2022

$ pv248 diff

The lines starting with - have been removed since the submission,
those with + have been added and those with neither are common to
both versions.

A.3.4 Guidelines The general principles outlined here apply to all
assignments. The first and most important rule is, use your brain –
the specifications are not exhaustive and sometimes leave room for
different interpretations. Do your best to apply the most sensible one.
Do not try to find loopholes (all you are likely to get is failed tests).
Technically correct is not the best kind of correct.
Think about pre- and postconditions. Aim for weakest preconditions
that still allow you to guarantee the postconditions required by the
assignment. If your preconditions are too strong (i.e. you disallow
inputs that are not ruled out by the spec) you may fail the tests.
Do not print anything that you are not specifically directed to. Pro-
grams which print anything that wasn’t specified will fail tests.
You can use the standard library. Third-party libraries are not allowed,
unless specified as part of the assignment. Make sure that your classes
andmethods use the correct spelling, and that you accept and/or return
the correct types. In most cases, either the ‘syntax’ or the ‘sanity’ test
suite will catch problems of this kind, but we cannot guarantee that it
always will – do not rely on it.
If you don’t get everything right the first time around, do not despair.
The expectation is that most of the time, you will pass on the second
or third attempt. In the real world, the first delivered version of your
product will rarely be perfect, or even acceptable, despite your best
effort to fulfill every customer requirement. Only very small programs
can be realistically written completely correctly in one go.

Part A.4: Peer Reviews

Youmust participate in the peer review system, both as a reviewer (see
earlier section on grading) and as a review recipient. In addition to
fulfilling the requirements of the course, we hope that the reviews you
get will help you better understand how other people see your code,
and perhaps also learn something new about writing code.

A.4.1 Requesting Reviews Not all submissions are worth reviewing,
and only you can decide which are. Therefore, when you would like
to have your code reviewed, use the following command:

$ pv248 review --request t1_splay

Substitute other tasks for t1_splay as appropriate. You can request
a review on a task which you did not pass yet. You may get up to 3
reviews for any given request. The request you create is for your latest
submission at the time (so make sure you submit first, ask for reviews

later).
The pv248 update command will indicate whether someone reviewed
your code, by printing a line of the form:

A reviews/hw1.from.xlogin

To read the review, look at the files in ~/pv248/reviews/hw1.from.xlogin

– you will find a copy of your submitted sources along with comments
provided by the reviewer.2 After you read your review, you should
write a few sentences for the reviewer into note.txt in the review
directory (please wrap lines to 80 columns) and then run:

$ pv248 review --accept 100

Instead of 100, you can use a smaller number, indicating a 0–100 rating
of the review you received. This does not serve any other purpose
except give an idea to the recipient how satisfied you were, except if
you indicate 0 (in which case, we will investigate what went wrong).
Please rate the reviews honestly!

A.4.2 Writing Reviews To write a review, start with the following
command:

$ pv248 review --list

You will get a list of review requests for which you are an eligible
reviewer. In particular, only tasks that you have already successfully
solved will show up. If you like one of the entries, note its number (e.g.
7) and type:

$ pv248 review --checkout 7

$ cd ~/pv248/reviews/

$ ls

There will be a directory for each of the reviews you agreed to write.
Each directory contains the source code submitted for review, along
with further instructions (the file readme.txt).
When inserting your comments, please use double ## to make the
comment stand out, like this:

A longer comment should be wrapped to 80 columns or less,

and each line should start with the ## marker.

You can write up to 9 reviews (though you only need to do 6, but you
can help out more people if you write more reviews, and get more
practice while doing it). The limit of 9 is applied at checkout time: once
you agree to do a particular review, you cannot change your mind and
‘uncheckout’ it to reclaim one of the 9 slots.

2 There is also a copy in the study materials in IS, in the directory named reviews. Only you can
see the reviews intended for you.

Part 1: Python 101
As we have mentioned, each chapter is split into 3 sections: demon-
strations, preparatory exercises and regular exercises. The demos are
complete programs with comments that should give you a quick in-
troduction to using the constructs that you will need in the actual
exercises. The demos for the first week are these:

1. list – using lists
2. dict – using dictionaries
3. str – using strings

Sometimes, there will be ‘elementary’ exercises: these are too simple
to be a real challenge, but they are perhaps good warm-up exercises
to get into the spirit of things. You might want to do them before you
move on to the prep exercises.

1. fibfib – iterated Fibonacci sequence

The second set of exercises are those that are meant to be solved be-
fore the corresponding seminar. The first set should be submitted by
18th of September (you need to solve at least 3 of the exercises). The
corresponding seminars are in the week starting on 20th of September.
Now for the exercises:

1. rpn – Reverse Polish Notation with lists
2. image – compute the image of a given function
3. ts3esc – escaping magic character sequences
4. alchemy – transmute and mix inputs to reach a goal
5. chain – solving a word puzzle
6. cycles – a simple graph algorithm with dictionaries

The third set of exercises are so-called ‘regular’ exercises. Feel free to
solve them ahead of time if you like. Some of them will be done in

PV248 Python 4/49 January 10, 2022

the seminar. When you are done (or get stuck), you can compare your
code to the example solutions listed near the end of the PDF, or in the
directory sol in the source bundle. The exercises are:

1. permute – compute digit permutations of numbers
2. rfence – the rail fence transposition cipher
3. life – the game of life
4. breadth – statistics about a tree
5. radix – radix sorting of strings
6. bipartite – check whether an input graph is bipartite

Part 1.d: Demonstrations

1.d.1 [list] In Python, list literals are written in square brackets, with
items separated by commas, like this:

a_list = [1, 2, 3]

Lists aremutable: the value of a list may change, without the list itself
changing identity. Methods like append and operators like += update
the list in place.
Lists are internally implemented as arrays. Appending elements is
cheap, and so is indexing. Adding and removing items at the front is
expensive. Lists are indexed using (again) square brackets and indices
start from zero:

one = a_list[0]

Lists can be sliced: if you put 2 indices in the indexing brackets, sepa-
rated by a colon, the result is a list with the range of elements on those
indices (the element on the first index is included, but the one on the
second index is not). The slice is copied (this can become expensive).

b_list = a_list[1 : 3]

You can put pretty much anything in a list, including another list:

c_list = [a_list, [3, 2, 1]]

You can also construct lists using comprehensions, which are written
like for loops:

d_list = [x * 2 for x in a_list if x % 2 == 1]

There are many useful methods and functions which work with lists.
We will discover some of them as we go along. To see the values of the
variables above, you can do:

python -i d1_list.py

>>> d_list

[2, 6]

1.d.2 [dict] Dictionaries (associative arrays) are another basic (and
very useful) data structure. Literals are written using curly braces,
with colons separating keys from values and commas separating mul-
tiple key-value pairs from each other:

a_dict = { 1: 1, 2: 7, 3: 1 }

In Python, dictionaries are implemented as hash tables. This gives
constant expected complexity for most single-item operations (inser-
tion, lookup, erase, etc.). One would expect that this also means that
dictionaries are unordered, but this is not quite so (details some other
day, though).
Like lists, dictionaries aremutable: you can add or remove items, or,
if the values stored in the dictionary are themselves mutable, update
those. However, keys cannot be changed, since this would break the
internal representation. Hence, only immutable values can be used as
keys (or, to be more precise, only ‘hashable’ values).
Most operations on items in the dictionary arewritten using subscripts,

like with lists. Unlike lists, the keys don’t need to be integers, and if
they are integers, they don’t need to be contiguous. To update a value
associated with a key, use the assignment syntax:

a_dict[1] = 2

a_dict[337] = 1

To iterate over key-value pairs, use the items()method:

a_list = []

for key, value in a_dict.items():

a_list.append(key)

You can ask (efficiently) whether a key is present in a dictionary using
the in operator:

assert 2 in a_dict

assert 4 not in a_dict

(side note: assert does what you would expect it to do; just make sure
you do notwrite it like a function call, with parentheses, that will give
you unexpected results if combined with a comma)
Again, like with lists, we will encounter dictionaries pretty often, so
you will get acquainted with their methods soon enough.

1.d.3 [str] The last data type we will look at for now is str, which
represents Unicode strings. Unlike lists and dictionaries, but quite
like integers, strings in Python are immutable. You can construct new
strings from old strings, but once a string exists, it cannot be updated.
There are many kinds of string literals in Python, some of them quite
complicated. The basic variations use single or double quotes (and
there is no difference between them, though some programmers give
them different semantics).

a_str = 'some string'

To access a string, you can index it, like you would a list:

b_str = a_str[1]

Rather confusingly, the result of indexing a str is another str, with just
one character (code point) in it. In this sense, indexing strings behaves
more like slicing than real indexing. There is no data type to represent
a single character (other than int, of course).
Since strings are immutable, you cannot update them in place; the
following will not work:

a_str[1] = 'x'

Also somewhat confusingly, you can use += to seemingly mutate a
string:

a_str += ' duh'

What happened? Well, += can do two different things, depending on
its left-hand side. If the LHS is a mutable type, it will internally call a
method on the value to update it. If this is not possible, it is treated as
the equivalent of:

c_str = 'string'

c_str = c_str + ' …and another'

which of course builds a new string (using +, which concatenates two
strings to make a new one) and then binds that new string to the name
c_str. We will deal with this in more detail in the lecture.
Important corollaries: strings, being immutable, can be used as dictio-
nary keys. Building long strings with += is pretty inefficient. In essence,
even though you can subscript them, strings behavemore like integers
than like lists. Try to keep this in mind.
As with previous two data types, we will encounter quite a few meth-
ods and functions which work with strings in the course. Also, the

PV248 Python 5/49 January 10, 2022

reference documentation is pretty good. Use it. The most basic way to
get to it is using the help function of the interpreter:

>>> help('')

>>> help({})

>>> help([])

Of course, you can also break out the web browser and point it to
https://docs.python.org/3.

Part 1.e: Elementary Exercises

1.e.1 [fibfib] Consider the following sequences:

s[0] = 1 1 2 3 5 8 13 21 …

s[1] = 1 1 1 2 5 21 233 10946 …

s[2] = 1 1 1 1 5 10946 2.2112⋅10⁴⁸ 1.6952⋅10²²⁸⁷ …

s[3] = 1 1 1 1 5 1.6952⋅10²²⁸⁷ …

More generally:

• s[0][k] = fib(k) is the k-th Fibonacci number,
• s[1][k] = fib(fib(k)) is the s[0][k]-th Fibonacci number,
• s[2][k] = fib(k) is the s[0][s[1][k]]-th Fibonacci number,
• and so on.

Write fibfib, a function which computes s[n][k].

def fibfib(n, k):

pass

Part 1.p: Prep Exercises

1.p.1 [rpn] In the first exercise, we will implement a simple RPN (Re-
verse Polish Notation) evaluator.
The only argument the evaluator takes is a listwith two kinds of objects
in it: numbers (of type int, float or similar) and operators (for simplicity,
these will be of type str). To evaluate an RPN expression, we will need
a stack (which can be represented using a list, which has useful append
and popmethods).
Implement the following unary operators: neg (for negation, i.e. unary
minus) and recip (for reciprocal, i.e. the multiplicative inverse). The
entry point will be a single function, with the following prototype:

def rpn_unary(rpn):

pass

The second part of the exercise is now quite simple: extend the
rpn_unary evaluator with the following binary operators: +, -, *, /, **
and two ‘greedy’ operators, sum and prod, which reduce the entire con-
tent of the stack to a single number. Think about how to share code
between the two evaluators.
Note that we write the stack with ‘top’ to the right, and operators
take arguments from left to right in this ordering (i.e. the top of the
stack is the right argument of binary operators). This is important for
non-commutative operators.

def rpn_binary(rpn):

pass

Some test cases are included below. Write a few more to convince
yourself that your code works correctly.

1.p.2 [image] You are given a function fwhich takes a single integer
argument, and a list of closed intervals domain. For instance:

f = lambda x: x // 2

domain = [(1, 7), (3, 12), (-2, 0)]

Find the image of the set represented by domain under f, as a list of dis-

joint, closed intervals, sorted in ascending order. Produce the shortest
list possible.
Values which are not in the image must not appear in the result (e.g. if
the image is 1, 2, 4, the intervals would be (1, 2), (4, 4) – not (1, 4) nor
(1, 1), (2, 2), (4, 4)).

def image(f, domain):

pass

1.p.3 [ts3esc] Big Corp has an in-house knowledge base / information
filing system. It does many things, as legacy systems are prone to, and
many of them are somewhat idiosyncratic. Either because the relevant
standards did not exist at the time, or the responsible programmer
didn’t like the standard, so they rolled their own.
The system has become impossible to maintain, but the databases con-
tain a vast amount of information and are in active use. The system
will be rewritten from scratch, but will stay backward-compatible with
all the existing formats. You are on the team doing the rewrite (we are
really sorry to hear this, honest).
The system stores structured documents, and one of its features is that
it can format those documents using templates. However, the template
system got a little out of hand (they always do, don’t they) and among
other things, it is recursive. Each piece of information inserted into
the template is itself treated as a template and can have other pieces
of the document substituted.
A template looks like this:

template_1 = '''The product ‘${product}’ is made by ${manufacturer}

in ${country}. The production uses these rare-earth metals:

#{ingredients.rare_earth_metals} and these toxic substances:

#{ingredients.toxic}.''';

The system does not treat $ and # specially, unless they are followed by
a left brace. This is a rare combination, but it turns out it sometimes
appears in documents. To mitigate this, the sequences $${ and ##{

are interpreted as literal ${ and #{. At some point, the authors of the
system realized that they need to write literal $${ into a document. So
they came up with the scheme that when a string of 2 or more $ is
followed by a left brace, one of the $ is removed and the rest is passed
through. Same with #.
Your first task is to write functions which escape and un-escape strings
using the scheme explained above. The template component of the
system is known simply as ‘template system 3’, so the functions will
be called ts3_escape and ts3_unescape. Return the altered string. If the
string passed to ts3_unescape contains the sequence #{ or ${, return
None, since such string could not have been returned from ts3_escape.

def ts3_escape(string):

pass

def ts3_unescape(string):

pass

1.p.4 [alchemy] You are given:

• a list of available substances and their quantities,
• a list of desired substances and their quantities,
• a list of transmutation rules, where each is a 2-tuple:

∘ first element is the list of required inputs,
∘ the second element is the list of outputs,
∘ both input and output is a tuple of an element and quantity.

The sum of the quantities on the right hand side of the list is strictly
less than that on the left side. Decide whether it is possible to get from
the available substances to the desired, using the given rules: return a
boolean. It does not matter whether there are leftovers. Rules can be
used repeatedly.

def alchemy(available, desired, rules):

PV248 Python 6/49 January 10, 2022

pass

The rules from tests in a more readable format, for your convenience:

• 3 chamomile + 4 water + 1 verbena + 2 valerian root → relaxing
concoction

• 7 ethanol→ elixir of life
• 4 water + 2 mandrake root + 2 valerian root + nightshade→ elixir

of life
• 5 tea leaves→ tea tree oil
• 2 primrose oil + 2 water + 1 tea tree oil→ skin cleaning oil
• 1 iron + 1 carbon→ steel
• 1 footprint→ 1 carbon
• 6 ice→ 5 water
• 3 steel→ 1 cable
• 10 lead + philosopher stone + 2 unicorn hair→ 10 gold

1.p.5 [chain] In this exercise, your task is to find the longest possible
word chain constructible from the input words. The input is a set of
words. Return the largest number of words that can be chained one
after the other, such that the first letter of the second word is the same
as the last letter of the first word. Repetition of words is not allowed.
Examples:

• { goose, dog, ethanol }→ 3 (dog – goose – ethanol)
• { why, new, neural, moon }→ 3 (moon – new – why)

def word_chain(words):

pass

1.p.6 [cycles] You are given a graph, in the form of a dictionary, where
keys are numbers and values are lists of numbers (i.e. it is an oriented
graph and its vertices are numbered; however, note that the number-
ing does not need to be consecutive, or only use small numbers).
Write a function, has_cyclewhich decideswhether a cyclewith at least
one even-numbered vertex is reachable from vertex 1.
Hint: look up Nested DFS. Essentially, run DFS from vertex 1 and
when you backtrack through an even-numbered vertex (i.e. in DFS
postorder), run another DFS from that vertex to detect any cycles that
reach the (even-numbered) initial vertex of the innerDFS.All the inner
searches should share the ‘visited’ marks. Be careful to implement the
DFS correctly.

def has_cycle(graph):

pass

Part 1.r: Regular Exercises

1.r.1 [permute] Given a number n and a base b, find all numbers whose
digits (in base b) are a permutation of the digits of n.
Examples:

(125)₁₀ → { 125, 152, 215, 251, 512, 521 }

(1f1)₁₆ → { (1f1)₁₆, (f11)₁₆, (11f)₁₆ }

(20)₁₀ → { 20, 2 }

def permute_digits(n, b):

pass

1.r.2 [rfence] In this exercise, youwill implement the Rail Fence cipher
algorithm, also called the Zig-Zag cipher.
The way this cipher works is as follows: there is a given number of
rows (‘rails’). You write your message on those rails, starting in the top-
left corner and moving in a zig-zag pattern: ↘↗↘↗↘↗ from top
to bottom rail and back to top rail, until the text message is exhausted.
Example: HELLO_WORLDwith 3 rails

H...O...R..
.E.L._.O.L.
..L...W...D

The encrypted message is read off row by row: HOREL_OLLWD.
Your task is to write the function which, given the number of
rails/rows, returns the encrypted text.

def encrypt(text, rails):

pass

And decipher the text back to the sent message.

def decrypt(text, rails):

pass

1.r.3 [life] The game of life is a 2D cellular automaton: cells form a
2D grid, where each cell is either alive or dead. In each generation
(step of the simulation), the new value of a given cell is computed from
its value and the values of its 8 neighbours in the previous generation.
The rules are as follows:

state alive neigh. result

alive 0–1 dead
alive 2–3 alive
alive 4–8 dead

dead 0–2 dead
dead 3 alive
dead 4-8 dead

An example of a short periodic game:

○○○

○

○

○

○○○→ →

Write a function which, given a set of life cells, computes the set of life
cells after n generations. Live cells are given using their coordinates in
the grid, i.e. as (x, y) pairs.

def life(cells, n):

pass

1.r.4 [breadth] Assume a non-empty tree with nodes labelled by
unique integers:

1

2 3

4 5 6 7

We can store such a tree in a dictionary like this:

def example_tree():

return {1: [2, 3],

2: [4, 5, 6],

3: [7],

4: [], 5: [], 6: [], 7: []}

Keys are node numbers while the values are lists of their (direct) de-
scendants. Write a function which computes a few simple statistics

PV248 Python 7/49 January 10, 2022

about the widths of individual levels of the tree (a level is the set of
nodes with the same distance from the root; its width is the number
of nodes in it). Return a tuple of average, median and maximum level
width.

def breadth(tree):

pass

from math import isclose

1.r.5 [radix] Implement the radix sort algorithm for strings. Use a
dictionary to keep the buckets, since the ‘radix’ (the number of all
possible ‘digits’) is huge for Unicode. To iterate the dictionary in the
correct order, you can use:

sorted(d.items(), key = lambda x: x[0])

NB. Make sure that you don’t accidentally sort the whole sequence
using the built-in sort in your implementation.

def radix_sort(strings):

pass

1.r.6 [bipartite] Given an undirected graph in the form of a set of
2-tuples (see below), decide whether the graph is bipartite. That is,
whether each vertex can be assigned one of 2 colours, such that no
edge goes between vertices of the same colour. Hint: BFS.
The graph is given as a set of edges E. For any (u, v) ∈ E, it is also
true that (v, u) ∈ E (you can assume this in your algorithm). The set
of vertices is implicit (i.e. it contains exactly the vertices which appear
in E).

def is_bipartite(graph):

pass

Part 2: Objects, Classes and Types
This week, the exercises require static type annotations that can be
checked with mypy --strict. In most weeks from now on, prep exer-
cises will require mypy annotations, though they will be optional in
most tasks (but you may find them helpful). Please do not use Any in
the annotations, or the type: ignore pragma. While not enforced by
the submission evaluator (sometimes those are hard to avoid, like the
cases already present in the skeletons), over-use will be frowned upon.
Demonstrations:

1. mypy – annotation basics

Elementary exercises:

1. geometry – define basic types for planar geometry

Prep exercises:

1. dsw – Day, Stout &Warren balance binary trees
2. ts3norm – template system 3, normalization
3. ts3render – template system 3, rendering into strings
4. bool – boolean expression trees
5. intersect – computing intersections in a plane
6. list – linked list with generic type annotations

Regular exercises:

1. json – recursive data types without gross hacks
2. rotate – traversing a tree using rotations
3. ts3bugs – more fun with template system 3
4. treap – randomized search trees
5. distance – shortest distance between two 2D objects
6. istree – finding cycles in object graphs

Part 2.d: Demonstrations

2.d.1 [mypy] In this unit (and most future units), we will add static type
annotations to our programs, to be checked by mypy. Annotations can
be attached to variables, function arguments and return types. In
--strictmode (which we will be using), mypy requires that each func-
tion header (arguments and return type) is annotated. e.g. the function
divisor_count takes a single int parameter and returns another int:

def divisor_count(n: int) -> int:

count = 0

for i in range(1, n + 1):

if n % i == 0:

count += 1

return count

Part 2.e: Elementary Exercises

2.e.1 [geometry] In this exercise, you will implement basic types for
planar analytic geometry. First define classes Point and Vector (tests
expect the coordinate attributes to be named x and y):

class Point:

def __init__(self, x: float, y: float) -> None:

self.x = x

self.y = y

def __sub__(self, other: Point) -> Vector: # self - other

pass # compute a vector

def translated(self, vec: Vector) -> Point:

pass # compute a new point

class Vector:

def __init__(self, x: float, y: float) -> None:

pass

def length(self) -> float:

pass

def dot(self, other: Vector) -> float: # dot product

pass

def angle(self, other: Vector) -> float: # in radians

pass

Let us define a line next. The vector returned by get_direction should
have a unit length and point from p1 to p2. The point returned by
get_point should be p1.

class Line:

def __init__(self, p1: Point, p2: Point) -> None:

pass

def translated(self, vec: Vector) -> Line:

pass

def get_point(self) -> Point:

pass

def get_direction(self) -> Vector:

pass

The Segment class is a finite version of the same. Also add a get_direc-

tionmethod, like above (or perhaps inherit it, your choice).

class Segment:

def __init__(self, p1: Point, p2: Point) -> None:

pass

def length(self) -> float:

pass

PV248 Python 8/49 January 10, 2022

def translated(self, vec: Vector) -> Segment:

pass

def get_endpoints(self) -> Tuple[Point, Point]:

pass

And finally a circle, using a center (a Point) and a radius (a float).

class Circle:

def __init__(self, c: Point, r: float) -> None:

pass

def center(self) -> Point:

pass

def radius(self) -> float:

pass

def translated(self, vec: Vector) -> Circle:

pass

Equality comparison.

def point_eq(p1: Point, p2: Point) -> bool:

return isclose(p1.x, p2.x) and \

isclose(p1.y, p2.y)

def dir_eq(u: Vector, v: Vector) -> bool:

return isclose(u.angle(v), 0) or \

isclose(u.angle(v), pi)

def line_eq(l1: Line, l2: Line) -> bool:

return dir_eq(l1.get_direction(), l2.get_direction()) and \

(point_eq(l1.get_point(), l2.get_point()) or

dir_eq(l1.get_point() - l2.get_point(),

l1.get_direction()))

Please make sure that your implementation is finished before consult-
ing tests; specifically, try to avoid reverse-engineering the tests to find
out how to write your program.

Part 2.p: Prep Exercises

2.p.1 [dsw] Implement the DSW (Day, Stout andWarren) algorithm for
rebalancing binary search trees. The algorithm is ‘in place’ – implement
it as a procedure that modifies the input tree. You will find suitable
pseudocode onWikipedia, for instance.
The constructor of Node should accept a single parameter (the value).

class Node: pass # add ‹left›, ‹right› and ‹value› attributes

class Tree: pass # add a ‹root› attribute

def dsw(tree): # add a type signature here

pass

2.p.2 [ts3norm] (continued from 01/p3_ts3esc) Eventually, wewill want
to replicate the actual substitution into the templates. This will be done
by the ts3_render function (next exercise). However, somewhat sur-
prisingly, that functionwill only take one argument, which is the struc-
tured document to be converted into a string. Recall that the template
system is recursive: before ts3_render, another function, ts3_combine
combines the document and the templates into a single tree-like struc-
ture. One of your less fortunate colleagues is doing that one.
This structure has 5 types of nodes: lists, maps, templates (strings),
documents (also strings) and integers. In the original system there
are more types (like decimal numbers, booleans and so on) but it has
been decided to add those later. Many documents only make use of
the above 5.
A somewhat unfortunate quirk of the system is that there are multiple
types of nodes represented using strings. The way the original system
dealt with this is by prefixing each string by its type; $document$ (with
a trailing space!) and $template$. Those prefixes are stored in the
database. To make matters worse, there are strings with no prefix:

earlier versions looked for ${ and #{ sequences in the string, and if
it found some, treated the string as a template, and as a document
otherwise.
The team has rightly decided that this is stupid. You drew the short
straw and now you are responsible for function ts3_normalize, which
takes the above slightly baroque structure and sorts the strings into
two distinct types, which are represented using Python classes. Some-
one else will deal with converting the database ‘later’.

class Document:

def __init__(self, text: str) -> None:

self.text = text

class Template:

def __init__(self, text: str) -> None:

self.text = text

Each of the above classes keeps the actual text in a string attribute
called text, without the funny prefixes. The lists, maps and integers
fortunately arrive as Python list, dict and int into this function. Re-
turn the altered tree: the strings substituted for their respective types.

def ts3_normalize(tree: InputDoc) -> OutputDoc:

pass

2.p.3 [ts3render] At this point, we have a structure made of dict, list,
Template, Document and int instances. The lists and maps can be arbi-
trarily nested. Within templates, the substitutions give dot-separated
paths into this tree-like structure. If the top-level object is a map, the
first component of a path is a string which matches a key of that map.
The first component is then chopped off, the value corresponding to
the matched key is picked as a new root and the process is repeated
recursively. If the current root is a list and the path component is a
number, the number is used as an index into the list.
If a dict meets a number in the path (we will only deal with string
keys), or a listmeets a string, treat this as a precondition violation –
fail an assert – and let someone else deal with the problem later.
The ${path} substitution performs scalar rendering, while #{path} sub-
stitution performs composite rendering. Scalar rendering resolves the
path to an object, and depending on its type, performs the following:

• Document → replace the ${…} with the text of the document; the
pasted text is excluded from further processing,

• Template→ the ${…} is replaced with the text of the template; occur-
rences of ${…} and #{…}within the pasted text are further processed,

• int→ it is formatted as a decimal number and the resulting string
replaces the ${…},

• list → the length of the list is formatted as if it was an int, and
finally,

• dict → .default is appended to the path and the substitution is
retried.

Composite rendering using #{…} is similar, but:

• a dict is rendered as a comma-separated (with a space) list of its
values, after the keys are sorted alphabetically, where each value is
rendered as a scalar,

• a list is likewise rendered as a comma-separated list of its values
as scalars,

• everything else is an error: again, treat this as a failed precondition,
fail an assert, and leave it to someone else to fix later.

The top-level entity passed to ts3_rendermust always be a dict. The
starting template is expected to be in the key $template of that dict.
Remember that ##{…} and $${…} must remain untouched. If you en-
counter nested templates while parsing the path, e.g. ${abc${d}}, give
up (again via a failed assertion); however, see also exercise r3).

def ts3_render(tree: OutputDoc) -> str:

pass

PV248 Python 9/49 January 10, 2022

2.p.4 [bool] In this exercise, we will evaluate boolean trees, where
operators are represented as internal nodes of the tree. All of the
Node types should have an evaluatemethod. Implement the following
Node types (logical operators): and, or, implication, equality, nand. The
operators should short-circuit (skip evaluating the right subtree) where
applicable. Leaves of the tree contain boolean constants.
Example of a boolean tree:

∧

∨ ⇒

1 0 1 1

In this case the or (∨) node evaluates to True, the implication (⇒) evalu-
ates to True as well, and hence the whole tree (and, ∧) also evaluates to
True.
Add methods and attributes to Node and Leaf as/if needed.

class Node:

def __init__(self) -> None:

self.left : Optional[Node] = None

self.right : Optional[Node] = None

class Leaf(Node):

def __init__(self, value: bool) -> None:

self.truth_value = value

Complete the following classes as appropriate.

class AndNode: pass

class OrNode: pass

class ImplicationNode: pass

class EqualityNode: pass

class NandNode: pass

2.p.5 [intersect] Wefirst import all the classes from e1_geometry, since
we will want to use them.
What we will do now is compute intersection points of a few object
type combinations. We will start with lines, which are the simplest.
You can find closed-form general solutions for all the problems in this
exercise on the internet. Use them.
Line-line intersect either returns a points, or a Line, if the two lines
are coincident, or None if they are parallel.

def intersect_line_line(p: Line, q: Line) \

-> Union[Point, Line, None]:

pass

A variation. Re-use the line-line case.

def intersect_line_segment(p: Line, s: Segment) \

-> Union[Point, Segment, None]:

pass

Intersecting lineswith circles is a littlemore tricky. Checking e.g. Math-
World sounds like a good idea. It might be helpful to translate both
objects so that the circle is centered at the origin. The function returns
a either None (the line and circle do not intersect), a single Point (the
line is tangent to the circle) or a pair of points.

def intersect_line_circle(p: Line, c: Circle) \

-> Union[None, Point, Tuple[Point, Point]]:

pass

It’s probably quite obvious that users won’t like the above API. Let’s
make a single intersect() that will work on anything (that we know
how to intersect, anyway). You can use type(a) or isinstance(a,

some_type) to find the type of object a. You can compare types for
equality, too: type(a) == Circlewill do what you think it should.

def intersect(a: Union[Line, Segment, Circle],

b: Union[Line, Segment, Circle]) \

-> Union[None, Point, Line, Segment,

Tuple[Point, Point]]:

pass

2.p.6 [list] Implement a linked list with the following operations:

• append – add an item at the end
• join – concatenate 2 lists
• shift – remove an item from the front and return it
• empty – is the list empty?

The class should be called Linked and should have a single type parame-
ter (the type of item stored in the list). The joinmethod should re-use
nodes of the second list. The second list thus becomes empty.

class Linked: pass

Part 2.r: Regular Exercises

2.r.1 [json] Now implement the classes JsonArray and JsonObject, with
get and setmethods (which take a key/index) and in the case of JsonAr-
ray, an append and a popmethod. The setmethods should also accept
‘raw’ str and int objects.

class JsonArray: pass

class JsonObject: pass

The classes JsonStr and JsonInt are going to be a little special, since
they should behave like str and int, but also provide get/set (which
fail with an assertion) to make life easier for the user.

class JsonInt: pass

class JsonStr: pass

2.r.2 [rotate] You might be familiar with the zipper data structure,
which is essentially a ‘linked list with a finger’. Let us consider traversal
of binary trees instead of lists. Implement two methods, rotate_left
and rotate_right, on a binary tree object.
Thesemethods shuffle the tree so that the left/right child of the current
root becomes the new root. If rotating right, the old root becomes the
left child of the new root, and the previous left child of the new root is
attached as the right child of the old root. If rotating left, the opposite.
Notably, these rearrangements preserve the in-order of the tree.
Question: can we reach all nodes using just these two rotations? Can
you think of an operation that, combinedwith the two rotations, would
make the entire tree reachable? Can you think of a set of operations
thatmake the entire tree reachable and preserve in-order? Learnmore
in T.1.

class Tree:

def __init__(self, value) -> None:

self.left : Optional[Tree] = None

self.right : Optional[Tree] = None

self.value = value

def rotate_left(self): pass

def rotate_right(self): pass

2.r.3 [ts3bugs] Let’s pick up where p3_ts3render left off. It turns out
that the original system had a bug, where a template could look like
this: ${foo.bar}.baz} – if ${foo.bar} referenced a template and that
template ended with ${quux (notice all the oddly unbalanced brackets!),
the systemwould then paste the strings to get ${quux.baz} and proceed
to perform that substitution.
The real clincher is that template authors started to use this as a feature,

PV248 Python 10/49 January 10, 2022

and now we are stuck with it. Replicate this functionality. However,
make sure that this does not happen when the first part of the pasted
substitution comes from a document!
The original bug would still do the substitution if the second part was a
document and not a template. Feel free to replicate that part of the bug
too. As far as anyone knows, the variant with template + document is
not abused in the wild, so it is also okay to fix it.
Now the other part. If you encounter nested templates while parsing
the path, first process the innermost substitutions, resolve the inside
path and append the path to the outer one, then continue resolving
the outer path.
Example: ${path${inner.tpl}}, first resolve inner.tpl, append the re-
sult after path, then continue parsing. If the inner.tpl path leads to a
document with text .outside.2, the outer path is path.outside.2.

2.r.4 [treap] A treap is a combination of a binary search tree and a
binary heap. Of course, a single structure cannot be a heap and a
search tree on the same value:

• a search tree demands the value in the right child to be greater than
the value in the root,

• a max heap demands that the value in both children be smaller
than the root (and hence specifically in the right child).

Treap has therefore a pair of values in each node: a key and a priority.
The tree is arranged so that it is a binary search tree with respect to
keys, and a binary heap with respect to priorities.
The role of the heap part of the structure is to keep the tree approx-
imately balanced. Your task is to implement the insertion algorithm
which works as follows:

1. insert a new node into the tree, based on the key alone, as with a
standard binary search tree,

2. if this violates the heap property, rotate the newly inserted node
toward the root, until the heap property is restored.

The deeper the node is inserted, the more likely it is to violate the heap
property and the more likely it is to bubble up, causing the affected
portion of the tree to be rebalanced by the rotations. Remember that
rotations do not change the in-order of the tree and hence cannot
disturb the search tree property.

class Treap(Generic[T]):

def __init__(self, key: T, priority: int):

self.left : Optional[Node] = None

self.right : Optional[Node] = None

self.priority = priority

self.key = key

def insert(self, val, prio): pass

2.r.5 [distance] In case there are no intersections, it makes sense to
ask about distances of two objects. In this case, it also makes sense to
include points, and we will start with those:

def distance_point_point(a: Point, b: Point) -> float:

pass

def distance_point_line(a: Point, l: Line) -> float:

pass

If we already have the point-line distance, it’s easy to also find the
distance of two parallel lines:

def distance_line_line(p: Line, q: Line) -> float:

pass

Circles vs points are rather easy, too:

def distance_point_circle(a: Point, c: Circle) -> float:

pass

A similar idea works for circles and lines. Note that if they intersect,
we set the distance to 0.

def distance_line_circle(l: Line, c: Circle) -> float:

pass

And finally, let’s do the friendly dispatch function:

def distance(a: Union[Point, Line, Circle],

b: Union[Point, Line, Circle]) -> float:

pass

2.r.6 [istree] We define a standard binary tree:

class Tree:

def __init__(self) -> None:

self.left : Optional[Tree] = None

self.right : Optional[Tree] = None

However, not all structures built from the above data type are nec-
essarily trees, since it’s possible to create cycles. Write a predicate,
is_tree, which decides if a given instance is actually a tree (i.e. it does
not contain an undirected cycle).

def is_tree(tree):

pass

Part 3: Lexical Closures
Preparatory exercises:

1. merge – combine items in a dictionary
2. dice – dicing and slicing lists
3. newton – finding roots with closures
4. sort – sorting and grouping with callbacks
5. file – make pure functions work with files
6. counter – keeping state

Regular exercises:

1. fold – folding lists
2. trees – folding trees
3. bisect – finding roots of general functions
4. each – traversing data structures
5. objects – a closure-based object system
6. inherit – the same, extended with simple inheritance

Part 3.p: Prep Exercises

3.p.1 [merge] Write a function merge_dict which takes these 3 argu-
ments:

• a dict instance, in which some keys are deemed equivalent: the
goal of merge_dict is to create a new dictionary, where all equivalent
keys have been merged; keys which are not equivalent to anything
else are left alone (though the single value is still passed through
combine),

• a list of set instances, where each set describes one set of equiva-
lent keys (the sets are pairwise disjoint), and finally,

• a function combinewhich takes a list of values (not a set, because
we may care about duplicates): merge_dict will pass, for each set
of equivalent keys, all the values corresponding to those keys into
combine.

PV248 Python 11/49 January 10, 2022

In the output dictionary, create a single key for each equivalent set:

• the key is the smallest of the keys from the set which were actually
present in the input dict,

• the value is the result of calling combine on the list of values associ-
ated with all the equivalent keys in the input dict.

Do not modify the input dictionary.

def merge_dict(dict_in: dict[K, V],

equiv: list[set[K]],

combine: Callable[[list[V]], W]) \

-> dict[K, W]:

pass

3.p.2 [dice] The zip_with function takes 2 lists and a callback and con-
structs a new list from results of applying the callback to pairs of items
from the input lists (each item from one of the lists). Stop when the
shorter list runs out.

def zip_with(func, list_1, list_2): pass

The pair_with function is similar, but only has a single input list and
applies the callback to consecutive non-overlapping pairs of items in
this list. Any unpaired items at the end of the list are thrown away.

def pair_with(func, items): pass

The following two functions are like the above, but work with more
than 2 items at a time. The lists in the zip case must be all of the same
type (to make things typecheck).

def zip_n_with(func, *args): pass

def chunk_with(func, chunk_size, items): pass

3.p.3 [newton] Implement Newton’s method for finding roots (zeroes)
of differentiable, real-valued functions. The function newton takes 4
arguments: the function f for which we are finding the root, its first
derivative df, the initial guess ini and the precision p = prec. Return a
number x, such that ∃u ∈ ⟨x − p, x + p⟩.f(u) = 0.
How it works: if you have an estimate x0 for x, you can get a better
estimate by subtracting f(x0)/f′(x0) from x0 (where f′ is the deriva-
tive, df). Repeat until satisfied (you can assume quadratic convergence,
meaning that the error is bounded by the improvement one step ear-
lier).

def newton(f, df, ini, prec): pass

Using newton, implement a cube root function. Hint: given z (the num-
ber to be cube-rooted), find a function f(x) such that f(x) = 0 iff z = x3.
Clearly, the zero of f is the cube root of z. The meaning of prec is the
same as in newton.

def cbrt(z, prec): pass

Note: if all inputs are integers, make sure the functions use integers
throughout, so that they can be used with very large numbers. In type
annotations, using float is OK, because mypy treats float as a super-
class of int (which is very wrong, but alternatives are… complicated).

3.p.4 [sort] Implement the following functions:

• sort_by (with an order relation)
• group_by (with an equivalence relation)
• nub_by (likewise)

The order/equivalence relation are callbacks that take two elements
and return a boolean. The order is given as less-or-equal: order(x, y

)means x <= y.
The sort_by function should return a new list, sorted according to the
order The sort must be stable (i.e. retain the relative order of items
which compare equal).
The group_by function should return a list of lists, where each sub-

list contains equivalent items. Joining all the sub-lists together must
yield the original list (i.e. the order of input elements is retained). The
sub-lists must be as long as possible.
Finally nub_by should output a list where each equivalence class has
at most one representative – the first one that appears in the input
list. The relative order of items must remain unperturbed. In other
words, if an item is equivalent (according to the provided equivalence
relation) to an earlier item, do not include the new item in the output.

def sort_by(data, order): pass

def group_by(data, eq_rel): pass

def nub_by(data, eq_rel): pass

3.p.5 [file] Your task is to write a function which takes:

• a list of input files,
• a function get_name which maps input filenames to output file-

names.
• a pure function funwhich maps strings to strings,

For each input file file, read the content, apply fun to that content and
write the result to get_name(file). Make sure things work if get_name
is an identity function. Process the files left to right. Later files may be
overwritten due to processing of earlier files.

def with_files(files, get_name, fun): pass

3.p.6 [counter] The make_counter function should return a pair consist-
ing of a function fun and a dictionary ctr, where fun accepts a single
parameter of type K, which is also the key type of ctr. Calling fun on
a value key then increments the corresponding counter in ctr. Don’t
forget the type annotations.

def make_counter(): pass

Part 3.r: Regular Exercises

3.r.1 [fold] Implement foldr, a function which takes a binary callback
f, a list l and an initial value i. Use the function f to reduce the list to
a single value, from right to left. (Note: this is similar, but not the same
as functools.reduce, due to different bracketing).

def foldr(f, l, i): pass

Now use foldr to implement the following functions:

• fold_len – get the length of a list,
• fold_pairs – create a ‘cons list’ made of pairs, such that [1, 2, 3]

becomes (1, (2, (3, ()))),
• fold_rev – reverse the input list.

def fold_len(l): pass

def fold_pairs(l): pass

def fold_rev(l): pass

3.r.2 [trees] Implement a bottom-up fold on binary trees, with the
following arguments:

• a ternary callback f: the first argument will be the value of the
current node and the other two the folded values of the left and
right child, respectively,

• the binary tree tree,
• an ‘initial’ value which is used whenever a child is missing (leaf

nodes are folded using f(leaf_val, initial, initial)).

def fold(f, tree, initial): pass

3.r.3 [bisect] Write a function bisect, which takes f which is a con-
tinuous function, two numbers, x1 and x2 such that sgn(f(x1)) ≠
sgn(f(x2)) and precision p. Return x such that ∃z.x − p ≤ z ≤

PV248 Python 12/49 January 10, 2022

x + p ∧ f(z) = 0.

def bisect(f, x_1, x_2, prec): pass

3.r.4 [each] Write a function each that accepts a unary callback and a
traversable data structure (one that is either iterable, or provides an
eachmethod). Arrange for f to be called once on each element.

def each(f, data): pass

Use each to implement:

• each_len – count the number of elements
• each_sum – count the sum of all the elements
• each_avg – compute the average of all elements
• each_median – likewise, but median instead of average

(return the ⌊n/2⌋ element if there is no

definite median, or None on an empty list)

def each_len(data): pass

def each_sum(data): pass

def each_avg(data): pass

def each_median(data): pass

3.r.5 [objects] Build a simple closure-based object system and use it
to model a pedestrian crossing with a button-operated traffic light.
Design two objects:

• traffic_light – a 2-state light, either ‘red’ or ‘green’, toggled by mes-
sages set_red, set_green and queried using is_green; the set_green

method operates immediately (is_green right after set_green re-
turns True) but set_red has a safety timeout: the light turns red,
but is_green will only become False after 5 seconds to clear the
crossing,

• button – takes a reference to two traffic lights; when pushed (mes-
sage push), it requests that the first is turned green, then after a
timeout (20s), requests it to go back to red; the second light vice-
versa; it must ensure that under no circumstances the lights both
return is_green at the same time.

Every second, all objects in the system receive a tickmessage with no
arguments.

def traffic_light(): pass

def button(pedestrian_light, vehicle_light): pass

Part 4: Iterators, Coroutines
Preparatory exercises in this chapter:

1. flat – flattening nested data with generators
2. send – understanding full coroutines
3. getline – coroutine-based data streams
4. lexer – more streams
5. parser – coroutine-based lexer + parser combination
6. mbox – event-based (SAX-like) parsing with coroutines

Regular exercises: TBD.

1. iscan – iterator-based scanning
2. gscan – similar, but with generators
3. itree – iterating a binary tree
4. gtree – generators vs trees
5. dfs – walking graphs with coroutines
6. guided – A* search with coroutines

Part 4.d: Demonstrations

4.d.1 [gen] Normally, generators are used in for loops. However, when
you simply call a generator, the result is an object of type generator,
which represents the suspended computation. (For future reference,
native coroutines declared with async def behave the same way, just
the object type is different.)
Let’s define a generator:

def gen1() -> Generator[int, None, None]:

print("before yield 1")

yield 1

print("before yield 2")

yield 2

To actually run the computation, you can call __next__() on the gen-

erator object. Alternatively, you can call next with generator object
as the argument. Once you do that, the execution of the body of gen1
starts, and continues until it hits a yield. At that point, the yielded
value becomes the return value of __next__(), like this:

Part 4.p: Prep Exercises

4.p.1 [flat] Write a generator that completely flattens iterable struc-
tures (i.e. given arbitrarily nested iterables, it will generate a stream of
scalars). Note: while strings are iterable, there are no ‘scalar’ charac-
ters, so you do not need to consider strings.
Note: This function is unreasonably hard to type statically with mypy.
Feel free to use Any for the items (but do give a correct ‘outer’ (top-level)
type for both the argument and the return value).

def flatten(g):

pass

4.p.2 [send] Write two generators, one which simply yields numbers
1-5 and another which implements a counter (which also starts at 1):
sending a number to the generator will adjust its value by the amount
sent. Then write a driver loop that sends the output of numbers() into
counter(). Try adding print statements to both tomake it clear inwhich
order the code executes.

def numbers(): pass # generate numbers 1-5

def counter(): pass

def driver(): pass # another generator – the driver loop

After you are done with the above, implement the same thing with
plain objects: Numbers with a get() method and Counter with a get()

and with a put(n)method.

class Numbers: pass

class Counter: pass

def driver_obj(): pass # a driver loop again, now with objects

4.p.3 [getline] This is the first in a series of exercises focused on work-
ing with streams. A stream is like a sequence, but it is not held in
memory all at once: instead, pieces of the stream are extracted from
the input (e.g. a file), then processed and discarded, before another
piece is extracted from the input. Some of the concepts that we will
explore are available in the asyncio library which we will look at later.
However, for now, we will do everything by hand, to get a better un-

PV248 Python 13/49 January 10, 2022

derstanding of the principles.
A stream processor will be a (semi)coroutine (i.e. a generator) which
takes another (semi)coroutine as an argument. It will extract data from
the ‘upstream’ (the coroutine that it got as an argument) using next and
it’ll send it further ‘downstream’ using yield.
For now, we will use the convention that an empty stream yields None
forever (i.e. we will not use StopIteration). A source is like a stream
processor, but does not take another stream processor as an argument:
instead, it creates a new stream ‘from nothing’. A sink is another
variation: it takes a stream, but does not yield anything – instead,
it consumes the stream. Obviously, stream processors can be chained:
the chain starts with a source, followed by some processors and ends
with a sink.
To see an example, look near the bottom of the file, where we define a
simple source, which yields chunks of text. To use it, do something like:
stream, cnt = make_test_source(). The cnt variable will keep track of
how many chunks were pulled out of the stream – this is useful for
testing.
What follows is a very simple sink, which prints the content of the
stream to stdout (might be useful for tinkering and debugging):

def dump_stream(stream):

while True:

x = next(stream)

if x is None: break

print(end = x)

Your first goal is to define a simple stream processor, which takes a
stream of chunks (like the test source above) and produces a stream of
lines. Each line ends with a newline character. To keep in line with
the stated goal of minimizing memory use, the processor should only
pull out as many chunks as it needs to, and not more.

def stream_getline(stream):

pass

4.p.4 [lexer] In the second exercise in the stream series, wewill define
a simple stream-based lexer. That is, we will take, as an input, a stream
of text chunks and on the output produce a stream of lexemes (tokens).
The lexemes will be tuples, where the first item is the classification (a
keyword, an identifier or a number) and the second item is the string
which holds the token itself.
Let the keywords be set, add and mul. Identifiers start with an alpha-
betic letter and continue with letters and digits. Numbers are made of
digits.

StrStream = Generator[Optional[str], None, None]

IDENT = 1

KW = 2

NUM = 3

def stream_lexer(text_stream):

pass

4.p.5 [parser] In this exercise, we will write a very simple 2-stage
parser (i.e. one with a separate lexer) using coroutines (one for the
lexer and one for the parser itself). The protocol is as follows:

• the parser will get the lexer in the form of a generator object as an
argument,

• the parser will yield individual statements,
• the parser will use next(lexer) to fetch a token when it needs one,
• the language has ‘include’ directives: the parser may need to in-

struct the lexer to switch to a different input file, which it’ll do by
send-ing it the name of that file.

For simplicity, the lexer will get a dictwith file names as keys and file
content as values (both strings). It will start by lexing the file named

main. When the lexer reaches an end of an included file, it will continue
wherever it left off in the streamwhichwas interrupted by the include
directive.
There are 4 basic lexeme (token) types: keyword, identifier, number
(literal) and a linebreak (which ends statements). The keywords are:
set, add, mul, print and include. Identifiers are made of letters (isalpha)
and literals are made of digits (isdecimal). Statements are of these
forms:
[set|add|mul] ident [num|ident] print ident include ident
A statement to be yielded is a 2- or 3-tuple, startingwith the keyword as
a string, followedby the operands (int for literals, strings for identifiers).
E.g. mul x 3 shows up as ('mul', 'x', 3). The include statement is
never yield-ed.

def lexer(program):

pass

def parser(lex):

pass

4.p.6 [mbox] Write a coroutine-based parser for mbox files. It should
yield elements of the message as soon as it has enough bytes. The
input will be an iterable, but not indexable, sequence of characters.
In an mbox file, each message starts with a line like this:
From someone@example.comWed May 1 06:30:00 MDT 2019
You do not need to look at the structure of this line, look for the string
From (with a trailing space) at the start of a line, and gobble it up to the
nearest newline.
After the separator line, an rfc-822 e-mail follows, with any lines that
start with From changed to >From (do not forget to un-escape those).
The headers are separated from the rest of the body by a single blank
line. You can also assume that each header takes exactly one line.
The reported elements are always pairs of strings, with the following
content:

• message start: the string ’message’ followed by the content of the
separator line with the From removed,

• header: yield the name of the field and the content; yield as soon
as you read the first character of the next header field, or the body
separator,

• body: yield a single string with the entire body in it, as soon as you
encounter the end of the file

def parse_mbox(chars):

pass

Part 4.r: Regular Exercises

4.r.1 [iscan] Implement a prefix sum and a prefix list on arbitrary
Iterable instances, using the iterator approach (class with an __iter__

method).
Examples:

dump(prefixes([1, 2, 3])) # [] [1] [1, 2] [1, 2, 3]

dump(prefix_sum([1, 2, 3])) # [1, 3, 6]

def prefixes(list_in):

pass

def prefix_sum(list_in):

pass

4.r.2 [gscan] Implement suffix list and suffix sum as a generator, with
an arbitrary Sequence as an input.
Examples:

suffixes([1, 2]) # [] [2] [1, 2]

suffix_sum([1, 2, 3]) # [3, 5, 6]

PV248 Python 14/49 January 10, 2022

def suffixes(list_in):

pass

def suffix_sum(list_in):

pass

4.r.3 [itree] Write an in-order iterator for binary trees. Write it as a
class with a __next__method.

class TreeIter: pass

4.r.4 [gtree] Write recursive generators which walk a binary tree in
pre-/in-/post-order.

def preorder(tree): pass

def inorder(tree): pass

def postorder(tree): pass

4.r.5 [dfs] Write a semi-coroutine which yields nodes of a graph in
the ‘leftmost’ DFS post-order. That is, visit the successors of a vertex
in order, starting from leftmost (different exploration order will result
in different post-orders). The graph is encoded using neighbour lists.

def dfs(graph, initial):

pass

4.r.6 [guided] Write an A* ‘guided search’ that finds a shortest path in

a graph, implemented using coroutines. The search coroutine should
yield the nodes of the graph as they are explored. In response to each
yield, the driver (semantically also a coroutine, though not necessarily
a coroutine or a generator in the Python sense) will send the corre-
sponding prioritywhich should be assigned to exploring the successors
of the given node.

class cor_iter(Generic[T, S]): pass

Note: A* is essentially just BFSwith a priority queue instead of a regular
queue. To simplify matters, here is an implementation of standard BFS.

def bfs(graph: Graph[T], start : T) -> Gen1[T]:

q : Queue[T] = Queue()

q.put(start)

seen : Set[T] = set()

while not q.empty():

item = q.get()

for succ in graph[item]:

yield succ

if succ not in seen:

q.put(succ)

seen.add(succ)

def a_star(graph, start): pass

Part T.1: Introductory Tasks
The programming tasks for this block are as follows:

1. shelter – a simple information system,
2. splay – a self-balancing binary search tree,
3. while – an interpreter for simple ‘while programs’.

The tasks at hand only require basic programming skills and no special
tricks nor advanced Python constructs. Some of the tasks require
exceptions to be raised on errors, but again only basic use is needed
(you should be fine with raise RuntimeError('foo')).
You may add mypy annotations to your solutions if you like, and they
will be checked (without --strict) and the result will be shown to you
as part of the syntax test, but any failures will be ignored.

Part T.1.1: [shelter]

You volunteer for a local animal shelter, and they really need to get
more organized. Since you are a programmer, you decide to step up to
the job and write a small information system for them. Here is what it
needs to do:

• track all the resident animals and their basic stats: name, year of
birth, gender, date of entry, species and breed,

• store veterinary records: animals undergo exams, each of which
has a date, the name of the attending vet and a text report,

• record periods of foster care: animals can be moved out of the
shelter, into the care of individuals for a period of time – record the
start and end date of each instance, along with the foster parent,

• for each foster parent, keep the name, address, phone number and
the number of animals they can keep at once,

• record adoptions: when was which animal adopted and by whom,
• keep the name and address of each adopter.

In the remainder of the spec, we will make full use of duck typing: for
each entity, we will only specify the interface: the exact classes and
their relationships are up to you, as long as they provide the required
methods and attributes. The only class given byname is Shelter, which
is the entry point of the whole system.
The Shelter class needs to provide the following methods:

• add_animalwhich accepts keyword arguments for each of the basic
stats listed above: name, year_of_birth, gender, date_of_entry, species
and breed, where:
∘ the date of entry is a datetime.date instance,
∘ year_of_birth is an integer,
∘ everything else is a string,

and returns the object representing the animal (see list_animals below
for details about its interface),

• list_animalswhich accepts:
∘ optional keyword arguments for each of the basic stats: only

animals that match all the criteria (their corresponding attribute
is equal to the value supplied to list_animals, if it was supplied)
should be listed,

∘ a date keyword argument: only animals which were present in
the shelter at this time (i.e. were not adopted and not in foster
care) should be listed;

The elements of the list returned by list_animals should have:
∘ each of the basic stats as an attribute of the corresponding type

(see add_animal),
∘ method add_examwhich accepts keyword arguments vet and date

and report, where vet and report are strings and date is a date-

time.date instance,
∘ method list_examswhich takes keyword arguments start and

end, both datetime.date instances, or None (the range is inclusive;
in the latter case, the range is not limited in that direction),

∘ method adopt which takes keyword arguments date (a date-

time.date instance) and adopter_name and adopter_addresswhich
are strings,

∘ method start_fosterwhich takes a date (again a datetime.date

instance) and parent, which accepts one of the objects returned
by available_foster_parents listed below,

∘ end_fosterwhich takes a date,
• add_foster_parentwhich accepts keyword arguments name, address

and phone_number (all strings) and max_animalswhich is an int,
• available_foster_parents which takes a keyword argument date

and lists foster parents with free capacity at this date (i.e. those

PV248 Python 15/49 January 10, 2022

who can keep more animals than they are or were keeping at the
given date).

Raise a RuntimeError in (at least) these cases:

• start_fosterwas called on an animal that was already in foster care
at the given date, or end_foster on an animal that was not in foster
care at the given date,

• attempting to adopt an animal that was in foster care at the time,
or attempting to put an animal that has already been adopted into
foster care,

• attempting to do a veterinary exam on an animal which is in foster
care or already adopted at the time,

• an attempt is made to exceed the capacity of a foster parent.

Part T.1.2: [splay]

Implement the splay tree data structure (an adaptively self-balancing
binary search tree). Provide at least the following operations:

• insert – add an element to the tree (if not yet present)
• find – find a previously added element (return a bool)
• erase – remove an element
• to_list – return the tree as a sorted list
• filter – remove all elements failing a given predicate
• root – obtain a reference to the root node

Nodes should have (at least) attributes left, right and value. The class
which represents the tree should be called SplayTree.
You can find the required algorithms online (wikipedia comes to mind,
but also check out https://is.muni.cz/go/ssyj4d for some intuition
how the tree works).
The main operation is ‘splaying’ the tree, which moves a particular
node to the root, while rebalancing the tree. How balanced the tree
actually is depends on the order of splay operations. The tree will have
an expected logarithmic depth after a random sequence of lookups
(splays). If the sequence is not random, the balance may suffer, but the
most-frequently looked up items will be near the root. In this sense,
the tree is self-optimizing.
Note: it’s easier to implement erase using splaying than by using the
‘normal’ BST delete operation:

1. splay the to-be-deleted node to the root, then
2. join its two subtrees L and R:

∘ use splay again, this time on the largest item of the left subtree L,
∘ the new root of L clearly can’t have a right child,
∘ attach the subtree R in place of the missing child.

EDIT 2021-09-27: Clarified that insert should not add duplicate keys.

Part T.1.3: [while]

Implement an interpreter for simple ‘while programs’ (so called because
their only looping construct is while). The syntax is as follows:

• one line = one statement (no exceptions),
• the program is a sequence of statements,

• blocks are delimited by indentation (1–5 spaces),
• there are following statement types:

∘ assignment,
∘ if statement,
∘ while statement.

All variables are global and do not need to be declared (they come into
existence when they are first used, with a default value 0). Variables
are always integers. Variable names startwith a letter andmay contain
letters, underscores and digits.
The if and while statements are followed by a body: a block indented
one space beyond the if or while itself. The body might be empty. The
if and while keywords are followed by a single variable name. Zero
means false, anything else means true.
Assignments are of two forms:

• constant assignments of the form name = number (where number is an
integer written in decimal, and might be negative),

• 3-address code operations, of the form

name₀ = operation name₁ name₂

Valid operations are:

• logic: and, or, nand (the result is always 0 or 1),
• arithmetic: add, sub, mul, div,
• relational:

∘ lt, gt (less/greater than),
∘ eq (equals),
∘ leq and geq (less/greater or equal).

Example program:

x = 0

y = 7

one = 1

if x

x = add x x

while y

y = sub y one

x = add x one

Write a function do_whilewhich takes a ‘while program’ (as a string)
and returns a dictionary with variable names as keys and their final
values as values (of type int).
If the program contains an error, create a special variable named #error

and set its value to the offending line number. Return immediately
after encountering the error. In this case, other variables may or may
not be included in the resulting dictionary.
Check syntax before you start executing the program (i.e. the following
program should return an error on line 3 and should not loop forever):

x = 1

while x

x ++

Syntax errors may be due to malformed statements (e.g. while x = 1, x
++ above, etc.), or due to undefined operations (e.g. x = mod x y). Report
the first error (nearest to the top of the input). At runtime, detect and
report any attempts to divide by zero.

Part 5: Memory management, reference counting
Prep exercises:

1. refcnt – a reference counting manager
2. final – deterministic object finalization
3. reach – reachability from a set of roots
4. sweep – a mark and sweep collector
5. malloc – low-level memory management

6. trace – tracing composite objects

Regular exercises:

1. refcnt – reference counting with data
2. reach – reachability again
3. sweep – mark and sweep v2
4. semi – a copying ‘semi-space’ collector

PV248 Python 16/49 January 10, 2022

5. cheney – improved version of the same
6. python – reference counting + mark & sweep

Part 5.p: Prep Exercises

5.p.1 [refcnt] Implement a simple reference-counting garbage collec-
tor. The interface is described in the class Heap below. The root objects
are immortal (those are established by add_root). The countmethod re-
turns the number of reachable live objects. The alivemethod checks
whether a given object is alive. All objects start out dead.
References are added/removed using add_ref and del_ref. You can
assume that the number of del_ref calls on given arguments is always
atmost the same as thenumber of corresponding add_ref calls. Assume
that no reference cycles are created. You need to keep track of the
references yourself.

class Heap:

def add_root(self, obj: int) -> None: pass

def add_ref(self, obj_from: int, obj_to: int) -> None: pass

def del_ref(self, obj_from: int, obj_to: int) -> None: pass

def count(self) -> int: pass

def alive(self, obj: int) -> bool: pass

5.p.2 [final] Same as previous exercise, but with the additional re-
quirement that whenever an object becomes garbage (unreachable), a
finalizer is immediately called on it. The finalizer may perform arbi-
trary heap manipulation (as long as it is otherwise legal; in particular,
it may ‘re-animate’ the object it is finalizing, by storing a reference to
this object). A finalizer must not be called on an object if a reference
exists to this object (even if that reference is from another dead object).

class Heap:

def add_root(self, obj): pass

def add_ref(self, obj_from, obj_to): pass

def del_ref(self, obj_from, obj_to): pass

def set_finalizer(self, callback): pass

5.p.3 [reach] Implement the ‘mark’ phase of a mark & sweep collector.
That is, find all objects which are reachable from the root set.
Like before, roots are marked using add_root and references are
added/removed using add_ref and del_ref. You can assume that the
number of del_ref calls on given arguments is always at most the same
as the number of corresponding add_ref calls.

class Heap:

def add_root(self, obj: int) -> None: pass

def add_ref(self, obj_from: int, obj_to: int) -> None: pass

def del_ref(self, obj_from: int, obj_to: int) -> None: pass

def reachable(self) -> Set[int]: pass

5.p.4 [sweep] Add the ‘sweep’ phase to themark & sweep collector from
previous exercise. That is, find all objects which are reachable from
the root set, then ‘free’ all objects which were previously alive but are
not anymore. Freeing objects is simulated using a callback, which is
passed to the constructor of Heap. The callback must be passive (unlike
the finalizer from p2_final).
Again, roots are marked using add_root and references are added/re-
moved using add_ref and del_ref. You can assume that the number
of del_ref calls on given arguments is always at most the same as the
number of corresponding add_ref calls.

class Heap:

def __init__(self, free: Callable[[int], None]) -> None:

pass

def add_root(self, obj: int) -> None: pass

def add_ref(self, obj_from: int, obj_to: int) -> None: pass

def del_ref(self, obj_from: int, obj_to: int) -> None: pass

def collect(self) -> None: pass

5.p.5 [malloc] In this exercise, we will move one level down and one
step closer to reality. Your task is to implement simplified versions of
the malloc and free functions, in a fixed-size memory represented as a
Python list of integers.
For simplicity, the memory will be ‘word-addressed’, that is, we will
not deal with individual bytes – instead, each addressable memory cell
will be an int. To further simplify matters, freewill get the size of the
object as a second parameter (you can assume that this is correct).
Use a first-fit strategy: allocate objects at the start of the first free chunk
ofmemory. It is okay to scan for freememory in linear time. The malloc
method should return None if there isn’t enough (continuous) memory
left.

class Heap:

def __init__(self, size: int) -> None: pass

def read(self, addr: int) -> int: pass

def write(self, addr: int, value: int) -> None: pass

def malloc(self, size: int) -> Optional[int]: pass

def free(self, addr: int) -> None: pass

Part 5.r: Regular Exercises

5.r.1 [refcnt] Implement a simple reference-counting garbage collec-
tor. The interface is described in the class Heap below. Objects are
represented using lists of integers, and the heap as a whole is a list of
such objects. Negative numbers are data, non-negative numbers are
references (indices into the main list of objects). The root object (with
index 0) is immortal.
The interface:

• the countmethod returns the number of live objects,
• the writemethod returns True iff the write was successful (the ob-

ject was alive and the index was within its bounds)
• likewise, the readmethod returns None if the object is dead or invalid

or the index is out of bounds.
• the makemethod returns an unused object identifier (and grows the

heap as required).

The first call to make creates the root object. A freshly-made objects
starts out with zero references. A reference to this object must be
written somewhere into the heap.

class Heap:

def __init__(self):

self.data : List[List[int]] = []

pass # …

def read(self, obj_id: int, index: int) -> Optional[int]: pass

def write(self, obj_id: int, index: int, value: int) -> bool:

pass

def make(self, size: int) -> int: pass

def count(self) -> int: pass

5.r.2 [reach] Implement the mark part of a mark & sweep collector.
The interface of Heap stays the same as it was in r1.

class Heap:

def __init__(self):

self.data : List[List[int]] = []

def read(self, obj_id: int, index: int) -> Optional[int]: pass

def write(self, obj_id: int, index: int,

value: int) -> bool: pass

def make(self, size: int) -> int: pass

def count(self) -> int: pass

5.r.3 [sweep] Add the sweep procedure to the Heap implementation
from previous exercise.

class Heap:

PV248 Python 17/49 January 10, 2022

def __init__(self):

self.data : List[List[int]] = []

def read(self, obj_id: int, index: int) -> Optional[int]: pass

def write(self, obj_id: int, index: int,

value: int) -> bool: pass

def make(self, size: int) -> int: pass

def count(self) -> int: pass

5.r.4 [semi] Write a semi-space collector, using the same interface
as before. The requirement is that after a collection, the objects all
occupy contiguous indices. For simplicity, we index the semispaces
independently, so the objects always start from 0. Make sure that the
root always retains index 0.

class Heap:

def __init__(self):

self.data : List[List[int]] = []

def read(self, obj_id: int, index: int) -> Optional[int]: pass

def write(self, obj_id: int, index: int,

value: int) -> bool: pass

def make(self, size: int) -> int: pass

def count(self) -> int: pass

5.r.5 [cheney] Write a Cheney-style semi-space collector, using the
same interface and requirements as before. The main difference is

in the overhead of the algorithm (only 2 pointers outside of to/from
spaces are available in the implementation of collect in this exercise).

class Heap:

def __init__(self):

self.data : List[List[int]] = []

def read(self, obj_id: int, index: int) -> Optional[int]: pass

def write(self, obj_id: int, index: int,

value: int) -> bool: pass

def make(self, size: int) -> int: pass

def count(self) -> int: pass

5.r.6 [python] Implement the ‘Python’ collector: reference counting,
withmark & sweep to deal with cycles. Objects that are not on loops, or
reachable from loops, are destroyed immediately when last reference
to them is lost. Unreachable loops are destroyed on collect.

class Heap:

def __init__(self):

self.data : List[List[int]] = []

def read(self, obj_id: int, index: int) -> Optional[int]: pass

def write(self, obj_id: int, index: int,

value: int) -> bool: pass

def make(self, size: int) -> int: pass

def collect(self) -> int: pass

Part 6: Objects 2
Prep exercises:

1. poly – polynomials with operator overloading
2. mod – finite rings (integers mod N)
3. noexcept – turn exceptions into None returns
4. with – a simple context manager
5. numeric – a simple meta-class exercise
6. record – ‘data classes’ using data descriptors

Regular exercises:

1. trace – advanced print debugging
2. profile – a very simple profiler
3. record – more data classes
4. array – array with automatic resizing
5. bitset – a compact set of small integers
6. undo – a data descriptor with a history

Part 6.p: Prep Exercises

6.p.1 [poly] Implement polynomials which can be added and printed.
Do not print terms with coefficient 0, unless it is in place of ones and
the only term.
Examples:

x = Poly(2, 7, 0, 5)

y = Poly(2, 4)

print(x) # prints: 2x³ + 7x² + 5

print(y) # prints 2x + 4

print(x + y) # prints 2x³ + 7x² + 2x + 9

class Poly:

pass

We will do one more exercise with operators, mod.py, before moving
on to exceptions.

6.p.2 [mod] In this exercise, you will implement the ring ℤ/nℤ of inte-
gers modulo n. Welcome to abstract algebra: a ring is a set with two

operations defined on it: addition and multiplication. The operations
must have some nice properties. Specifically, the set we consider in
this exercise is the set of all possible remainders in the division by n;
you can read up on the necessary axioms on e.g. Wikipedia (under
`Ring (mathematics)`).
Interaction of elements in different modulo classes results in a TypeEr-

ror. When printing, use the notation [class], such as [5] to represent all
integers with remainder 5. Implement equality, comparison, printing,
and the respective addition and multiplication (all should also work
with plain integer operands on either side).
An instance of Mod represents a congruence class xmodulo n.

class Mod:

def __init__(self, x: int, n: int) -> None:

pass

6.p.3 [noexcept] Write a decorator@noexcept(), which turns a function
which might throw an exception into one that will instead return None.
If used with arguments, those arguments indicate which exception
types should be suppressed.
Note: typing this correctly with mypy is probably impossible. Use
Callable[..., Any] and/or Any as appropriate.

def noexcept(*ignore):

def decorate(f):

return f

return decorate

6.p.4 [with] Write a simple context manager to be used in a with block.
The goal is to enrich stack traces with additional context, like this:

def context(*args):

pass

For example:

def foo(x: int, y: int) -> None:

with context("asserting equality", x, '=', y):

assert x == y

PV248 Python 18/49 January 10, 2022

Calling foo(1, 1) should print nothing (the assertion does not fail
and no exceptions are thrown). Ont the other hand, foo(7, 8) should
print something like this:

asserting equality 7 = 8

Traceback (most recent call last):

File "with.py", line 20, in <module>

foo(7, 8)

File "with.py", line 17, in foo

assert x == y

AssertionError

6.p.5 [numeric] Implement a meta-class Numeric such that numbers
(floats, integers, …) may appear to be instances of Numeric-based classes
(the normal, non-meta class itself should be able to decide which, if
any; you may find a class attribute useful here).
Don’t forget to derive your custom metaclass from the builtin (default)
metaclass, type. When dealing with mypy, you can get away with an-
notating the type of the (non-meta!) class attribute you want to use in
the isinstance override directly in themetaclass.

class Numeric: pass

Now implement classes Complex which represents standard complex
numbers (based on float) and Gaussian, which represents Gaussian
integers (complex numbers with integer real and imaginary part). The
following should hold:

• integer values (including literals) are instances of Gaussian,
• float values are not instances of Gaussian,
• both integer and float values (including literals) are instances of

Complex.

Other than that, implement addition and equality so that all reasonable
combinations of parameters work (integers can be added to Gaussian
integers and all of floats, normal integers and Gaussian integers can
be added to Complex numbers).

class Gaussian: pass

class Complex: pass

6.p.6 [record] Implement Field, a data descriptor which can be used to
create classes that simply keep attributes (records, data classes), with-
out having to type out the __init__ method. The use case is similar
to the dataclass decorator, though our approach will be much simpler
(and also much more limited). When initializing an instance, make
sure that the default value is copied, so that default lists and other
mutable values are not accidentally shared between instances (see also
standard module copy).
Hint: The data descriptor can keep the value in the regular instance
__dict__. Remember the diagram used by the default __getattribute__
for lookup? You can even use the same name, so the value is not
directly exposed.
Bonus: If you like a challenge, extend Field so that it monkey-patches
an __init__method into the ‘data’ class (i.e. the one with Field-typed
attributes). This synthetic __init__ should accept arguments in the
declaration order of the fields and initialize them to non-default values,

if provided (see tests below).
Type annotations: You canmake Field a Generic andwith somefiddling,
make the types sort of work (may need a cast in __get__). Use of Any in
this exercise won’t be held against you.

class Field: pass

class Data: # helper to silence ‹mypy› in the bonus part

def __init__(self, *args: Any) -> None: pass

Part 6.r: Regular Exercises

6.r.1 [trace] Write a decorator that prints a message every time a
function is called or it returns. The output should be indented when
calls are nested, and should include arguments and the return value.
Aim for output like this:

foo [13]

bar [13] -> 20

bar [26] -> 33

returned 53

def traced(f):

pass

6.r.2 [profile] Implement a decorator which will keep track of how
many times which function was called. The decorator should be avail-
able as @profile and calling profile.get() should return a dictionary
with function names as keys and call counts as values.

def profile(f): pass

6.r.3 [record] Re-do p6_record, including the bonus, but using a class
decorator. That is, implement a decorator recordwhich takes a class

which only contains (class) variables and turn it into a proper classwith
instance attributes of the same names, and with appropriate default
values.

def record(cls): pass

class Data: # helper to silence ‹mypy›

def __init__(self, *args: Any) -> None: pass

6.r.4 [array] Implement a class Array which acts like a list, with the
following differences:

• no push, pop, remove and similar ‘list-like’ methods – only item access
via indexing,

• the constructor takes a default value, which is used as the initial
value for cells that have not been explicitly set,

• all indices are always valid: both reading and writing an index
automatically resizes the underlying list (using the default given
above to fill in missing cells).

The default value should be copied into new cells, so that arrays with
mutable work reasonably. Use shallow copies.

class Array: pass

Part 7: Pitfalls, testing, profiling
This week will cover hypothesis, a rather useful tool for testing Python
code. Hypothesis is a property-based testing system: unlike traditional
unit testing, we do not specify exact inputs. Instead, we provide a
description of an entire class of inputs; hypothesis then randomly sam-
ples the space of all inputs in that class, invoking our test cases for each
such sample.
The main interface to hypothesis is the hypothesis.given decorator. It

is used like this:

import hypothesis

import hypothesis.strategies as s

@hypothesis.given(s.lists(s.integers()))

def test_sorted(x):

assert sorted(x) == x # should fail

PV248 Python 19/49 January 10, 2022

@hypothesis.given(x = s.integers(), y = s.integers())

def test_cancel(x, y):

assert (x + y) - y == x # looks okay

Calling the decorated function will perform a number of randomized
tests. The strategies dictate what values will be attempted for each
argument (arguments and strategies are matched by name).
Prep exercises:

1. inner – dot product on 3D vectors with integer components
2. cross – same, but cross product
3. part – partitioning lists based on a predicate
4. search – binary search, an off-by-one bonanza
5. sort – sorting lists
6. heap – tests for heap-organized arrays

Regular exercises:

1. xxx

2. xxx

3. xxx

4. xxx

5. xxx

6. xxx

Part 7.p: Prep Exercises

7.p.1 [inner]

1. Implement the standard dot product on 3D integer vectors.
2. Use hypothesis to check its properties:

∘ commutativity
∘ distributivity over addition a⋅(b + c) = a⋅b + a⋅c
∘ bilinearity a⋅(rb + c) = r(a⋅b) + (a⋅c)
∘ compatibility with scalar multiplication: (ra)⋅(rb) = rr(a⋅b)

Bonus: Try the same with floats. Cry quietly. Disallow inf. And nan.
Then cry some more.

Vector = Tuple[int, int, int]

Inner = Callable[[Vector, Vector], int]

def add(a: Vector, b: Vector) -> Vector:

ax, ay, az = a

bx, by, bz = b

return (ax + bx, ay + by, az + bz)

def mul(r: int, a: Vector) -> Vector:

ax, ay, az = a

return (r * ax, r * ay, r * az)

def dot(a, b): pass

def check_commutativity(dot: Inner) -> None: pass

def check_distributivity(dot: Inner) -> None: pass

def check_bilinearity(dot: Inner) -> None: pass

def check_compatibility(dot: Inner) -> None: pass

7.p.2 [cross] Implement the cross product and check the following
properties:

• anti-commutativity
• distributivity over addition
• compatibility with scalar multiplication: ra × b = a × rb = r(a × b)
• Jacobi identity: a × (b × c) + b × (c × a) + c × (a × b) = 0

Check all of them on integer inputs.

Vector = Tuple[int, int, int]

BinOp = Callable[[Vector, Vector], Vector]

def add(a: Vector, b: Vector) -> Vector:

ax, ay, az = a

bx, by, bz = b

return (ax + bx, ay + by, az + bz)

def mul(r: int, a: Vector) -> Vector:

ax, ay, az = a

return (r * ax, r * ay, r * az)

def cross(a, b): pass

def check_anticommutativity(cross: BinOp) -> None: pass

def check_distributivity(cross: BinOp) -> None: pass

def check_jacobi(cross: BinOp) -> None: pass

def check_compatibility(cross: BinOp) -> None: pass

7.p.3 [part] Write a function, partition, which takes a predicate and
a list and returns a pair of lists: one with items that pass the predicate
(like filter) and the other with items which don’t.

def partition(predicate, items): pass

Then write tests using hypothesis that show a given implementation
of partitionworks as expected.

def check_partition(part): pass

7.p.4 [search] Write a function, search, which takes an item and a
sorted list of integers and returns a bool indicating whether the item
was present in the list. Implement it using binary search.

def search(needle, haystack): pass

As before, make sure the search predicate is correct. Write some tests
by hand and then write a hypothesis check. Which do you reckon is
easier and which harder?

def check_search_manual(part): pass

def check_search_auto(part): pass

7.p.5 [sort] Write a procedure which sorts the input list and removes
any duplicated entries (in place).

def sort_uniq(items): pass

Write a hypothesis-based test function which ensures a given sort-
uniq procedure is correct.

def check_sort(sort): pass

7.p.6 [heap] Write sift_down, a procedure which takes 2 parameters: a
list, and an index idx. The list is amax-heap,with the possible exception
of the node stored at index idx, which may be out of place.
The children of the node stored at an arbitrary index i are stored at
indices 2i + 1 and 2i + 2.

def sift_down(heap: List[int], idx: int) -> None:

pass

Write a hypothesis-based test function which ensures that sift_down
is correct.

def check_sift(sift): pass

Part 7.r: Regular Exercises

7.r.1 [life] Remember the game of life fromweek 1? A quick reminder:
it is a 2D cellular automaton where each cell is either alive or dead. In
each generation (step of the simulation), the new value of a given cell
is computed from its value and the values of its 8 neighbours in the
previous generation. The rules are as follows:

PV248 Python 20/49 January 10, 2022

state alive neigh. result

alive 0–1 dead
alive 2–3 alive
alive 4–8 dead

dead 0–2 dead
dead 3 alive
dead 4-8 dead

An example of a short periodic game:

○○○

○

○

○

○○○→ →

Enclosed is an implementation of the game that is maybe correct, but
maybe not. Write tests and find out which it is. Fix the bugs if you
find any.

def updated(x, y, cells):

count = 0

alive = (x, y) in cells

for dx in [-1, 0, 1]:

for dy in [-1, 0, 1]:

if dx and dy:

count += (x + dx, y + dy) in cells

return count in { 2, 3 } if alive else count == 3

def life(cells, n):

if n == 0:

return cells

todo = set()

for x, y in cells:

for dx in [-1, 0, 1]:

for dy in [-1, 0, 1]:

todo.add((x + dx, y + dy))

ngen = { (x, y) for x, y in todo if updated(x, y, cells) }

return life(ngen , n - 1)

7.r.2 [dfs] You are given a semi-coroutine which is supposed to yield
nodes of a graph in the ‘leftmost’ DFS post-order. That is, it visits the
successors of a vertex in order, starting from leftmost. The input graph
is encoded using a dictionary of neighbour lists.
Make sure it is correct (and if not, fix it).

T = TypeVar('T')

def dfs(graph: Dict[T, List[T]], initial: T) \

-> Iterable[T]:

seen : Set[T] = set()

yield from dfs_rec(graph, initial, seen)

def dfs_rec(graph: Dict[T, List[T]], initial: T,

seen: Set[T]) -> Iterable[T]:

seen.add(initial)

for n in graph[initial]:

yield from dfs_rec(graph, n, seen)

yield initial

7.r.3 [record] Below is an implementation of a @record decoratorwhich
can be used to create classes that simply keep attributes (records, data
classes), without having to type out the __init__method.
The use case is similar to the dataclass decorator, but the below imple-
mentation is much simpler. Default values must always be set, and

they are shallow-copied into each instance. Additionally, the synthetic
__init__ method takes an optional argument for each attribute, in
which case the given attribute is initialized to that value, instead of
the default.
Make sure the decorator works as advertised. If not, fix it.

def record(cls: type) -> type:

class rec:

def __init__(self, *args: Any) -> None:

from copy import copy

counter = 0

for k, v in cls.__dict__.items():

if not k.startswith('__'):

if len(args) > counter:

self.__dict__[k] = args[counter]

else:

self.__dict__[k] = copy(v)

counter += 1

return rec

7.r.4 [bipartite] An undirected graph is given as a set of edges E. For
any (u, v) ∈ E, it must also be true that (v, u) ∈ E. The set of vertices
is implicit (i.e. it contains exactly the vertices which appear in E).
Below is a predicate which should decide whether a given graph is
bipartite (can be coloured with at most 2 colours, such that no edge
goes between vertices of the same colour). Make sure it is correct, or
fix it.

def is_bipartite(graph):

colours = {}

queue = []

vertices = list(set([x for x,_ in graph]))

for v in vertices: # can be disconnected

if v in colours:

continue

queue.append(v)

colours[v] = 1

colour = 1

while queue:

v = queue.pop(0)

colour = 2 if colours[v] == 1 else 1

for neighb in [y for x, y in graph if x == v]:

if neighb in colours and \

colours[neighb] != colour:

return False

if neighb not in colours:

colours[neighb] = colour

queue.append(neighb)

return True

7.r.5 [treap] Remember treaps from week 2? A treap is a combination
of a binary search tree and a binary heap: each node has a key (these
form a search tree) and a randomized priority (these form a heap).
The role of the heap part of the structure is to keep the tree approxi-
mately balanced. Your task is to decide whether the below treap im-
plementation works correctly. Keep in mind that treaps are only ap-
proximately balanced: your tests need to take this into account.

class Treap(Generic[T]):

def __init__(self, key: T, priority: int):

self.left : Optional[Treap[T]] = None

self.right : Optional[Treap[T]] = None

self.key = key

self.priority = priority

def rotate_left(self: Treap[T]) -> Treap[T]:

assert self.left is not None

r = self.left

PV248 Python 21/49 January 10, 2022

detach = r.right

r.right = self

self.left = detach

return r

def rotate_right(self: Treap[T]) -> Treap[T]:

assert self.right is not None

r = self.right

detach = r.left

r.left = self

self.right = detach

return r

def _insert(node: Optional[Treap[T]], key: T, prio: int)

-> Treap[T]:

if node is None:

return Treap(key, prio)

else:

return node.insert(key, prio)

def _fix_right(self) -> Treap[T]:

assert self.right is not None

if self.priority > self.right.priority:

return self

else:

return self.rotate_right()

def _fix_left(self) -> Treap[T]:

assert self.left is not None

if self.priority > self.left.priority:

return self

else:

return self.rotate_left()

def insert(self, key: T, prio: int) -> Treap[T]:

if key > self.key:

self.right = Treap._insert(self.right, key, prio)

return self._fix_right()

else:

self.left = Treap._insert(self.left, key, prio)

return self._fix_left()

7.r.6 [itree] Below, you will find an implementation of an in-order
iterator for binary trees. Make sure it is correct and fix it if it isn’t.

T = TypeVar('T')

class Tree(Generic[T]):

def __init__(self, value: T,

left: Optional[Tree[T]] = None,

right: Optional[Tree[T]] = None) -> None:

self.left = left

self.right = right

self.value = value

self.parent : Optional[Tree[T]] = None

if left is not None:

left.parent = self

if right is not None:

right.parent = self

class TreeIter(Generic[T]):

def __init__(self, tree: Tree[T]) -> None:

self.n : Optional[Tree[T]] = tree

def descend(self) -> None:

assert self.n is not None

while self.n.left is not None:

self.n = self.n.left

def ascend(self) -> None:

assert self.n is not None

while (self.n.parent is not None and

self.n == self.n.parent.right):

self.n = self.n.parent

self.n = self.n.parent # coming from left

def __iter__(self) -> TreeIter[T]:

assert self.n is not None

i = TreeIter(self.n)

i.descend()

return i

def __next__(self) -> T:

v = self.n.value

if self.n.right is not None:

self.n = self.n.right

self.descend()

else:

self.ascend()

return v

Part 8: Coroutines 2
Prep exercises:

1. rrsched – a round-robin coroutine scheduler
2. priority – a simple priority-driven scheduler
3. exchange – coordinate async producers and consumers
4. box – a simplified version of the above
5. xxx

6. sort – sorting with real-time latency constraints

Regular exercises:

1. sleep – planning execution of sleepy coroutines
2. ioplex – multiplex incoming IO to multiple coroutines
3. search – low-latency binary search trees
4. xxx

5. xxx

6. xxx

Part 8.p: Prep Exercises

8.p.1 [rrsched] Write an async (coroutine) scheduler which executes a
given list of coroutines (the async def type) in a round-robin fashion.
That is:

• provide suspend, an asyncmethod, which, when awaited, suspends
the currently executing coroutine and allows the others to be sched-
uled (that is, given sched, a reference to the scheduler, a coroutine
should be able to perform await sched.suspend()),

• tasks are added using add, which takes an unstarted (never awaited)
coroutine as an argument and appends it to the end of the round-
robin execution order (i.e. the coroutine that is added first is ex-
ecuted first, until it suspends, then the second executes until it
suspends, and so on; when the last coroutine on the list suspends,
wake up the first to continue, until it suspends, wake up the second,
…),

PV248 Python 22/49 January 10, 2022

• after at least one coroutine is added, calling run on the scheduler
will start executing the tasks; run returns normally after all the
tasks finish (note, however, that some tasks may terminate earlier
than others).

See test_basic for a simple usage example. A few hints follow (you can
skip them if you know what you are doing):

1. To implement suspend, youwill want to create a low-level awaitable
object (i.e. one which is not the result of async def). This is done by
providing a special method __await__, which is a generator (i.e. it
uses yield).

2. This yield suspends the entire stack of awaitables (most of which
will be typically async coroutines), returning control to whoever
called next on the iterator (the result of __await__()) of the top-level
awaitable.

3. Regarding mypy:
∘ the task passed to add should be a Coroutine (since the scheduler

won’t touch any of its outputs, these can be all set to object,
instead of the much more problematic Any),

∘ the Awaitable protocol needs __await__ to be a Generator (you
will need this for implementing suspend),

∘ when you call __await__() on an awaitable, the result is, among
others, an Iterator.

class RoundRobin: pass

8.p.2 [priority] Write an async scheduler which executes a given list
of coroutines in a priority-driven fashion. The add method takes, in
addition to the coroutine itself, a static priority. Higher priorities get
executed more often. Here is how it works:

1. In addition to the static priority (a fixed number), each task is as-
signed a dynamic priority. The dynamic priority starts out equal
to the static one, but is decremented each time a coroutine is awak-
ened.

2. The next coroutine to be awakened is always the one with the
highest dynamic priority.

3. Whenever the highest dynamic priority in the systemdrops to zero,
all tasks get their dynamic priority reset to their static priority.

Except as noted above, the interface and semantics of the scheduler
carry over from p1.

class PrioritySched: pass

8.p.3 [exchange] Implement a classwhich coordinates amulti-producer,
multi-consumer system built out of async coroutines. Each coroutine
can either produce items (by calling put) or consume them (by calling
get). Constraints:

• a given coroutine cannot call both put and get,
• a producer is blocked until the item can be consumed,
• a consumer is blocked until an item is produced.

These constraints mean that there can be at most one unconsumed
item per producer in the system. If multiple producers have a value
ready, the system picks up the one that has beenwaiting the longest. If
multiple consumers are waiting for an item, again, the longest-waiting
one is given the next item.
When run is called, all coroutines are started up, until each blocks on
either put or get. The system terminates when no further items can
be produced (there are no producers left).

T = TypeVar('T')

class Exchange(Generic[T]): pass

8.p.4 [box] Implement a class which coordinates a single producer and
a single consumer (the producer puts the value in the ‘box’, where the
consumer fetches it). The roles (producer vs consumer) are known

upfront. The coroutines are passed to the constructor unevaluated
(i.e. not as coroutine objects, but as functions which take the box as a
parameter and return coroutine objects; see also below).

T = TypeVar('T')

class Box(Generic[T]): pass

8.p.5 [sort] You are given sched_yield, an awaitable that allows the
scheduler to switch to a different coroutine, if needed. Given that,
write a ‘low-latency’ sort function – one that does only O(1) work be-
tween two consecutive calls to sched_yield. Requirements:

• the sort should be in-place,
• the total runtime should be O(n⋅logn),
• use data.compare(a, b) to compare items:

∘ -1means data[a] < data[b],
∘ 0means data[a] == data[b]

∘ finally 1means data[a] > data[b],
• use data.swap(a, b) to swap values with indices a, b,
• len(data) gives you the number of items.

async def sort(data: Array, suspend: Suspend) -> None: pass

Part 8.r: Regular Exercises

8.r.1 [sleep] Write an async (coroutine) scheduler which executes a
given list of coroutines (the async def type). When a coroutine sus-
pends (using sched.suspend) it specifies how long it wants to sleep, in
milliseconds. The scheduler wakes up a particular coroutine when its
sleep timer expires (it should try to do it exactly on time, but sometimes
this will be impossible because another coroutine blocks for too long).
Like before, implement add to attach coroutines to the scheduler and
run to start executing them. The latter returns when no coroutines
remain.

class Sched: pass

8.r.2 [ioplex] Write an IO multiplexer for async coroutines. The con-
structor is given a ‘coroutine function’ (i.e. an async def, that is a func-
tion which returns a coroutine object) which serves as a factory. There
are 3 methods:

• connect, which creates a new connection (i.e. it spawns a new server
coroutine to handle requests) and returns a connection identifier,

• closewhich, given a valid identifier, terminates the corresponding
connection,

• sendwhich, given a connection identifier and a piece of data, sends
the latter on to the corresponding server coroutine and returns the
reply of that coroutine.

When creating server coroutines, themultiplexer passes read and write

as arguments to the factory, where read is an async function (i.e. its
result is await-ed) and returns the data that was passed to send; write,
on the other hand, is a regular function and is called when the server
coroutine wants to send data to the client. In other words, reading
may block, but not writing.

class IOPlex: pass

8.r.3 [search] The class Tree represents a binary search tree. Imple-
ment search that performs a search for a given key, in logarithmic time
and constant latency (between two calls to suspend). In each step, pass
the value through which the search has passed to suspend, so that the
caller can monitor the progress of the search.

T = TypeVar('T')

class Tree(Generic[T]):

def __init__(self, value) -> None:

self.left : Optional[Tree] = None

PV248 Python 23/49 January 10, 2022

self.right : Optional[Tree] = None

self.value = value

async def search(self, key, suspend):

pass

Part T.2: Interpreters, Coroutines
In this set, there are 2 interpreters of simple languages – one with
recursion and closures, another with explicit pointers and garbage
collection. The third task is focused on the use of semi-coroutines
(generators).

1. rec – recursive programs
2. ptr – pointers and garbage collection
3. rst – real-time splay trees

Part T.2.1: [rec]

Implement an interpreter for simple recursive programs. The follow-
ing syntax is taken unchanged from t1_while:

• one line = one statement (no exceptions),
• blocks are delimited by indentation (1–5 spaces),
• there are following statement types:

∘ assignment,
∘ if statement.

There are also two important changes:

1. The right-hand side of an assignment can be a function call, in
addition to a built-in operation, written as:

name₀ = func name₁ name₂ … nameₙ

2. There is a new statement type, function definition, which can only
appear in the top-level scope (and is the only statement than can
appear there), of the form:

def funcname name₁ name₂ … nameₙ

All functions can call all other functions, regardless of the

order in which they are defined in the source. Function names

follow the same rules as variable names.

Semantics change in the following way:

• all variables are local to the function in which they are used (decla-
rations are still not needed),

• the result of a function call is the value of a variable with the same
name, i.e. in function foo, the statement foo = 7 sets the return
value to 7 (but does not terminate the function),

• the namespaces for variables and for functions are separate; oper-
ation names (add, and, …) must not be used for functions (but they
can be used for variables).

Like if, a def statement is followed by a body, indented by a single
space. Other restrictions on blocks remain the same as in t1_while.
Example program:

def fib n

one = 1

two = 2

fib = 1

rec = gt n two

if rec

n_1 = sub n one

n_2 = sub n two

fib_1 = fib n_1

fib_2 = fib n_2

fib = add fib_1 fib_2

Write a function do_recwhich takes a recursive program (as a string), a
function name, and an arbitrary number of integers. The result is the
return value of the function invoked, or a tuple of (line number, error
string) in case the program fails. Return the first error in this order
(within a group, return the number of the first line with an error):

1. syntax errors (including attempts to redefine a function),
2. use of an undefined function or bad argument count,
3. runtime errors (division by zero).

Part T.2.2: [ptr]

In this task, you will extend t1_whilewith pointers and garbage collec-
tion. The syntax is unchanged, except for addition of 3 new operations:

• addr_ = set addr val stores the value in variable val at the address
addr; the result is addr shifted one cell to the right,

• val = get addr off loads the value from address addr + off and
stores it in val,

• addr = alloc count init allocates a new object with count cells; all
the cells are set to init.

The memory available to the program is a fixed-size array of cells (its
size is given to the interpreter at the start). It is an error if the program
attempts to allocate more memory than it has available.
However, if the total size of reachable objects never exceeds that of the
fixed-size memory, the program must not die with an out-of-memory
error. A reachable object is one that the program can, at least in princi-
ple, read using a get operation (‘in principle’ means, in this case, that
the program may execute an arbitrary sequence of operations, even if
it doesn’t actually appear in the program).
Only addresses (which are distinct from numbers) can be passed to
get and set as their first argument. Addresses are created by alloc.
Adding a number and an address results in an address if the result
is within the bounds of the same object as the original address (same
limitation applies to the result of set). An address may be stored in
memory using set, and will still be an address if it is later retrieved by
get. The result of any other operation is a number. Addresses always
evaluate as true in while or if.
The numeric values of addresses are unspecified, except that addresses
of different objects always compare unequal, and addresses within the
same object compare reasonably (higher offsets are greater).
New semantic errors (compared to t1_while):

• passing a number (i.e. not an address) as a first argument of get or
set, or an address as the first argument to alloc or second argument
to get,

• adding the address and the offset passed to get is out of bounds of
the object into which the address originally pointed,

• memory allocation which would exceed the permitted memory size.

The error reporting mechanism is otherwise unchanged. An example
program:

one = 1

two = 2

off = 2

x = alloc off two

while off

off = sub off one

y = get x off

PV248 Python 24/49 January 10, 2022

z = add z y

The interpreter shall be available via do_ptrwith the program and the
memory size in cells as arguments, and a dictionary of variables as a
result.

Part T.2.3: [rst]

This task is based on the splay tree from t1_splay. The changes are
aimed at making the tree useful in low-latency applications: all op-
erations become coroutines which must perform at most a constant
amount of work between yields. This way, if the application needs to
attend to other tasks while a lengthy splay is ongoing, it can simply
keep the coroutine suspended. At any point of execution, the time un-
til the next suspend is bounded by a constant, giving us a worst-case
latency guarantee (i.e. the data structure is, in principle, suitable for
hard-realtime systems).
To achieve the required properties, the tree needs to use top-down
splaying, where the lookup is performed as part of the splay. Re-
sources describing the top-down splay operation can be found here:
https://www.link.cs.cmu.edu/splay/ (including pseudocode3 and a C im-
plementation of the operation). Here is my own description of the
top-down splay operation:

• set up 2 subtrees, initially both empty, called l and r,
• there are 3 or 4 helper functions:

∘ link_left, which takes a subtree and hangs it onto l using the
rightmost link (i.e. as the right child of the bottom-right node)
– you must maintain a pointer to that bottom-right node, to
ensure link_left runs in O(1),

∘ link_right, which is the mirror image of link_left,
∘ the usual rotate (with two nodes as arguments, or possibly split

into rotate_left and rotate_right);
• repeat until not interrupted:

∘ if the value belongs into the left-left subtree of the current root,
rotate the root with its left child (if this child exists) [first step of

3 Please note that if you use the pseudo-code from the Sleator & Tarjan paper, you need to be
careful about parallel assignment – in Python, it does not have the semantics intended by the
authors and you will need to write it out in multiple steps.

the zig-zig case],
∘ if the new root lacks its left child, break the loop,
∘ if the value belongs to the left subtree, perform link_right on

the root and shift the root pointer to its right child [completes
the zig-zig, or performs a simplified zig-zag],

∘ the right-right and right cases are mirror images of the same.
• reassemble the tree:

∘ perform link_left on the left child of the current root,
∘ link_right on its right child,
∘ attach l and r to the root, l as the left and r as the right child

(replacing the now invalid links).

Remaining operations (find, insert and erase) must perform all oper-
ations that are not O(1) by splaying the tree (and yield to the caller
whenever the splay operation yields). The ‘splay maximum to the top’
operation (needed for erase) can be implemented by repeatedly ‘splay-
ing to the right’ (in the sense of splay(root.right.value), though of
course taking 2 steps at a time will leave the tree in a significantly
better shape),
The splay itself proceeds in a standard manner, except that after each
step (zig, zig-zag, or zig-zig as appropriate), it yields the key of the
new root. If the result of that yield is None (as happens when simply
iterating the coroutine), the splay continues as usual. If it is anything
else (delivered via send), the tree is reassembled into a consistent state
(this must still happen in constant time!) and the operation is aborted.
The code to perform tree operations looks like this:

for _ in tree.insert(7): pass

for _ in tree.erase(3): pass

for _ in tree.filter(pred): pass

for x in tree.find(5):

if x == 5:

found()

Finally, the to_list operation is replaced by an iterator. This iterator is
the only exception to the O(1) latency bound – it should not use splay.
Instead, it should implement standard in-order traversal of the tree
(i.e. yielding the keys stored in the tree in sorted order). It must be
possible to have multiple simultaneously-active iterators over a single
tree. All iterators however become invalid upon invocation of any
of the remaining 4 operations. (Note: it is possible to implement an
O(1)-latency iterator with a standard interface, but not one that also
iterates the tree in sorted order.)

Part 9: Text, JSON
Prep exercises:

1. grep – match regular expressions against text files
2. magic – identify file type by content
3. report – parse JSON and print human-readable output
4. elements – convert CSV to JSON
5. mueval – evaluate LISPy (prefix) expressions
6. flatten – convert JSON to TOML(-ish)

Regular exercises:

1. email – parsing e-mails the simple way
2. toml – recursive descent and INI files
3. resolv – parse a simplified resolv.conf

4. fstab – read and parse /etc/fstab

5. yaml – convert JSON to (readable) YAML
6. cpp – a simplified C preprocessor

Part 9.p: Prep Exercises

9.p.1 [grep] The goal of this exercise is to write a simple program that

works like UNIX grep.
Part 1: Write a procedure which takes 2 arguments, a string represen-
tation of a regex and a filename. It will print the lines of the file that
match the regular expression (in the same order as they appear in the
file). Prefix the line with its line number like so (hint: check out the
enumerate built-in):

43: This line matched a regex,

Part 2: Change the code in the if __name__ … block below to only
run test_main if an argument --test is given. Otherwise, expect 2
command-line arguments: a regular expression and a file name, and
pass those to the grep procedure.

def grep(regex, filename):

pass

9.p.2 [magic] Write function identifywhich takes rules, a list of rules,
and data, a bytes object to be identified. It then tries to apply each rule
and return the identifier associated with the first matching rule, or
None if no rules match. Each rule is a tuple with 2 components:

• name, a string to be returned if the rule matches,

PV248 Python 25/49 January 10, 2022

• a list of patterns, where each pattern is a tuple with:
a. offset, an integer,
b. bits, a bytes object,
c. mask, another bytes object,
d. positivity, a bool.

The mask and the pattern must have the same length. A rule matches
the data if all of its patterns match.
A pattern match is decided by comparing the slice of data at the given
offset to the ‘bits’ field of the pattern, after both the slice and the bits
have been bitwise-anded with the mask. The pattern matches iff:

• the bits and slice compare equal and positivity is True, or
• they compare inequal and positivity is False.

def identify(rules, data):

pass

9.p.3 [report] The goal here is to load the file zz.report.json which
contains a report about a bug in a C program, and print out a simple
stack trace. You will be interested in the key active stack (near the
end of the file) and its format. The output will be plain text: for each
stack frame, print a single line in this format:

function_name at source.c:32

import json # go for ‹load› (via io) or ‹loads› (via strings)

def report():

pass

9.p.4 [elements] In this exercise, we will read in a CSV (comma-
separated values) file and produce a JSON file. The input is in zz.el-

ements.csv and each row describes a single chemical element. The
columns are, in order, the atomic number, the symbol (shorthand) and
the full name of the element. Generate a JSON file which will consist
of a list of objects, where each object will have attributes atomic number,
symbol and name. The first of these will be a number and the latter two
will be strings. The names of the input and output files are given to
csv_to_json as strings.
Note that the first line of the CSV file is a header.

import csv # we want csv.reader

import json # and json.dumps

def csv_to_json(source, target):

pass

9.p.5 [mueval] Write an evaluator for a very small lisp-like language.
Let there only be compound expressions (delimited by parentheses)
which always have an integer arithmetic operator in the first position (+,
-, *, /) and the remainder of the compound are either non-negative in-
teger constants or other compounds. Assume the input is well-formed.

def mueval(expr: str) -> int:

pass

9.p.6 [flatten] In this exercise, your task is to write a function that
flattens JSON data to a form suitable for storing as TOML.
The result is a single-level (flat) dictionary, where the keys represent
the previous structure of the data. We will use the period . for subob-
jects and # for subarrays. Tomake unambiguous un-flattening possible,
if you encounter . or # in the original data, prefix it with a dollar sign, $
(i.e. write out $. or $#), if you encounter $. or $#, escape it with another
dollar sign, to $$. or $$#, etc.
Example:

{ 'student': { 'Joe': { 'full name': 'Joe Peppy',

'address': 'Clinical Street 7',

'aliases': ['Joey', 'MataMata'] } } }

Flattened:

{ 'student.Joe.full name': 'Joe Peppy',

'student.Joe.address': 'Clinical Street 7',

'student.Joe.aliases#0': 'Joey',

'student.Joe.aliases#1': 'MataMata' }

def flatten(data: str) -> str:

pass

Part 9.r: Regular Exercises

9.r.1 [email] In this exercise, we will parse a format that is based on
RFC 822 headers, though our implementation will only handle the
simplest cases. The format looks like this:

From: Petr Ročkai <xrockai@fi.muni.cz>

To: Random X. Student <xstudent@fi.muni.cz>

Subject: PV248

and so on and so forth. In real e-mail (and in HTTP), each header entry
may span multiple lines, but we will not deal with that.
Our goal is to create a dictwhere the keys are the individual header
fields and the corresponding values are the strings coming after the
colon. In this iteration, assume that each header is unique.

def parse_rfc822(filename):

pass

9.r.2 [toml] Write a recursive descent parser for simplified TOML (es-
sentially an old-style INI file with restricted right-hand sides), with the
following grammar:

top = { line } ;

line = (header | kvpair), '\n' ;

header = '[' word ']' ;

kvpair = word, '=', word ;

word = alpha, { alnum } ;

alpha = ? any letter on which isalpha() is true ? ;

alnum = ? any letter on which isalnum() is true ? ;

If the input does not conform to the grammar exactly, reject it and
return None. Otherwise return a dictionary of sections (see the type
below). If the initial section does not have a header, it is stored under
'' (empty string) in the section dictionary.

Section = Dict[str, str]

TOML = Dict[str, Section]

def parse_toml(toml: str) -> Optional[TOML]:

pass

9.r.3 [resolv] Write a parser (of any kind) that validates a resolv.conf

file (which contains DNS configuration). The simplified grammar is as
follows:

top := { stmt | comment } ;

stmt := server, (comment | [spaces], '\n') ;

server := 'nameserver', spaces, addr ;

addr := num, '.', num, '.', num, '.', num ;

num := '0' | nonzero, { digit } ;

nonzero := '1' | '2' | … | '9' ;

digit := '0' | nonzero ;

spaces := ws_char, { ws_char } ;

ws_char := ? isspace() is True, except newline ? ;

comment := [ws], '#', { nonnl }, '\n' ;

nonnl := ? any char except '\n' ? ;

def resolv_valid(rc: str) -> bool: pass

9.r.4 [fstab] Write a non-validating parser for the fstab file, which
in traditional UNIXes contains information about filesystems. The
format is as follows:

PV248 Python 26/49 January 10, 2022

Comments start with # and extend until the end of line. Comments, ad-
ditional whitespace, and blank lines are ignored. After comments and
blanks are stripped, each line of the file describes a single filesystem.
Each such description has 6 columns:

1. the device (path to a block device or an UUID),
2. the mount point,
3. the file system type,
4. a comma-separated list of mount options,
5. dump frequency in days (a non-negative integer, optional),
6. file system check pass number (same).

The type below describes the form in which to return the parsed data.
If items 5 or 6 are missing, set them to 0.

FS = Tuple[str, str, str, List[str], int, int]

def read_fstab(path: str) -> List[FS]:

pass

9.r.5 [cpp] Implement a C preprocessor which supports #include "foo"

(without a search path, working directory only), #define without a
value, #undef, #ifdef and #endif. The input is provided in a file, but the
output should be returned as a string. Do not include line and filename
information that cpp normally adds to files.

def cpp(filename: str) -> str:

pass

Part 10: Databases
Prep exercises:

1. bimport – import books into a database
2. bexport – export books from a database
3. bquery – query the book database
4. lcreate – shopping with Python and SQL
5. lsearch – retrieve shopping lists from the database
6. lupdate – update lists in the database

Regular exercises:

1. schema – create tables given as JSON
2. upgrade – same, but with schema upgrade
3. pkgs – simple queries on a package database
4. depends – fetching transitive dependencies
5. xxx

6. xxx

Part 10.p: Prep Exercises

10.p.1 [bimport] Load the file zz.books.json and store the data in a data-
base with 3 tables: author, book and book_author_list. Each author is
uniquely identified by their name (which is a substantial simplification,
but let’s roll with it). The complete schema is defined in zz.books.sql

and you can create an empty database with the correct data definitions
by running the following command:

$ sqlite3 books.dat < zz.books.sql

import sqlite3

import json

NB. You want to execute pragma foreign_keys = on before inserting
anything into sqlite. Otherwise, your foreign key constraints are just
documentation and are not actually enforced. Let’s write an opendb

function which takes a filename and returns an open connection. Exe-
cute the above-mentioned pragma before returning.

def opendb(filename):

pass

Of course, you can also create the schema using Python after opening
an empty database. See executescript. Define a function initdbwhich
takes an open sqlite3 connection, and creates the tables described in
sql_file (in our case zz.books.sql). You can (and perhaps should) open
and read the file and feed it into sqlite using executescript.

def initdb(conn, sql_file):

pass

Now for the business logic. Write a function store_bookwhich takes a
dict that describes a single book (using the schema used by books.json)

and stores it in an open database. Use the executemethod of the con-
nection. Make use of query parameters, like this (cur is a cursor, i.e.
what you get by calling conn.cursor()):

cur.execute("insert into ... values (?)", (name,))

The second argument is a tuple (one-tuples are written using a
trailing comma). To fetch results of a query, use cur.fetchone() or
cur.fetchall(). The result is a tuple (even if you only selected a single
column). Or rather, it is a sufficiently tuple-like object (quacks like a
tuple and all that).

def store_book(conn, book):

pass

With the core logic done, we need a procedure which will set up the
database, parse the input JSON and iterate over individual books, stor-
ing each:

def import_books(file_in, file_out):

pass

10.p.2 [bexport] In the second exercise, we will take the database cre-
ated in the previous exercise (books.dat) and generate the original JSON.
You may want to use a join or two.
First write a functionwhichwill produce a list of dict’s that represent
the books, starting from an open sqlite connection.

import sqlite3

import json

def read_books(conn):

pass

Now write a driver that takes two filenames. It should open the data-
base (do you need the foreign keys pragma this time? why yes or why
not? what are the cons of leaving it out?), read the books, convert the
list to JSON and store it in the output file.

def export_books(file_in, file_out):

pass

10.p.3 [bquery] In the final exercise of this set, you will write a few
functions which search the book data. Like you did for export, get a
cursor from the connection and use execute and fetchone or fetchall
to process the results. Use SQL to limit the result set.
Fetching everything (select * from tablewithout a where clause) and
processing the data using Python constructs is bad and will make your
program unusable for realistic data sets.
The first function will fetch all books by a given author. Use the
like operator to allow substring matches on the name. E.g. calling

PV248 Python 27/49 January 10, 2022

books_by_author(conn, "Brontë") should return books authored by
any of the Brontë sisters.

def books_by_author(conn, name):

pass

The second will fetch the set of people (i.e. each person appears at
most once) who authored a book with a name that contains a given
string. For instance, authors_by_book(conn, "Bell") should return
the 3 Brontë sisters and Ernest Hemingway. Try to avoid fetching the
same person multiple times (i.e. use SQL to get a set, instead of a list).

def authors_by_book(conn, name):

pass

Another functionwill return names of books which have at least count
authors. For instance, there are 3 books in the data set with 2 or more
authors.

def books_by_author_count(conn, count):

pass

Finally, write a function which returns the average author count for a
book. The function should return a single float, and ideally it would
not fetch anything from the database other than the result: try to do
the computation only using SQL.

def average_author_count(conn):

pass

10.p.4 [lcreate] The file zz.lists.sql contains a database schema for
keeping shopping lists. Besides shopping lists themselves, we will keep
a table of item descriptions, a table of shops (vendors) and a table of
supplies currently in your pantry. This last table also keeps track of
a ‘minimal’ and ‘preferred’ amount for each item. Those will come in
handy when we will want to create shopping lists automatically.
Each item may be available from multiple vendors, and of course each
vendor stocks multiple items. Therefore, items and shops are in an
M:N relationship, and we will keep this relationship in an auxiliary
table. Finally, each vendor has, for each item, an individual unit price
that is valid starting on a given date. A null price indicates that the
item is not available in the given timespan. New start date overrides
the price.
A shopping list, then, is a list of items to obtain. Each item on the list
comes with:

• the quantity to obtain,
• the shop where to buy it and
• the quantity actually obtained.

Besides the list of items, the shopping list has a date attached to it. In
this exercise, we will start by providing an interface for creating new
lists.

from datetime import date

from sqlite3 import Connection

from typing import Optional, Callable, Type

The classes in this exercise (and its follow-ups) will be associated with
records in the database. Each class will hold onto an optional id: if the
id is None, the record is not stored in the database (yet). So far, we will
only set the id in the createmethod.
The only method which is allowed to change the database is create

(in a later exercise, we will add update). All set_* and add_* methods
(and later remove_*) methods should simply remember the changes and
additions, until the user calls create, which then stores everything at
once. Other methods may, however, query the database for data, if it
is convenient to do so.
Finally, feel free to add a suitable base class, from which the other
classes can be derived.

class Shop:

Creates an empty item, not yet associated with anything in the data-
base. Set the internal id to None.

def __init__(self, db: Connection):

pass

def set_name(self, name: str):

pass

Create a record in the database. If the instance is already associated
with a record, raise a RuntimeError. If the shop does not have a name,
raise a RuntimeError.

def create(self):

pass

All the remaining classes are analogous to Shop.

class Item:

def __init__(self, db: Connection):

pass

def set_name(self, name: str):

pass

Prices are associated not with just an item, but also a time period and
a specific shop.

def set_price(self, vendor: Shop, price: Optional[int],

start: date):

pass

If the item does not have a name, raise a RuntimeError.

def create(self):

pass

class ShoppingList:

def __init__(self, db: Connection):

pass

def set_date(self, when: date):

pass

def add_item(self, item: Item, qty: int):

pass

A shopping list might be empty, but it must have a date set. If it does
not, refuse to create it (raise a RuntimeError).

def create(self):

pass

10.p.5 [lsearch] In this exercise, we will extend the classes from
list_create by adding various ways to fetch them from the database.

class Shop(list_create.Shop):

Find the shop in the database by its name. If no such shop is in the data-
base, raise a RuntimeError. If found, set the internal id of the instance.
Only allow fetching if the calling Shop instance’s id is not set yet. If
there are several shops with the same name, raise a RuntimeError.

def fetch_by_name(self, name: str):

pass

def fetch_by_id(self, ID: int):

pass

The top-level function find_shopswill do a substring search on all the
shops in the database, and return a Shop instance for each match.

PV248 Python 28/49 January 10, 2022

def find_shops(db: Connection, pattern: str):

pass

class Item(list_create.Item):

def fetch_by_name(self, name: str):

pass

def fetch_by_id(self, ID: int):

pass

Find a price at the given time in the given shop. Return None if the item
is not available from the vendor at the time.

def get_price(self, vendor: Shop, when: date):

pass

Find the best price available on a given date. Return a tuple of int (the
price) and a Shop (the vendor which has this price), or None if the item
is not available at all. Tie breaks alphabetically (prefer vendors with
names that come first in a dictionary).

def get_best_price(self, when: date):

pass

class ShoppingList(list_create.ShoppingList):

def fetch_by_id(self, ID: int):

pass

Find all shopping lists that have a given item on it, in quantity at least
qty. Returns a list of ShoppingList instances.

def find_lists_by_item(db: Connection, item: Item, qty: int):

pass

10.p.6 [lupdate] In this exercise, we will extend the classes from
list_search by adding an update method to each. If the entity does
not exist in the database, update should raise a RuntimeError. After up-
date, the database should reflect any changes and additions that have
been done on the instance since it was either created, fetched or last
updated.
Also add a deletemethod, which removes the entry and all the records
it owns, from all relevant tables in the database. If you are deleting an
entry that has associated records in other tables but does not own these
records, raise a RuntimeError instead (an example would be removing
a shop, while a pricing entry for that shop exists). After delete, the
instance can no longer be used for anything (but you do not need to
enforce this).

class Shop(list_search.Shop):

def update(self):

pass

def delete(self):

pass

class Item(list_search.Item):

def update(self):

pass

def delete(self):

pass

class ShoppingList(list_search.ShoppingList):

def remove_item(self, item: Item):

pass

def update(self):

pass

def delete(self):

pass

The following function will check the current supplies and update the
given shopping list so that afterwards, fetching everything on the list
results in all supplies being at least at their ‘minimum’ level (if preferred
is False) or at their ‘preferred’ level (if preferred is True). Do not remove
anything from the list.
Note that some of the required items might be already on the list (but
possibly in an insufficient quantity). Do not add more of an item than
required for the restock, unless it already was on the list (specifically,
calling add_missing a second time should have no effect, unless the
current supply levels changed in the meantime).

def add_missing(shop_list: ShoppingList, preferred: bool):

pass

Part 10.r: Regular Exercises

10.r.1 [schema] You are given a JSON file which describes a (very rudi-
mentary) database schema. The top-level value is an object (dictionary)
with table names as keys and objects which describe the columns as
values.
The keys in the table description are column names and values (strings)
are SQL types of those columns. Given a database connection and a
path to the JSON file, create the tables. If one of them already exists,
raise an error.

from sqlite3 import Connection, OperationalError, connect

def create_tables(schema: str, db: Connection):

pass

10.r.2 [upgrade] This exercise is the same as the previous one, with
one important difference: if some of the tables already exist, this is
not an error. However, the columns of the existing table and those
specified by the schema might be different. In this case, create any
missing columns, but do not touch columns that already exist.
Optional extension: print names of any extra columns, as a warning to
the user that they no longer appear in the current schema and should
be removed.
Note: the alter table command in sqlite is very limited. In a ‘real’ data-
base, it is possible to alter column types, add and remove constraints
and so on, all transactionally protected.

from sqlite3 import Connection, OperationalError, connect

def upgrade_tables(schema: str, db: Connection) -> None:

pass

10.r.3 [pkgs] You are given a database which stores information about
packages, with the following tables:

package: id (primary key), name (string)

version: id (primary key), package_id (foreign key),

number (string)

depends: version_id (foreign key), depends_on (foreign key)

Where depends_on also refers to version.id. Write the following func-
tions.

from sqlite3 import Connection, connect

from typing import List, Tuple

Return a list of packages, along with the number of distinct versions
of each package.

def list_packages(db: Connection) -> List[Tuple[str, int]]:

pass

PV248 Python 29/49 January 10, 2022

Return the package versions (as a tuple of the package name and ver-
sion ‘number’) that are not required by any other package (i.e. they
form leaf nodes in the dependency tree).

def list_leaves(db: Connection) -> List[Tuple[str, str]]:

pass

For each package version, give the number of packages (package ver-
sions) which directly depend on it.

def sum_depends(db: Connection) -> List[Tuple[str, str, int]]:

pass

Part 11: Asynchronous Programming
Prep exercises:

1. sem – semaphore synchronisation in asyncio

2. proc – asyncio processes
3. multi – more processes
4. tcp – a simple TCP echo server
5. http – an HTTP client with a subprocess
6. merge – process data from multiple sockets

Regular exercises:

1. sleep – sleep, running tasks in parallel
2. counter – two-way communication with a process
3. pipeline – multi-stage asynchronous processing
4. tokenize – TBD another stream pipeline exercise
5. minilisp – an asynchronous parser
6. rot13 – listening on UNIX domain sockets

Part 11.p: Prep Exercises

11.p.1 [sem] Use gather() to spawn 10 tasks, each running an infinite
loop. Create a global semaphore that is shared by all those tasks and set
its initial value to 3. In each iteration, each task should queue on the
semaphore and when it is allowed to proceed, sleep 2 seconds before
calling notify, and relinquishing the semaphore again.
notify adds a tuple – containing the task id (1 - 10) and the time when
the task reached the semaphore – to the global list reached.
Observe the behaviour of the program. Add a short sleep outside of
the critical section of the task. Compare the difference in behaviour.
After your program works as expected, i.e. only 3 tasks are active at
any given moment and the tasks alternate fairly, switch the infinite
loop for a bounded loop: each task running twice, to be consistent with
the tests.
Note: Most asyncio objects, semaphores included, are tied to an event
loop. You need to create the semaphore from within the same event
loop in which your tasks will run. (Alternatively, you can create the
loop explicitly and pass it to the semaphore.)

import asyncio

import time

reached = []

begin = time.time()

def notify(i: int) -> None:

t = time.time() - begin

print("task {} reached semaphore at {}".format(i, t))

reached.append((i, t))

async def semaphores() -> None:

pass

11.p.2 [proc] In this exercise, we will look at talking to external pro-
grams using asyncio. There are two coroutines in the asynciomodule
for spawning new processes: for simplicity, we will use create_sub-

process_shell.
However, before you start working, try the following shell command:

$ while read x; do echo x is $x; done

and type a few lines. Use ctrl+d to terminate the loop.
This is one of the programs we will interact with. Use stdout and stdin
streaming to talk to this simple shell program from python: send a line
and read back the reply from the program. Copy it to the standard
output of the python program. Apart from printing, return a list of
all outputs from the shell program. There are two arguments, the
command to run and a list of inputs to serve this program one-by-one.
NOTE: The data that goes into the process and that comes out is bytes,
not strings. Make sure to encode and decode the bytes as needed.

import asyncio

from asyncio.subprocess import PIPE

from typing import List

async def pipe_cmd(command: str,

inputs: List[str]) -> List[str]:

pass

11.p.3 [multi] Spawn 2 slightly different instances of the shell program
from previous exercise, then use gather to run 3 tasks in parallel:

• two that print the output from each of the processes
• one that alternates feeding data into both of the subprocesses

First shell program reads its input and outputs p1: [input value].
Second shell program reads its input and outputs p2: [input value].
Process 3 sends characters a through h to the two printing processes;
it first sends the character to process 1, then waits 0.5 seconds, then
it sends the same character to process 2 and waits 0.2 seconds. The
outputs of the two main processes are printed to stdout, so that you
can follow what is going on, and added to the global data list, along
with a timestamp (see p1) – as a tuple.
Don’t forget to clean up at the end.

import asyncio

from asyncio.subprocess import PIPE

from typing import Tuple

data = []

async def multi() -> None:

pass

11.p.4 [tcp] Start a server, on localhost, on the given port (using asyn-

cio.start_server) and have two clients connect to it. The server takes
care of the underlying sockets, so we will not be creating them manu-
ally. Data is, again, transferred as bytes object.
The server should return whatever data was sent to it. Clients should
send hello and world, respectively, then wait for the answer from the
server and return this answer. Add print statements to make sure
your server and clients behave as expected; print data received by the
server, sent to the clients and sent and received by the clients on the
client side. Make sure to close the writing side of sockets once data is
exhausted.

import asyncio

PV248 Python 30/49 January 10, 2022

Server-side handler for connecting clients. Read the message from the
client and echo it back to the client.

async def handle_client(reader, writer):

pass # print("server received & sending", ...)

Client: connect to the server, send a message, wait for the answer and
return this answer. Assert that the answer matches the message sent.
Sleep for 1 second after sending world, to ensure message order.

async def client(port, msg):

pass # print("client sending", ...)

pass # print("client received", ...)

Start the server and the two clients, gather the data back from the two
clients into a list, return this list; starting with the hello client. Use the
provided port.

async def start(port):

pass

11.p.5 [http] Use aiohttp (python -mpip install aiohttp) to fetch a
given URL and stream the HTML into tidy (html-tidy.org). Specifically,
use tidy 2>&1 as the command that you start with asyncio.create_sub-

process_shell. Capture the stdout and return the output until the first
blank line, as a list of bytes objects.

import aiohttp

import asyncio

from asyncio.subprocess import PIPE

async def tidy(url):

pass

11.p.6 [merge] Write a ‘merge server’, which will take 2 string argu-
ments, both paths to unix sockets. The first socket is the ‘input’ socket:
listen on this socket for client connections, until there are exactly 2
clients. The clients will send lines, sorted lexicographically.
Connect to the ‘output’ socket (second argument) as a client. Read lines
as needed from each of the clients and write them out to the output
socket, again in sorted order. Do not buffer more than 1 line of input
from each of the clients.
Use readline on the input sockets’ streams to fetch data, and relational
operators (<, >, ==) to compare the bytes objects.

import asyncio

The merge_server coroutinewill simply start the unix server and return
the server object, just like asyncio.start_unix_server does.

async def merge_server(path_in, path_out):

pass

Part 11.r: Regular Exercises

11.r.1 [sleep] Demonstrate the use of native coroutines and basic asyn-
cio constructs. Define 2 coroutines, say cor1() and cor2(), along with
an asynchronous driver, sleepy(). Make the coroutines suspend for a
different amount of time (say 0.7 seconds and 1 second) and then print
the name of the function, in an infinite loop.
Use asyncio.gather to run them in parallel (from your sleepy(), which
you should invoke by using asyncio.run() at the toplevel) and observe
the result. What happens if you instead await cor1() and then await

cor2()? Try making the loops in corN finite (tests are meant for 5 itera-
tions, but feel free to play around with them).

async def sleepy():

pass

11.r.2 [counter] Spawn a given number of instances of the following

shell program:

while true; do echo .; sleep {n}; done

Where the values for {n} are given in the argument sleeps. Run all
these programs in parallel and monitor their output (asserting that
each line they print is exactly a single dot).
Once a second, use queue.put to send a list of numbers, each of which
gives the number of dots received from the i-th subprocess. For in-
stance, the first list should be approximately [1, 2, 10] if sleeps

were given as [1, 0.5, 0.1]. The last parameter, iterations tells you
how many one-second intervals to run for (and hence, how many
items to put into the queue). After the given number of iterations, kill
all the subprocesses.

async def counters(queue, sleeps, iterations):

assert False

11.r.3 [pipeline] In this (and the next) exercise, we will write corou-
tines which can be connected into a sort of pipeline, like what we did
with generator-based streams in week 4. Again, there will be sources,
sinks and processors and the coroutines will pass data to each other as
it becomes available.
Native coroutines have an arguably a more intuitive and more pow-
erful construct to send data to each other than what is available with
generators: asyncio.Queue. The queues are of two basic types: bounded
and unbounded. The former limits the amount of memory taken up
by ‘backlogs’ and enforce some level of synchronicity in the system.
In the special case where the size bound is set to 1, the queue behaves
a lot like send/yield. Trying to get an item from a queue that is empty
naturally blocks the coroutine (making it possible for the writer corou-
tine to run) – this is quite obvious. However, if the queue is bounded,
the opposite is also true: writing into a full queue blocks the writer
until space becomes available. This lets the readermake progress at
the expense of the writer. Recall also the schedulers from week 8.
We will use such queues to build up our stream pipelines: sinks and
sources will accept a single queue as a parameter each (sink as its input,
source as its output), while a processor will accept two (one input and
one output). Like before, we will use None to indicate an empty stream,
however, we will not repeat it forever (i.e. only send it once).
In this exercise, we will write two simple processors for our stream
pipelines:

• a chunkerwhich accepts str chunks of arbitrary sizes and produces
chunks of a fixed size,

• getline which accepts chunks of arbitrary size and produces
chunks that correspond to individual lines [TBD pre-made tests
missing].

Note: if you use Python 3.8, asyncio.Queue is not a generic type. You
will need to adjust the type annotations accordingly.

def chunker(size):

async def process(q_in, q_out):

await q_out.put(None)

return process

11.r.4 [tokenize] Nothing here. Perhaps try again later.

11.r.5 [minilisp] Write an asynchronous parser for a very limited sub-
set of the LISP grammar from t3/lisp.py. Specifically, only consider
compound expressions and atoms. Represent atoms using str and
compound expressions using lists (note: it might be hard to find a rea-
sonable mypy type – it is quite okay to skip mypy in this exercise). The
argument to the parser is an asyncio.StreamReader instance. Your best
bet is reading the data using readexactly(1). The parser should imme-
diately return after reading the closing bracket of the initial expression.

PV248 Python 31/49 January 10, 2022

async def minilisp(reader):

pass

11.r.6 [rot13] We will do something similar to p4_tcp, but this time
we will use a UNIX socket. UNIX sockets exist in the filesystem and
need to be given a (file)name. Additionally, instead of simply echoing
the text back, we will use Caesar cipher (rotate the characters) with
right shift (the intuitive one) of 13. We will have to explicitly remove
the socket once we are done with it, as it will stay in the filesystem
otherwise.

async def handle_client(reader, writer):

pass # print("server received", ...)

pass # print("server sending", ...)

async def client(msg, path):

pass # print("client sending", ...)

pass # print("client received", ...)

async def unix_rot(path):

pass

Part 12: Math and Statistics
This chapter is work in progress! You have been warned. Submission
for this chapter starts on 2021-11-29.
Prep exercises:

1. linear – matrices warmup
2. volume – polyhedron volume
3. signal – generating sine waves
4. stats – simple stats with pandas
5. outliers – dealing with irregularities in data
6. student – the t-test

Regular exercises:

1. hist – drawing histograms with ASCII art
2. dft – discrete Fourier transform
3. null – the null space of a matrix
4. frames – slicing and dicing pandas dataframes
5. regress – linear regression, with outliers
6. anova – TBD analysis of variance

Part 12.p: Prep Exercises

12.p.1 [linear] The goal of this exercise is to learn about numpy arrays.
Write a functionwhich takes a list of numbers, interprets it as a square
matrix and computes the inverse, second power, the determinant. The
function should return those values as a 3-tuple, with matrices repre-
sented the same way as input: as a flat list of numbers. Return None
in place of inverse if the matrix is singular, i.e. has no inverse.

import numpy as np

def linalg(matrix):

pass

12.p.2 [volume] Compute the volume of an n-dimensional simplex,
given as a list of n + 1 points. A 2D simplex is a triangle, given by
3 points, a 3D simplex is a 3-sided pyramid given by 4 points and so on.

def volume(pts):

pass

12.p.3 [signal] Write a function that generates 1 second of signal as
a sequence of amplitude samples, built from a given mix of sinus fre-
quencies. The result should contain count samples, including the initial
state at t = 0. 1 second is the time of 1 full cycle of a sine wave with
frequency 1. Return it as an ndarray.
Then write a function logscale, which takes a histogram represented
as a list of floats and converts its x axis to logscale. That is: the first
item is discarded, the second item becomes first, the average of 3rd and
4th item comes second, the average of 5th through 8th items comes
third, and so on. Compare np.ceil(np.log2(range(1, 32))).

import numpy as np

def freq(count, freqs):

pass

def logscale(data):

pass

12.p.4 [stats] Grab the data from the given filename and compute the
average, median, first and last quartile and variance of each numeric
column. Put the data into a dictionary with sub-dictionaries as values,
e.g.

{

'average': { 'age': 39.207, 'bmi': 30.663, … },

'variance': …,

'first quartile': { 'age': 27, … },

'last quartile': { 'age': 51, … },

…

}

def stats(filename):

pass

12.p.5 [outliers] Write a function that removes outliers from an oth-
erwise normally distributed data set, given as a list of 2-tuples (x, y).
You can create random inputs for testing with numpy.random.normal(

mean, stddev, count) and then add a few outliers manually.

import numpy as np

What exactly constitutes an outlier is somewhat domain- and dataset-
specific, but using some small integer multiple (3-5) of σ (the standard
deviation) as the cutoff is quite common.
You can use pandas data frames in the implementation if you like, or
even construct them outside and pass them to the function directly.
Remove all outliers strictly outside the range given by the nsigmas

argument. Return the filtered list.

def drop_outliers(data, nsigmas):

pass

Now that we have a function to remove outliers, let’s look at what
effect it has. The following function should call f on both the original
data, and the outlier-culled variant. Return a 2-tuple of (original data,
outliers removed) where each is itself a 2-tuple (x, y). Apply f on each
axis separately (i.e. for a datasetwith x values xs and y values ys, return
f(xs), f(ys)).

def cmp_outliers(data, nsigmas, f):

pass

Try computing mean, median, quartiles and standard deviation of a
few data sets with a more or less severe outlier problem.

12.p.6 [student] The t-test is used, among other things, to assess
whether two populationmeans of some attribute are the same, based

PV248 Python 32/49 January 10, 2022

on a sample of each of the two populations. The test makes a few
assumptions, the most important being:

1. the attribute is normally distributed,
2. the variances of the two samples are similar,
3. the sample sizes are equal.

The assumptions are not exact: small deviations only lead to small
inaccuracy in the result. Hence, we can set up some tolerances. Imple-
ment a predicate t_validate that takes 2 sets of numbers, and tolerance
arguments as follows:

• normality is the maximum p-value that we are willing to accept for
a normality test on the input data (use a Shapiro-Wilk test to obtain
the p-value),

• variance is the difference of variances thatwe arewilling to tolerate,
and finally

• relsize is the relative size difference that we are willing to accept
(i.e. we accept the samples if their size difference divided by their
size average is less than relsize).

def t_validate(s_1, s_2, normality, variance, relsize):

pass

Then implement a function split that takes:

• data, a pandas data frame,
• col, the column to test,
• split_col, the column by which the data is split into two disjoint

sets,
• split_val if None, split_colmust have exactly 2 values, which are

taken to be the sample sets to compare, otherwise split_val is a
number and split_col is numeric: then the two sets are given by
data[split_col] < split_val and data[split_col] >= split_val.

The result of split is two sets of numbers (in the form of single-column
data frames).

def split(data, col, split_col, split_val = None):

pass

Finally implement pvaluewhich takes 2 samples (sets of numbers) and
produces a p-value indicating the likelihood that the means of the
corresponding populations are equal.

def pvalue(s_1, s_2):

pass

Note on typing: if you decide to use scipy.stats, youwill need to import
it with # type: ignore, since scipy does not have mypy stubs.

Part 12.r: Regular Exercises

12.r.1 [hist] Write a function that takes a list of numbers and draws an
ASCII histogram (into a string). Normalize the height to 25 characters.
You can compare your output with example output which uses the *

character to represent value frequency.

def histogram(bins):

pass

12.r.2 [dft] Write a function which reconstructs the frequencies
which were given to freq in p3_signal.py, as an ascending list of in-
tegers.
Note that the FFT algorithm used in numpy will give you non-zero
amplitudes for every frequency – use isclose to check if the amplitude
is almost zero.
You can assume that the input only contains integer frequencies.
When testing, be careful to avoid aliasing (i.e. make sure the high-
est frequency passed to freq from p3_signal.py is less than half the
number of samples).

def dft(amp):

pass

12.r.3 [null] Given a square matrix, find its ‘null space’ in the form of
a list of unit-length basis vectors for that space. The null space (or a
kernel) of a matrix is the space of all vectors which, multiplied by the
matrix, come out as zero. For instance:

1 0 0 x x
0 1 0 × y = y
0 0 0 z 0

This comes out zero if x = y = 0, regardless of z. Hence, the null space
is spanned by the single vector (0, 0, 1). Indeed:

1 0 0 0 0
0 1 0 × 0 = 0
0 0 0 1 0

If we consider another matrix, we see:

1 1 0 x x + y
2 2 0 × y = 2x + 2y
0 0 0 z 0

The vector is zero whenever x = −y (and irrespective of z). Hence, the
null space is two-dimensional, spanned by (for instance) the vectors (1,
-1, 0) and (0, 0, 1).

1 1 0 1 0
2 2 0 × -1 = 0
0 0 0 0 0

1 1 0 0 0
2 2 0 × 0 = 0
0 0 0 1 0

Notice that we have chosen the basis so that it is orthogonal:

0
1 -1 0 × 0 = 0

1

It’s easy to make it orthonormal, just divide the first vector by a square
root of 2. In the exercise, however, orthogonality is not required (it just
makes it easy to see that the vectors are linearly independent).

import numpy as np

from typing import cast, List

def null(m):

pass

12.r.4 [frames] The data for this exercise is in zz.frames.csv. The data
represents grading of a programming subject (with made-up names
and numbers, of course). The columns are names, number of points
from weekly exercises, from assignments and from reviews. Imple-
ment the following functions:
Return a DataFrame which only contains rows of students, which
achieved the best result among their peers in one of the categories
(weekly, assignments, reviews). If there are multiple such students for
a given category, include all of them.

def best(data):

pass

Return a DataFrame which contains the name and the total score (as
the only 2 columns). Don’t forget that the weekly exercises contribute
at most 9 points to the total.

def compute_total(data):

pass

PV248 Python 33/49 January 10, 2022

Return a dictionarywith 4 keys (weekly, assignments, reviews and total)
where each value is the average number of points in the given category.
Consider factoring out a helper function from compute_total to get a
DataFramewith 5 columns.

def compute_averages(data):

pass

12.r.5 [regress] In this case, the input data will again be (x, y) tuples,
but distributed around a straight line and we will compute linear re-
gression on the data. This time, we will remove outliers iteratively:
find the term with the greatest squared residual and if the squared
residual is larger than cutoff-times the sum of all squared residuals,
drop the data point and restart the regression. Stop when there are no

more outliers.
Feel free to use pandas and/or numpy.

def drop_outliers(data, cutoff): # add arguments if you like

pass # return filtered data

def regress(data, cutoff):

pass # remove outliers iteratively

return the slope and the intercept of the regression line

NOTE: In both p5 and in this exercise, we have taken a rather cavalier
approach to outlier removal. For real statistics on real data, you often
need to be much more careful and take the origin of the data set into
account. Always disclose any outliers you have removed from further
consideration.

Part T.3: Persistence
This task set is centered aroundpersistent data. There are twodatabase-
focused tasks (one of themwith objects, anotherwith generators again),
while the third is a small parsing project.

1. lisp – a simple context-free parser
2. squelter – storing the shelter objects with SQL
3. merkle – persistent trees

Part T.3.1: [lisp]

Write a simple LISP (expression) parser, following this EBNF grammar:

expression = atom | compound ;

compound = '(', expression, { whitespace, expression }, ')' |

'[', expression, { whitespace, expression }, ']' ;

whitespace = (' ' | ? newline ?), { ' ' | ? newline ? } ;

atom = literal | identifier ;

literal = number | string | bool ;

nonzero = '1' | '2' | '3' | '4' |

'5' | '6' | '7' | '8' | '9' ;

digit = '0' | nonzero ;

sign = '+' | '-' ;

digits = '0' | (nonzero, { digit }) ;

number = [sign], digits, ['.', { digit }] ;

bool = '#f' | '#t' ;

string = '"', { str_char }, '"' ;

str_lit = ? any character except '"' and '\' ? ;

str_esc = '\"' | '\\' ;

str_char = str_lit | str_esc ;

identifier = id_init, { id_subseq } | sign ;

id_init = id_alpha | id_symbol ;

id_symbol = '!' | '$' | '%' | '&' | '*' | '/' | ':' | '<' |

'=' | '>' | '?' | '_' | '~' ;

id_alpha = ? alphabetic character ?

id_subseq = id_init | digit | id_special ;

id_special = '+' | '-' | '.' | '@' | '#' ;

Alphabetic characters are those for which isalpha() returns True. It
is okay to accept additional whitespace where it makes sense. For the
semantics of (ISO) EBNF, see e.g. wikipedia.
The parser should be implemented as a toplevel function called parse

that takes a single str argument. If the string does not conform to the
above grammar, return None. Assuming expr is a string with a valid
expression, the following should hold about x = parse(expr):

• an x.is_foo() method is provided for each of the major non-
terminals: compound, atom, literal, bool, number, string and identi-

fier (e.g. there should be an is_atom()method), returning a boolean,

• if x.is_compound() is true, len(x) should be a valid expression and x

should be iterable, yielding sub-expressions as objects which also
implement this same interface,

• if x.is_bool() is true, bool(x) should work,
• if x.is_number() is true, basic arithmetic (+, -, *, /) and relational (<, >,

==, !=) operators should work (e.g. x < 7, or x * x) as well as int(x)
and float(x),

• x == parse(expr) should be true (i.e. equality should be extensional),
• x == parse(str(x)) should also hold.

If a numeric literal xwith a decimal dot is directly converted to an int,
this should behave the same as int(float(x)). A few examples of
valid inputs (one per line):

(+ 1 2 3)

(eq? [quote a b c] (quote a c b))

12.7

(concat "abc" "efg" "ugly \"string\"")

(set! var ((stuff) #t #f))

(< #t #t)

Note that str(parse(expr)) == expr does not need to hold. Instead, str
should always give a canonical representation, e.g. this must hold:

str(parse('+7')) == str(parse('7'))

Part T.3.2: [squelter]

In this task, we will add persistence to the Shelter class from the previ-
ous installment (t1_shelter). You should provide 2 new functions, load
and store. The basic requirement is that doing a store→ load→ store

sequence will produce two identical copies of the same data.

• Both load and store expect a db keyword argument, which takes an
open sqlite3 connection.

• The load function accepts a single positional argument, an id of the
Shelter snapshot to load and returns a Shelter instance.

• The store function takes a Shelter instance as its only positional
argument, and returns an id (which can be then passed to load).

Please note that storing multiple Shelter instances in a single database
must be possible. Moreover, each animal and human should appear in
the entire database only once, even if they appear in multiple Shelter

snapshots stored in that database. We consider two people or two
animals the same if all their attributes match, with two exceptions:

• the max_capacity of a foster parent: the same foster parent may
appear in multiple Shelter instances with a different capacity,

• the date_of_entry of an animal, which works the same way (the
same animal still cannot re-enter the same shelter though).

PV248 Python 34/49 January 10, 2022

Beware! This is a departure from the semantics required in t1_shelter,
where it was possible to have multiple animals with identical attribute
sets. For this assignment, you will need to modify add_animal to return
an existing object if all attributes match (again with the exception of
date_of_entry: if all other attributes match but not date_of_entry, raise
a RuntimeError).
Same with foster parents and max_capacity. A foster parent and an
adopterwith the same name and address are, however, distinct entities
and should be allowed. In this case, the name and address will repeat
in the database (once as a foster parent and once as an adopter).
Finally, if store is called on a Shelterwith the keyword argument dedu-
plicate set to True, and a snapshot with the exact same information
(i.e. the list of animals, adopters, foster parents, fostering records and
vet exams) is already present, do not add anything to the database and
return the id of the existing snapshot. It is okay for this check to be, in
the worst case, linear in the number of snapshots already stored.
The database schema is up to you, subject to the constraints above. If
store is called on an empty database, it should create the necessary
tables.

Part T.3.3: [merkle]

Implement class Merklewhich provides the following methods:

• __init__(conn) sets up the object, using conn as the database con-
nection (you can assume that this is an sqlite3 connection),

• store(path) stores the tree corresponding to the directory path

from the filesystem into the database (see below about format) and
returns its hash,

• diff_path(hash_old, path_new) computes a recursive diff between
the directory given by the hash_old stored in the database and the
directory given by path_new (in the filesystem),

• diff(hash_old, hash_new) computes a recursive diff between two
directories stored in the database,

• fetch(hash, path) creates directory path in the filesystem (it is
an error if it already exists, or if anything else is in the way) and
makes a copy of the tree with root directory given by hash (from the

database into the filesystem), returning True on success and False

on error,
• find(root_hash, node_path) returns the hash of a node that is

reached by following node_path starting from the directory given
by root_hash, or None if there is no such node.

The format of the trees is as follows:

• a regular file corresponds to a leaf node, and its hash is simply the
hash of its content,

• a directory node is a list of (itemhash, itemname) tuples; to compute
its hash, sort the tuples lexicographically by name, separate the
item hash from the name by a single space, and put each tuple on a
separate line (each line ended by a newline character).

These are the only node types. The same node (two nodes are the
same if they have the same hash) must never be stored in the database
twice. The find operation must be fast even for very large directories
(i.e. do not scan directories sequentially). Paths are given as strings,
components separated by a single / (forward slash) character.
The recursive diff should be returned as a dict instance with file paths
as its keys, where:

• a path appears in the dictionary if it appears in either of the trees
being compared (except if it is in both, and the content of the asso-
ciated files is the same),

• the values are Diff objects, with the following methods:
∘ predicates is_new, is_removed and is_changed,
∘ old_content, new_content which return a bytes object with the

content of the respective file (if applicable),
∘ unifiedwhich returns a str instance with a difflib-formatted

unified diff (it is the responsibility of the caller to make sure the
files are utf8-encoded text files).

For instance, doing diff(foo, foo) should return an empty dict. You
are encouraged to fetch the file content lazily. Diffing trees with a few
hundred files each, where most files are 100MiB, should be very fast
and use very little memory if we only actually read the content diff
for a single small file.
The hashes are SHA-2 256 and in the API, they are always passed
around as a bytes object (which contains the raw hash, 32 bytes long).

Part T.4: Asynchronous Programming, Math
In the final set, there are 2 tasks focused on programming with asyncio

and one that extends t3/lisp.py into a simple numeric language based
on numpy.

1. chat – a line-based chat server
2. reversi – an HTTP+JSON game server
3. numeval – a simple expression language for numeric computation

Part T.4.1: [chat]

Write a simple chat server that accepts connections on a UNIX domain
socket, which it should create in its working directory with the name
chatsock. It should implement a simple line-oriented protocol with the
command types described below. In the direction from client to server:

nick <nickname>

join <channel>

message <channel> <text>

part <channel>

replay <channel> <unix timestamp>

And in the opposite direction:

ok <text>

error <text>

message <channel> <unix timestamp> <nickname> <text>

Both nicknames and channel names are alphanumeric strings with-
out spaces, the latter must start with a # while the former must not
start with a #. Neither channel names nor nicknames can start with
an asterisk (*). Unix timestamp is an unsigned integer denoting the
number of seconds elapsed since midnight, 1.1.1970. <text> is any utf-8
string with no newlines in it. The server should respond to unknown
or malformed commands with an error.
Upon connecting, the client sends the nick command. The server ac-
cepts it and replies ok unless the nickname is already in use by another
connected client, in which case it replies error. It is also an error to
send any other command before nick has been accepted. If the client
sends a nick command later, that will change the nick of the connected
client.
The join command associates the client which sent the commandwith
the given channel. Joining an already-joined channel is an ’error’.
Channels are transparently created when the first client joins them,
and are never destroyed. The part command removes the association
of the client with the channel. It is an error to part a channel that is
not joined. Both confirm the action with an ok if they succeed.
When a client joins an existing channel, the server announces this
fact to all other clients already present in the channel. Likewise, when
a client changes its nickname while joined to a channel, the server no-

PV248 Python 35/49 January 10, 2022

tifies each such channel about the change. In both cases, the nickname

of the messagewill be *server*, and its textwill be nick has joined the

channel and oldnick is now known as newnick respectively.
The message command (when sent by a client) causes the givenmessage
to be broadcast to all users associatedwith the given channel, including
the originator. There is no other reply from the server. However, if the
target channel does not exist or the client is not currently associated
with it, the server replies with an error and does not broadcast the
message. The nickname in the message command broadcast by the server
is that of the originator of the message, and the timestampmarks the
moment when the server received the command from the sending
client.
Finally, the replay command causes the server to re-send all messages
that the given channel received since the given timestamp (i.e. with
a timestamp that is greater or equal to the one given by the client) to
the sender of the command. The server gives ok before resending any
messages if the request was valid (even in the case that there are no
matchingmessages). The command results in an error (and nomessage
replay) in case the client is not associated with the channel, or if the
timestamp is in the future according to the server clock. The replay
includes both server messages (with nick *server*) and messages sent
by the client requesting the replay.
If the client sends multiple commands without waiting for replies, the
replies from the server should come in the order of the commands re-
ceived. Any message commands going from the server to the client are,
however, asynchronous to the rest of the command stream, including
message commands generated in response to a replay. That is, a message

may appear after the client sent a command, but before the server
sends the corresponding ok or error.
The servermust remain responsive at all times and to all clients, includ-
ing during playback of long message histories in response to a replay

command. It is strongly encouraged that you program the server in
an async style, using the asyncio library.

Part T.4.2: [reversi]

TBD.

Part T.4.3: [numeval]

Write an evaluator based on the grammar from t3/lisp.py. The basic

semantic rules are as follows: the first item in a compound expression
is always an identifier, and the compound expression itself is inter-
preted as a function application. Evaluation is eager, i.e. innermost
applications are evaluated first. Literals evaluate to themselves, i.e.
3.14 becomes a real with the value 3.14. Only numeric literals are
relevant in this homework, and all numeric literals represent reals
(floats). Besides literals, implement the following objects (<foo>+means
1 or more objects of type foo):

• (vector <real>+) – creates a vector with given entries
• (matrix <vector>+) – 1 vector = 1 row, starting from the top

And these operations on them:

• (+ <vector> <vector>) vector addition, returns a vector

• (dot <vector> <vector>) dot product, returns a real

• (cross <vector> <vector>) cross product, returns a vector

• (+ <matrix> <matrix>)matrix addition, returns a matrix

• (* <matrix> <matrix>)matrix multiplication, returns a matrix

• (det <matrix>) determinant, returns a real

• (solve <matrix>) solve a systemof linear equations, returns a vector

For solve, the argument is a matrix of coefficients and the result is
an assignment of variables – if there are multiple solutions, return a
non-zero one.

system matrix written as
x + y = 0 1 1 (matrix (vector 1 1)

-y = 0 0 -1 (vector 0 -1))

Expressions with argument type mismatches (both in object construc-
tors and in operations), attempts to construct a matrix where the indi-
vidual vectors (rows) are not of the same length, addition of differently-
shaped matrices, multiplication of incompatible matrices, addition or
dot product of different-sized vectors, and so on, should evaluate to an
error object. Attempt to get a cross product of vectors with dimension
other than 3 is an error. Any expression with an error as an argument
is also an error.
The evaluator should be available as evaluate() and take a string for
an argument. The result should be an object with methods is_real(),
is_vector(), is_matrix() and is_error(). Iterating vectors gives reals
and iteratingmatrices gives vectors. Both should also support indexing.
float(x) for x.is_real() should do the right thing.
You can use numpy in this task (in addition to standard modules).

Part S: Exercise Solutions

Part S.1: Python 101

S.1.e.1 [fibfib]

def fibfib(n, k):

if n == 0:

a = 1

b = 1

for i in range(k - 2):

c = a + b

a = b

b = c

return b

else:

return fibfib(0, fibfib(n - 1, k))

S.1.r.1 [permute]

from math import log,floor

from itertools import permutations, dropwhile

def int_to_list(number, base):

r = []

while number:

r.append(number % base)

number //= base

return r

def unique(lists):

return list(set(lists))

def list_to_int(list_, base):

res = 0

for i in range(len(list_)):

res += list_[i] * (base ** (len(list_)-i-1))

return res

def permute_digits(n, b):

perms = list(permutations(int_to_list(n, b)))

return unique(map(lambda x : list_to_int(x, b), perms))

PV248 Python 36/49 January 10, 2022

S.1.r.2 [rfence]

def encrypt(text, rails):

res = ""

for i in range(1, rails + 1):

j = 0

res += text[i - 1]

next_i = False

while not next_i:

lines_until_up = None

lines_until_down = None

if i % rails != 0: # (==0) last row, no down

lines_until_down = rails - i

if i % rails != 1: # (==1) first row, no up

lines_until_up = i - 1

for shift in [lines_until_down, lines_until_up]:

if shift is not None:

j += shift * 2

if i + j - 1 >= len(text):

next_i = True

break

res += text[i + j - 1]

return res

def decrypt(text, rails):

switches, rest = divmod(len(text) - 1, rails - 1)

first_row_len = switches // 2 + 1

rows = [text[0 : first_row_len]]

i = first_row_len

while i < len(text):

mid_row = ""

if len(text) - i < switches: # last row

rows.append(text[i :])

break

for j in range(switches):

mid_row += text[i]

i += 1

if rest > 0:

mid_row += text[i]

i += 1

rest -= 1

rows.append(mid_row)

res = ""

while any(rows):

for i in list(range(0, len(rows))) + \

list(range(len(rows) - 2, 0, -1)):

if len(rows[i]) == 0:

break

res += rows[i][0]

rows[i] = rows[i][1 :]

return res

S.1.r.3 [life]

def updated(x, y, cells):

count = 0

alive = (x, y) in cells

for dx in [-1, 0, 1]:

for dy in [-1, 0, 1]:

if dx or dy:

count += (x + dx, y + dy) in cells

return count in { 2, 3 } if alive else count == 3

def life(cells, n):

if n == 0:

return cells

todo = set()

for x, y in cells:

for dx in [-1, 0, 1]:

for dy in [-1, 0, 1]:

todo.add((x + dx, y + dy))

ngen = { (x, y) for x, y in todo if updated(x, y, cells) }

return life(ngen , n - 1)

S.1.r.4 [breadth] XXX

from statistics import median, mean

def breadth(tree):

last_level = [1]

widths = []

while last_level:

next_level = []

for i in last_level:

next_level += tree[i]

widths.append(len(last_level))

last_level = next_level

return mean(widths), median(widths), max(widths)

S.1.r.5 [radix]

def radix_sort(strings, idx = 0):

buckets = {}

result = []

for s in strings:

if len(s) > idx:

buckets.setdefault(s[idx], []).append(s)

else:

result.append(s)

for _, b in sorted(buckets.items(), key = lambda x: x[0]):

result.extend(radix_sort(b, idx + 1))

return result

S.1.r.6 [bipartite]

def is_bipartite(graph):

colours = {}

queue = []

vertices = list(set([x for x,_ in graph]))

for v in vertices: # can be disconnected

if v in colours:

continue

queue.append(v)

colours[v] = 1

colour = 1

while queue:

v = queue.pop(0)

colour = 2 if colours[v] == 1 else 1

for neighb in [y for x,y in graph if x == v]:

if neighb in colours and \

colours[neighb] != colour:

return False

if neighb not in colours:

colours[neighb] = colour

queue.append(neighb)

return True

PV248 Python 37/49 January 10, 2022

Part S.2: Objects, Classes and Types

S.2.e.1 [geometry]

from __future__ import annotations

from typing import Tuple

from math import sqrt, acos

from math import isclose, pi

class Point:

def __init__(self, x: float, y: float) -> None:

self.x = x

self.y = y

def __sub__(self, other: 'Point') -> Vector:

return Vector(self.x - other.x, self.y - other.y)

def translated(self, vec: Vector) -> 'Point':

return Point(self.x + vec.x, self.y + vec.y)

class Vector:

def __init__(self, x: float, y: float) -> None:

self.x = x

self.y = y

def __mul__(self, s: float) -> Vector:

return Vector(self.x * s, self.y * s)

def length(self) -> float:

return sqrt(self.x * self.x + self.y * self.y)

def dot(self, other: Vector) -> float:

return self.x * other.x + self.y * other.y

def angle(self, other: Vector) -> float:

cos = self.dot(other) / (self.length() * other.length())

if isclose(cos, 1): cos = 1

if isclose(cos, -1): cos = -1

return acos(cos)

class Line:

def __init__(self, p1: Point, p2: Point):

self.p1 = p1

self.p2 = p2

def translated(self, vec: Vector) -> Line:

return Line(self.p1.translated(vec),

self.p2.translated(vec))

def get_point(self) -> Point:

return self.p1

def get_direction(self) -> Vector:

v_dir = self.p2 - self.p1

return v_dir * (1 / v_dir.length())

class Segment(Line):

def __init__(self, p1: Point, p2: Point) -> None:

super(Segment, self).__init__(p1, p2)

def length(self) -> float:

return (self.p2 - self.p1).length()

def translated(self, vec: Vector) -> Segment:

return Segment(self.p1.translated(vec),

self.p2.translated(vec))

def get_endpoints(self) -> Tuple[Point, Point]:

return (self.p1, self.p2)

class Circle:

def __init__(self, c: Point, r: float) -> None:

self.c = c

self.r = r

def translated(self, vec: Vector) -> Circle:

return Circle(self.c.translated(vec), self.r)

def center(self) -> Point:

return self.c

def radius(self) -> float:

return self.r

def point_eq(p1: Point, p2: Point) -> bool:

return isclose(p1.x, p2.x) and \

isclose(p1.y, p2.y)

def dir_eq(u: Vector, v: Vector) -> bool:

return isclose(u.angle(v), 0) or \

isclose(u.angle(v), pi)

def line_eq(l1: Line, l2: Line) -> bool:

return dir_eq(l1.get_direction(), l2.get_direction()) and \

(point_eq(l1.get_point(), l2.get_point()) or

dir_eq(l1.get_point() - l2.get_point(),

l1.get_direction()))

S.2.r.1 [json]

from r1_json import JSON, Union, JsonKey

def toJSON(val: Union[JSON, int, str]) -> JSON:

if isinstance(val, str):

return JsonStr(val)

if isinstance(val, int):

return JsonInt(val)

return val

class JsonArray:

def __init__(self) -> None:

self.arr : list[JSON] = []

def get(self, key: JsonKey) -> JSON:

assert isinstance(key, int)

return self.arr[key]

def set(self, key: int, val: Union[JSON, int, str]) -> None:

assert isinstance(key, int)

self.arr[key] = toJSON(val)

def append(self, val: JSON) -> None:

self.arr.append(val)

class JsonObject:

def __init__(self) -> None:

self.assoc : dict[str, JSON] = {}

def get(self, key: JsonKey) -> JSON:

return self.assoc[str(key)]

def set(self, key: JsonKey, val: Union[JSON, int, str]) ->

None:

self.assoc[str(key)] = toJSON(val)

class JsonWrapper:

def get(self, key: Union[str, int]) -> JSON:

assert False

def set(self, key: Union[str, int], val: JSON) -> None:

assert False

class JsonInt(int, JsonWrapper): pass

class JsonStr(str, JsonWrapper): pass

S.2.r.2 [rotate]

from __future__ import annotations

from typing import TypeVar, Generic, Optional

T = TypeVar('T')

PV248 Python 38/49 January 10, 2022

class Tree(Generic[T]):

def __init__(self, value: T) -> None:

self.left : Optional[Tree[T]] = None

self.right : Optional[Tree[T]] = None

self.value = value

def rotate_left(self) -> Tree[T]:

assert self.left is not None

r = self.left

detach = r.right

r.right = self

self.left = detach

return r

def rotate_right(self) -> Tree[T]:

assert self.right is not None

r = self.right

detach = r.left

r.left = self

self.right = detach

return r

S.2.r.4 [treap]

from __future__ import annotations

from typing import TypeVar, Optional, Generic, TYPE_CHECKING

if TYPE_CHECKING:

S = TypeVar('S')

class Tree:

def rotate_left(self: S) -> S: return self

def rotate_right(self: S) -> S: return self

else:

Tree = __import__('sol_import').do('r2_rotate').Tree

T = TypeVar('T')

class Treap(Tree, Generic[T]):

def __init__(self, key: T, priority: int):

self.left : Optional[Treap[T]] = None

self.right : Optional[Treap[T]] = None

self.priority = priority

self.key = key

def _insert(node: Optional[Treap[T]], key: T, prio: int)

-> Treap[T]:

if node is None:

return Treap(key, prio)

else:

return node.insert(key, prio)

def _fix_right(self) -> Treap[T]:

assert self.right is not None

if self.priority > self.right.priority:

return self

else:

return self.rotate_right()

def _fix_left(self) -> Treap[T]:

assert self.left is not None

if self.priority > self.left.priority:

return self

else:

return self.rotate_left()

def insert(self, key: T, prio: int) -> Treap[T]:

if key > self.key:

self.right = Treap._insert(self.right, key, prio)

return self._fix_right()

else:

self.left = Treap._insert(self.left, key, prio)

return self._fix_left()

S.2.r.5 [distance]

x = __import__('sol_import').do('e1_geometry')

from typing import TYPE_CHECKING, Union

from math import isclose

from math import sqrt,acos

if not TYPE_CHECKING:

Point = x.Point

Vector = x.Vector

Line = x.Line

Segment = x.Segment

Circle = x.Circle

def distance_point_point(a: Point, b: Point) -> float:

p = a - b

return Vector(p.x, p.y).length()

def distance_point_line(a: Point, l: Line) -> float:

p1 = l.get_point()

p2 = p1.translated(l.get_direction())

x1, y1, x2, y2 = p1.x, p1.y, p2.x, p2.y

return (abs((y2 - y1) * a.x - (x2 - x1) * a.y +

(x2 * y1) - (y2 * x1)) /

sqrt((y2 - y1) * (y2 - y1) +

(x2 - x1) * (x2 - x1)))

def distance_line_line(p: Line, q: Line) -> float:

p1 = p.get_point()

return distance_point_line(p1, q)

def distance_point_circle(a: Point, c: Circle) -> float:

return abs(distance_point_point(a, c.center()) - c.radius())

def distance_line_circle(l: Line, c: Circle) -> float:

dist = distance_point_line(c.center(), l) - c.radius()

return 0 if dist <= 0 else dist

def distance(a: Union[Point, Line, Circle],

b: Union[Point, Line, Circle]) -> float:

if type(a) == Point and type(b) == Point:

return distance_point_point(a, b)

if type(a) == Point and type(b) == Line:

return distance_point_line(a, b)

if type(a) == Line and type(b) == Point:

return distance_point_line(b, a)

if type(a) == Line and type(b) == Line:

return distance_line_line(a, b)

if type(a) == Point and type(b) == Circle:

return distance_point_circle(a, b)

if type(a) == Circle and type(b) == Point:

return distance_point_circle(b, a)

if type(a) == Line and type(b) == Circle:

return distance_line_circle(a, b)

if type(a) == Circle and type(b) == Line:

return distance_line_circle(b, a)

assert False

S.2.r.6 [istree]

from typing import Set, Optional

class Tree:

def __init__(self) -> None:

self.left : Optional[Tree] = None

self.right : Optional[Tree] = None

def is_tree_rec(root: Tree, visited: Set[Tree]) -> bool:

if root in visited:

return False

PV248 Python 39/49 January 10, 2022

visited.add(root)

result = True

if root.left is not None:

result = result and is_tree_rec(root.left, visited)

if root.right is not None:

result = result and is_tree_rec(root.right, visited)

return result

def is_tree(root: Tree) -> bool:

return is_tree_rec(root, set())

Part S.3: Lexical Closures

S.3.r.1 [fold]

from typing import Callable, TypeVar, Sequence, Any, Tuple, List

T = TypeVar('T')

S = TypeVar('S')

def foldr(f: Callable[[S, T], T], l: Sequence[S], i: T) ->

T:

res = i

for x in reversed(l):

res = f(x, res)

return res

def fold_len(l: Sequence[T]) -> int:

return foldr(lambda x, y: y + 1, l, 0)

def fold_pairs(l: Sequence[T]) -> Sequence[Any]:

return foldr(lambda x, y: (x, y), l, ())

def fold_rev(l: Sequence[T]) -> List[T]:

def app(x: T, y: List[T]) -> List[T]:

y.append(x)

return y

return foldr(app, l, [])

S.3.r.2 [trees]

from r2_trees import *

def fold_node(f: Callable[[S, T, T], T],

node: Optional[Node[S]], init: T) -> T:

if node is None:

return init

return f(node.val,

fold_node(f, node.left, init),

fold_node(f, node.right, init))

def fold(f: Callable[[S, T, T], T], tree: Tree[S],

initial: T) -> T:

return fold_node(f, tree.root, initial)

S.3.r.3 [bisect]

from typing import Callable

def bisect(f: Callable[[float], float],

x_1: float, x_2: float, prec: float) -> float:

mid = (x_1 + x_2) / 2

if abs(x_1 - x_2) < 2 * prec:

return mid

if f(mid) * f(x_1) <= 0:

return bisect(f, x_1, mid, prec)

else:

return bisect(f, mid, x_2, prec)

S.3.r.4 [each]

from math import floor

from typing import Generic, Protocol, Callable, TypeVar, Union, \

Iterable, cast, Optional, Any

T = TypeVar('T')

S = TypeVar('S', covariant = True)

class EachProto(Protocol, Generic[S]):

def each(self, __f: Callable[[S], object]) -> None: ...

Each = Union[Iterable[T], EachProto[T]]

def each(f: Callable[[T], object], data: Each[T]) -> None:

if hasattr(data, "each"):

cast(EachProto[T], data).each(f)

else:

for x in cast(Iterable[T], data):

f(x)

def each_len(data: Each[T]) -> int:

counter = 0

def inc(_: T) -> None:

nonlocal counter

counter += 1

each(inc, data)

return counter

def each_sum(data: Each[int]) -> int:

sum_ = 0

def add(x: int) -> None:

nonlocal sum_

sum_ += x

each(add, data)

return sum_

def each_avg(data: Each[int]) -> float:

items = 0

sum_ = 0

def add(x: int) -> None:

nonlocal items, sum_

items += 1

sum_ += x

each(add, data)

return sum_ / items

def each_median(data: Each[int]) -> Optional[int]:

items = []

def add(x: int) -> None:

items.append(x)

each(add, data)

if not items:

return None

len_ = len(items)

return sorted(items)[len_ // 2 - ((len_ + 1) % 2)]

S.3.r.5 [objects]

from r5_objects import *

def traffic_light() -> Obj:

is_green = False

timeout = 0

def dispatch(what: str, *args: Any) -> Any:

nonlocal is_green, timeout

if what == 'is_green':

return is_green

if what == 'set_green':

is_green = True

PV248 Python 40/49 January 10, 2022

if what == 'set_red':

timeout = 5

if what == 'tick':

if timeout > 0:

timeout -= 1

if timeout == 0:

is_green = False

return dispatch

def button(pedestrian_light: Obj, vehicle_light: Obj) -> Obj:

timeout = 0

to_green = True

def dispatch(what: str, *args: Any) -> Any:

nonlocal to_green, timeout

if what == 'push':

vehicle_light('set_red')

if what == 'tick':

if not vehicle_light('is_green') and \

not pedestrian_light('is_green'):

if to_green:

pedestrian_light('set_green')

timeout = 20

else:

vehicle_light('set_green')

to_green = True

if timeout > 0:

timeout -= 1

if timeout == 0:

pedestrian_light('set_red')

to_green = False

return dispatch

Part S.4: Iterators, Coroutines

S.4.r.1 [iscan]

from __future__ import annotations

import types

from typing import List, Generator

class Prefix:

FIXME list_in should be iterable, not list

def __init__(self, list_in: List[int]) -> None:

self.slice = 0

self.list = list_in

self.lenlist = len(list_in)

def __iter__(self) -> Prefix:

return self

def __next__(self) -> List[int]:

slice_ = self.slice

self.slice += 1

if slice_ > self.lenlist:

raise StopIteration

return self.list[0 : slice_]

class Sum:

def __init__(self, list_in: List[int]) -> None:

self.prefix = Prefix(list_in)

next(self.prefix)

def __iter__(self) -> Sum: return self

def __next__(self) -> int:

return sum(next(self.prefix))

def prefixes(list_in: List[int]) -> Prefix:

return Prefix(list_in)

def prefix_sum(list_in: List[int]) -> Sum:

return Sum(list_in)

S.4.r.2 [gscan]

from __future__ import annotations

import types

from typing import Generator, Iterable

def suffixes(iter_in: Iterable[int]) \

-> Generator[Iterable[int], None, None]:

list_in = list(iter_in)

for i in range(len(list_in), -1, -1):

yield list_in[i :]

def suffix_sum(iter_in: Iterable[int]) \

-> Generator[int, None, None]:

count = 0

for item in reversed(list(iter_in)):

count += item

yield count

S.4.r.3 [itree]

from __future__ import annotations

from r3_itree import Generic, T, Tree

class TreeIter(Generic[T]):

def __init__(self, tree: Tree[T]) -> None:

self.n : Optional[Tree[T]] = tree

def descend(self) -> None:

assert self.n is not None

while self.n.left is not None:

self.n = self.n.left

def ascend(self) -> None:

assert self.n is not None

while (self.n.parent is not None and

self.n == self.n.parent.right):

self.n = self.n.parent

self.n = self.n.parent # coming from left

def __iter__(self) -> TreeIter[T]:

assert self.n is not None

i = TreeIter(self.n)

i.descend()

return i

def __next__(self) -> T:

if self.n is None:

raise StopIteration()

assert self.n is not None # srsly

v = self.n.value

if self.n.right is not None:

self.n = self.n.right

self.descend()

else:

self.ascend()

return v

S.4.r.4 [gtree]

PV248 Python 41/49 January 10, 2022

from r4_gtree import Tree, Generator, T, Optional

def preorder(tree: Optional[Tree[T]]) \

-> Generator[T, None, None]:

if tree is not None:

yield tree.value

yield from preorder(tree.left)

yield from preorder(tree.right)

def inorder(tree: Optional[Tree[T]]) \

-> Generator[T, None, None]:

if tree is not None:

yield from inorder(tree.left)

yield tree.value

yield from inorder(tree.right)

def postorder(tree: Optional[Tree[T]]) \

-> Generator[T, None, None]:

if tree is not None:

yield from postorder(tree.left)

yield from postorder(tree.right)

yield tree.value

S.4.r.5 [dfs]

from typing import Dict, List, TypeVar, Set, Generator

T = TypeVar('T')

def dfs(graph: Dict[T, List[T]], initial: T) \

-> Generator[T, None, None]:

seen : Set[T] = set()

yield from dfs_rec(graph, initial, seen)

def dfs_rec(graph: Dict[T, List[T]], initial: T,

seen: Set[T]) -> Generator[T, None, None]:

if initial in seen:

return

seen.add(initial)

for n in graph[initial]:

yield from dfs_rec(graph, n, seen)

yield initial

S.4.r.6 [guided]

from __future__ import annotations

from r6_guided import Graph, S, T, Gen1, Gen2, Generic, Optional

from queue import PriorityQueue

from typing import Tuple, TYPE_CHECKING

def a_star(graph: Graph[T], start: T) -> Gen2[T, int]:

q : PriorityQueue[Tuple[int, T]] = PriorityQueue()

q.put((0, start))

while not q.empty():

prio, item = q.get()

for succ in graph[item]:

nprio = yield succ

q.put((nprio, succ))

class cor_iter(Generic[T, S]):

def __init__(self, cor: Gen2[T, S]) -> None:

self.to_send : Optional[S] = None

self.cor = cor

def __iter__(self) -> cor_iter[T, S]:

return self

def __next__(self) -> T:

if self.to_send is not None:

return self.cor.send(self.to_send)

else:

return next(self.cor)

def reply(self, v: S) -> None:

self.to_send = v

if TYPE_CHECKING:

def bfs(graph: Graph[T], start : T) -> Gen1[T]:

pass

Part S.5: Memory management, reference
counting

S.5.r.1 [refcnt]

from typing import Optional, List

class Heap:

def __init__(self) -> None:

self.data : List[List[int]] = []

self.refs : List[int] = []

def boundcheck(self, obj_id: int, index: int) -> bool:

return obj_id >= 0 and \

obj_id < len(self.data) and \

index < len(self.data[obj_id])

def put(self, obj_id: int) -> None:

if obj_id <= 0 or not self.boundcheck(obj_id, 0):

return

self.refs[obj_id] -= 1

if self.refs[obj_id] == 0:

for val in self.data[obj_id]:

self.put(val)

self.data[obj_id] = []

def get(self, obj_id: int) -> None:

if self.boundcheck(obj_id, 0):

self.refs[obj_id] += 1

def read(self, obj_id: int, index: int) -> Optional[int]:

if not self.boundcheck(obj_id, index):

return None

return self.data[obj_id][index]

def write(self, obj_id: int, index: int, value: int) -> bool:

if not self.boundcheck(obj_id, index):

return False

self.get(value)

self.put(self.data[obj_id][index])

self.data[obj_id][index] = value

return True

def count(self) -> int:

return 1 + sum(1 if x else 0 for x in self.refs)

def make(self, size: int) -> int:

self.data.append([0 for _ in range(size)])

self.refs.append(0)

return len(self.data) - 1

S.5.r.2 [reach]

from typing import Optional, List

class Heap:

def __init__(self) -> None:

self.data : List[List[int]] = []

self.marks : List[bool] = []

def boundcheck(self, obj_id: int, index: int) -> bool:

return obj_id >= 0 and \

obj_id < len(self.data) and \

index < len(self.data[obj_id])

def read(self, obj_id: int, index: int) -> Optional[int]:

PV248 Python 42/49 January 10, 2022

if not self.boundcheck(obj_id, index):

return None

return self.data[obj_id][index]

def write(self, obj_id: int, index: int, value: int) -> bool:

if not self.boundcheck(obj_id, index):

return False

self.data[obj_id][index] = value

return True

def mark(self, now: int) -> None:

if not self.boundcheck(now, 0) or self.marks[now]:

return

self.marks[now] = True

for x in self.data[now]:

self.mark(x)

def count(self) -> int:

self.marks = [False for _ in self.data]

self.mark(0)

return sum(self.marks)

def make(self, size: int) -> int:

self.data.append([0 for _ in range(size)])

return len(self.data) - 1

S.5.r.3 [sweep]

from typing import Optional, List

class Heap:

def __init__(self) -> None:

self.data : List[List[int]] = []

self.marks : List[bool] = []

def boundcheck(self, obj_id: int, index: int) -> bool:

return obj_id >= 0 and \

obj_id < len(self.data) and \

index < len(self.data[obj_id])

def read(self, obj_id: int, index: int) -> Optional[int]:

if not self.boundcheck(obj_id, index):

return None

return self.data[obj_id][index]

def write(self, obj_id: int, index: int, value: int) -> bool:

if not self.boundcheck(obj_id, index):

return False

self.data[obj_id][index] = value

return True

def mark(self, now: int) -> None:

if not self.boundcheck(now, 0) or self.marks[now]:

return

self.marks[now] = True

for x in self.data[now]:

self.mark(x)

def count(self) -> int:

self.marks = [False for _ in self.data]

self.mark(0)

return sum(self.marks)

def collect(self) -> None:

self.marks = [False for _ in self.data]

self.mark(0)

for obj_id, live in enumerate(self.marks):

if not live:

self.data[obj_id] = []

def make(self, size: int) -> int:

self.data.append([0 for _ in range(size)])

return len(self.data) - 1

S.5.r.4 [semi]

from typing import Optional, List, Dict, Set

class Heap:

def __init__(self) -> None:

self.fro : List[List[int]] = []

self.to : List[List[int]] = []

def boundcheck(self, obj_id: int, index: int) -> bool:

return obj_id >= 0 and \

obj_id < len(self.to) and \

index < len(self.to[obj_id])

def read(self, obj_id: int, index: int) -> Optional[int]:

if not self.boundcheck(obj_id, index):

return None

return self.to[obj_id][index]

def write(self, obj_id: int, index: int, value: int) -> bool:

if not self.boundcheck(obj_id, index):

return False

self.to[obj_id][index] = value

return True

def collect(self) -> None:

refmap : Dict[int, int] = {}

self.fro = self.to

self.to = []

self.copy(0, refmap)

def copy(self, now: int, refmap: Dict[int, int]) -> int:

if now < 0:

return now

if now in refmap:

return refmap[now]

refmap[now] = len(self.to)

copy : List[int] = []

self.to.append(copy)

for val in self.fro[now]:

copy.append(self.copy(val, refmap))

return refmap[now]

def make(self, size: int) -> int:

self.to.append([0 for _ in range(size)])

return len(self.to) - 1

S.5.r.5 [cheney]

from typing import Optional, List, Dict, Set

class Heap:

def __init__(self) -> None:

self.fro : List[List[int]] = []

self.to : List[List[int]] = []

self.scan = 0

def boundcheck(self, obj_id: int, index: int) -> bool:

return obj_id >= 0 and \

obj_id < len(self.to) and \

index < len(self.to[obj_id])

def read(self, obj_id: int, index: int) -> Optional[int]:

if not self.boundcheck(obj_id, index):

return None

return self.to[obj_id][index]

def write(self, obj_id: int, index: int, value: int) -> bool:

if not self.boundcheck(obj_id, index):

return False

self.to[obj_id][index] = value

return True

PV248 Python 43/49 January 10, 2022

def collect(self) -> None:

self.fro = self.to

self.to = []

self.scan = 0

assert self.copy(0) == 0

while self.scan < len(self.to):

o = self.to[self.scan]

for i in range(len(o)):

o[i] = self.copy(o[i])

self.scan += 1

print(self.to)

def copy(self, ref: int) -> int:

if ref < 0:

return ref

nref = self.fro[ref][0] - len(self.fro)

if nref < 0:

nref = len(self.to)

self.to.append(self.fro[ref].copy())

self.fro[ref][0] = nref + len(self.fro)

return nref

def make(self, size: int) -> int:

self.to.append([0 for _ in range(size)])

return len(self.to) - 1

S.5.r.6 [python]

from typing import Optional, List, Set

class Heap:

def __init__(self) -> None:

self.data : List[List[int]] = []

self.refs : List[int] = []

self.marks : List[bool] = []

def boundcheck(self, obj_id: int, index: int) -> bool:

return obj_id >= 0 and \

obj_id < len(self.data) and \

index < len(self.data[obj_id])

def read(self, obj_id: int, index: int) -> Optional[int]:

if not self.boundcheck(obj_id, index):

return None

return self.data[obj_id][index]

def write(self, obj_id: int, index: int, value: int) -> bool:

if not self.boundcheck(obj_id, index):

return False

self.get(value)

self.put(self.data[obj_id][index])

self.data[obj_id][index] = value

return True

def put(self, obj_id: int) -> None:

if obj_id <= 0 or not self.boundcheck(obj_id, 0):

return

self.refs[obj_id] -= 1

if self.refs[obj_id] == 0:

for val in self.data[obj_id]:

self.put(val)

self.data[obj_id] = []

def get(self, obj_id: int) -> None:

if self.boundcheck(obj_id, 0):

self.refs[obj_id] += 1

def mark(self, now: int) -> None:

if not self.boundcheck(now, 0) or self.marks[now]:

return

self.marks[now] = True

for x in self.data[now]:

self.mark(x)

def collect(self) -> None:

self.marks = [False for _ in self.data]

self.mark(0)

for obj_id, live in enumerate(self.marks):

if not live:

self.data[obj_id] = []

def make(self, size: int) -> int:

self.data.append([0 for _ in range(size)])

self.refs.append(0)

return len(self.data) - 1

Part S.6: Objects 2

S.6.r.1 [trace]

from typing import Any, Callable, TypeVar, Generic

T = TypeVar('T')

class traced(Generic[T]):

indent = 0

counter = 0

def __init__(self, f: Callable[..., T]) -> None:

self.f = f

def __call__(self, *args: Any, **kwargs: Any) -> T:

traced.counter += 1

cnt = traced.counter

if cnt > 1:

print()

print(' ' * traced.indent, self.f.__name__, list(args),

end = '')

print(kwargs if len(kwargs) else '', end = '')

traced.indent += 2

r = self.f(*args, **kwargs)

traced.indent -= 2

if cnt != traced.counter:

print('\n' + ' ' * traced.indent, "returned", r)

else:

print(' ->', r, end = '')

return r

S.6.r.2 [profile]

from typing import Dict, Any, Callable

class profile:

stats : Dict[str, int] = {}

@staticmethod

def get() -> Dict[str, int]:

return dict(profile.stats)

def __init__(self, fun: Callable[..., Any]) -> None:

self.fun = fun

def __call__(self, *args: Any, **kwargs: Any) -> Any:

profile.stats.setdefault(self.fun.__name__, 0)

profile.stats[self.fun.__name__] += 1

return self.fun(*args, **kwargs)

S.6.r.3 [record]

from typing import Callable, Any, Protocol

class Data: # helper to silence ‹mypy›

def __init__(self, *args: Any) -> None: pass

PV248 Python 44/49 January 10, 2022

def record(cls: type) -> type:

class rec:

def __init__(self, *args: Any) -> None:

from copy import copy

counter = 0

for k, v in cls.__dict__.items():

if not k.startswith('__'):

if len(args) > counter:

self.__dict__[k] = args[counter]

else:

self.__dict__[k] = copy(v)

counter += 1

return rec

S.6.r.4 [array]

from typing import TypeVar, Generic, List

from copy import copy

T = TypeVar('T')

class Array(Generic[T]):

def __init__(self, defval: T) -> None:

self.defval = copy(defval)

self.data : List[T] = []

def extend(self, idx: int) -> None:

while len(self.data) <= idx:

self.data.append(copy(self.defval))

def __setitem__(self, idx: int, val: T) -> None:

self.extend(idx)

self.data[idx] = val

def __getitem__(self, idx: int) -> T:

self.extend(idx)

return self.data[idx]

Part S.8: Coroutines 2

S.8.r.1 [sleep]

from typing import Coroutine, Generator, Iterator, List, Tuple

from queue import PriorityQueue

from time import time, sleep

Task = Coroutine[object, object, object]

class Sched:

def add(self, task: Task) -> None:

self.tasks.append(task.__await__())

def __init__(self) -> None:

self.tasks : List[Iterator[int]] = []

self.queue : PriorityQueue[Tuple[float, int]]

self.queue = PriorityQueue()

class suspend:

def __init__(self, n: int) -> None:

self.msec = n

def __await__(self) -> Generator[int, None, None]:

yield self.msec

def schedule(self, i: int) -> None:

try:

task = self.tasks[i]

delay = next(task)

item = (time() + delay / 1000, i)

self.queue.put(item)

except StopIteration:

pass

def run(self) -> None:

for i in range(len(self.tasks)):

self.schedule(i)

while not self.queue.empty():

when, what = self.queue.get()

pause = when - time()

if pause > 0:

sleep(pause)

self.schedule(what)

S.8.r.2 [ioplex]

from typing import Coroutine, Generator, Iterator, List, Tuple

from queue import PriorityQueue

from time import time, sleep

Task = Coroutine[object, object, object]

class IOPlex:

def __init__(self, factory) -> None:

self.tasks = {}

self.factory = factory

self.reply = None

self.counter = 0

class read:

def __await__(self):

x = yield (); return x

def schedule(self, i: int) -> None:

try:

task = self.tasks[i]

delay = next(task)

item = (time() + delay / 1000, i)

self.queue.put(item)

except StopIteration:

pass

def write(self, data):

self.reply = data

def connect(self):

ident = self.counter

self.counter += 1

self.tasks[ident] = \

self.factory(self.read, self.write).__await__()

next(self.tasks[ident])

return ident

def close(self, ident):

del self.tasks[ident]

def send(self, ident, data):

if ident not in self.tasks:

return None

try:

self.tasks[ident].send(data)

except StopIteration:

return None

r, self.reply = self.reply, None

return r

S.8.r.3 [search]

from typing import TypeVar, Generic

T = TypeVar('T')

class Tree(Generic[T]):

def __init__(self, key) -> None:

self.left : Optional[Tree] = None

self.right : Optional[Tree] = None

self.key = key

PV248 Python 45/49 January 10, 2022

async def search(self, key, suspend) -> bool:

await suspend(self.key)

r = False

if key == self.key:

r = True

if key < self.key and self.left is not None:

r = await self.left.search(key, suspend)

if key > self.key and self.right is not None:

r = await self.right.search(key, suspend)

return r

Part S.9: Text, JSON

S.9.r.1 [email] In this exercise, we will parse a format that is based
on rfc 822 headers, though our implementation will only handle the
simplest cases. The format looks like this:
From: Petr Ročkai <xrockai@fi.muni.cz> To: Random X. Student <xstu-
dent@fi.muni.cz> Subject: PV248
and so on and so forth (for your convenience, the above example can
be also found in the file `rfc822.txt`). In real e-mail (and in HTTP), each
header entry may span multiple lines, but we will not deal with that.
Our goal is to create a `dict` where the keys are the individual header
fields and the corresponding values are the strings coming after the
colon. In this iteration, assume that each header is unique.

def parse_rfc822(filename: str) -> dict[str, str]:

d = {}

with open(filename, "r") as f:

for line in f:

parts = line.split(": ", 1) # incl. the space

drop line endings

if parts[1][-1] == '\n':

parts[1] = parts[1][:-1]

d[parts[0]] = parts[1]

return d

S.9.r.2 [toml]

from typing import Dict, Optional

Section = Dict[str, str]

TOML = Dict[str, Section]

class ParseTOML:

def __init__(self, toml: str) -> None:

self.text = toml

self.idx = 0

self.sec : Section = {}

self.key = ''

self.parsed : TOML = {}

self.error = False

self.top()

def eof(self) -> bool:

return self.error or self.idx >= len(self.text)

def peek(self) -> str:

if self.eof():

return ''

else:

return self.text[self.idx]

def shift(self) -> str:

x = self.peek()

self.idx += 1

return x

def require(self, x: str) -> None:

if self.shift() != x:

self.error = True

def top(self) -> None:

while not self.eof():

self.line()

def line(self) -> None:

if self.peek() == '[':

self.header()

else:

self.kvpair()

self.require('\n')

def header(self) -> None:

self.parsed[self.key] = self.sec

self.sec = {}

self.require('[')

self.key = self.word()

self.require(']')

def kvpair(self) -> None:

k = self.word()

self.require('=')

v = self.word()

self.sec[k] = v

def word(self) -> str:

x = self.shift()

if not x.isalpha():

self.error = True

while self.peek().isalnum():

x += self.shift()

return x

def get(self) -> Optional[TOML]:

self.parsed[self.key] = self.sec

return None if self.error else self.parsed

def parse_toml(toml: str) -> Optional[TOML]:

return ParseTOML(toml).get()

S.9.r.3 [resolv]

from typing import Dict, Optional

class Validate:

def __init__(self, text: str) -> None:

self.text = text

self.idx = 0

self.error = False

self.top()

def eof(self) -> bool:

return self.error or self.idx >= len(self.text)

def peek(self) -> str:

if self.eof():

return ''

else:

return self.text[self.idx]

def shift(self) -> str:

x = self.peek()

self.idx += 1

return x

def require(self, x: str) -> None:

PV248 Python 46/49 January 10, 2022

check = self.text[self.idx : self.idx + len(x)]

if check != x:

self.error = True

self.idx += len(x)

def top(self) -> None:

while not self.eof():

self.stmt()

def stmt(self) -> None:

if self.peek() == 'n':

self.server()

self.spaces()

if self.peek() == '\n':

self.shift()

else:

self.comment()

def comment(self) -> None:

self.spaces()

self.require('#')

while not self.eof() and self.peek() != '\n':

self.shift()

self.require('\n')

def spaces(self, req: bool = False) -> bool:

if not self.peek().isspace():

if req:

self.error = True

return False

while self.peek().isspace() and self.peek() != '\n':

self.shift()

return True

def server(self) -> None:

self.require('nameserver')

self.spaces(True)

self.address()

def address(self) -> None:

self.num()

for i in range(3):

self.require('.')

self.num()

def num(self) -> None:

x = self.shift()

if x == '0':

return

if not x.isdecimal():

self.error = True

while self.peek().isdecimal():

self.shift()

def ok(self) -> bool:

return not self.error

def resolv_valid(text: str) -> bool:

return Validate(text).ok()

S.9.r.4 [fstab]

import re

FS = tuple[str, str, str, list[str], int, int]

def read_fs(line: str) -> FS:

items = line.split()

dev = items[0]

path = items[1]

fstype = items[2]

opts = items[3].split(',')

freq = int(items[4]) if len(items) > 4 else 0

fsck = int(items[5]) if len(items) > 5 else 0

return dev, path, fstype, opts, freq, fsck

def read_fstab(path: str) -> list[FS]:

comment = re.compile('#.*')

ws = re.compile('\s*')

res : list[FS] = []

with open(path, 'r') as f:

for line in f:

line = comment.sub('', line)

if ws.fullmatch(line):

continue

res.append(read_fs(line))

return res

S.9.r.6 [cpp]

def cpp(path: str) -> str:

defined = set()

out = ''

emit : list[bool] = []

def process(line: str) -> None:

if line.startswith('#ifdef'):

cmd, macro = line.split()

emit.append(macro in defined)

if line.startswith('#endif'):

emit.pop()

if not emit or emit[-1]:

if line.startswith('#define'):

cmd, macro = line.split()

defined.add(macro)

if line.startswith('#undef'):

cmd, macro = line.split()

defined.remove(macro)

if line.startswith('#include'):

cmd, path = line.split()

read(path[1: -1])

def read(path: str) -> None:

nonlocal out

with open(path, 'r') as f:

for line in f:

if line[0] == '#':

process(line)

else:

if not emit or emit[-1]:

out += line

read(path)

return out

Part S.10: Databases

S.10.r.1 [schema]

import json

from sqlite3 import Connection, OperationalError, connect

def create_tables(schema: str, db: Connection) -> None:

tabs = json.load(open(schema))

for name, cols in tabs.items():

cdesc = ', '.join(f'{c} {t}' for c, t in cols.items())

db.execute(f'create table {name} ({cdesc})')

S.10.r.2 [upgrade]

PV248 Python 47/49 January 10, 2022

import json

from sqlite3 import Connection, OperationalError, connect

def upgrade_tables(schema: str, db: Connection) -> None:

tabs = json.load(open(schema))

for tab, cols in tabs.items():

cdesc = ', '.join(f'{c} {t}' for c, t in cols.items())

cmd = f'create table if not exists {tab} ({cdesc})'

db.execute(cmd)

for c, t in cols.items():

cmd = f'alter table {tab} add column {c} {t}'

try:

db.execute(cmd)

except OperationalError as e:

if not str(e).startswith('duplicate column'):

raise

S.10.r.3 [pkgs]

from sqlite3 import Connection, connect, Cursor

def list_packages(db: Connection) -> Cursor:

return db.execute('select name, count(number) from ' + \

'package left join version ' + \

'on package_id = package.id group by name')

def list_leaves(db: Connection) -> Cursor:

return db.execute('select name, number from ' + \

'package join version ' + \

'on package_id = package.id ' + \

'where version.id not in ' + \

'(select depends_on from depends)')

def sum_depends(db: Connection) -> Cursor:

return db.execute('select name, number, ' + \

'(select count(*) from depends where ' + \

' depends_on = version.id) from ' + \

'package join version ' + \

'on package_id = package.id')

Part S.11: Asynchronous Programming

S.11.r.1 [sleep]

import asyncio

async def cor1() -> None:

for i in range(5):

await asyncio.sleep(0.7)

print("cor1")

async def cor2() -> None:

for i in range(5):

await asyncio.sleep(1)

print("cor2")

async def sleepy() -> None:

await asyncio.gather(cor1(),

cor2())

S.11.r.2 [counter]

from asyncio.subprocess import PIPE

import asyncio

from typing import List

async def counters(queue: asyncio.Queue[list[int]],

sleeps: list[float], iterations: int) ->

None:

ctr = [0 for _ in sleeps]

proc = [await asyncio.create_subprocess_shell(f"while true; do echo .; sleep {i}; done",

stdin=PIPE,

stdout=PIPE)

for i in sleeps

]

async def monitor(idx : int) -> None:

out = proc[idx].stdout

assert out is not None

async for l in out:

assert l == b".\n"

ctr[idx] += 1

async def printer() -> None:

await asyncio.sleep(1)

for i in range(iterations):

await queue.put(ctr)

await asyncio.sleep(1)

for p in proc:

p.kill()

await p.wait()

await asyncio.gather(printer(), *[monitor(i) for i in

range(len(sleeps))])

S.11.r.3 [pipeline]

import asyncio

from typing import Any, List, Optional

def chunker(limit: int) -> Any:

async def process(q_in: asyncio.Queue[Any],

q_out: asyncio.Queue[Any]) -> None:

s = ''

while True:

item = await q_in.get()

print("{}, retrieved {}".format(limit, item))

if item is None:

while s:

if len(s) <= limit:

await q_out.put(str(s))

s = ''

else:

await q_out.put(str(s[:limit]))

s = s[limit :]

break

s += item

if len(s) < limit:

continue

if len(s) <= limit:

await q_out.put(str(s))

s = ''

continue

else:

await q_out.put(str(s[:limit]))

s = s[limit :]

continue

await q_out.put(s)

await q_out.put(None)

return process

S.11.r.5 [minilisp]

import asyncio

from typing import Any, List

async def minilisp(reader: asyncio.StreamReader) -> Any:

stack : list[Any] = []

token = b''

PV248 Python 48/49 January 10, 2022

def shift() -> None:

nonlocal token

if token:

stack[-1].append(token.decode())

token = b''

while True:

byte = await reader.readexactly(1)

if byte == b'(':

shift()

stack.append([])

elif byte == b')':

shift()

x = stack.pop()

if stack:

stack[-1].append(x)

else:

return x

elif byte.isspace():

shift()

else:

token += byte

S.11.r.6 [rot13]

import asyncio

import os

from asyncio import StreamReader, StreamWriter

def rotate_13(s: str) -> str:

ss = ''

def f(c: str) -> str:

return chr((ord(c) + 13 - 97) % 26 + 97)

for c in s:

ss += f(c)

return ss

async def handle_client(reader: StreamReader,

writer: StreamWriter) -> None:

while True:

data = await reader.read(10)

if not data:

break

response = data.decode('utf8')

print('server received', response)

msg = rotate_13(response)

print('server sending', msg)

writer.write(msg.encode('utf8'))

await writer.drain()

print('closing connection to server')

writer.close()

async def client(msg: str, path: str) -> str:

reader, writer = await asyncio.open_unix_connection(path)

print("client sending", msg)

writer.write(msg.encode())

if msg == 'world':

await asyncio.sleep(1)

data_ = await reader.read(10)

data = data_.decode()

print("client received", data)

print("closing")

writer.close()

return data

async def unix_rot(path: str) -> list[str]:

server = await asyncio.start_unix_server(handle_client, path)

data = await asyncio.gather(client('hello', path), client(

'world', path))

server.close()

await server.wait_closed()

os.unlink(path)

return list(data)

Part S.12: Math and Statistics

S.12.r.1 [hist]

from collections import Counter

from typing import List

def normalize(n: int, max_ : int) -> int:

return round((n / max_) * 25)

def histogram(bins: List[int]) -> str:

count = Counter(bins)

m = max(count.values())

for b in count:

count[b] = normalize(count[b], m)

i = 1

height = 25

s = ""

while height > 0:

i = 0

for j in sorted(count.keys()):

while i < j:

i += 1

s += ' '

if i == j and count[j] >= height:

s += '*'

else:

s += ' '

i += 1

s += '\n'

height -= 1

return s

S.12.r.2 [dft]

import numpy as np

from typing import List

def dft(a: List[float]) -> List[float]:

return [i for i, v in enumerate(np.abs(np.fft.rfft(a)))

if not np.isclose(v, 0)]

S.12.r.3 [null]

import numpy as np

from typing import cast, List

def null(A: np.ndarray) -> np.ndarray:

A = np.atleast_2d(A)

u, s, vh = np.linalg.svd(A)

tol = max(1e-13, 0)

nnz = (s >= tol).sum()

return cast(np.ndarray, vh[nnz:].conj())

S.12.r.4 [frames]

import pandas as pd

from typing import Any, cast, Union, Dict

def max_at(data: pd.DataFrame, col: str) -> Any:

return data[data[col] == data[col].max()]

def best(data: pd.DataFrame) -> pd.DataFrame:

d = max_at(data, 'weekly')

e = max_at(data, 'assignments')

f = max_at(data, 'reviews')

return cast(pd.DataFrame, d.combine_first(e).combine_first(f

))

PV248 Python 49/49 January 10, 2022

def get_total(data: pd.DataFrame) -> pd.Series:

x = data['weekly'].apply(lambda x: min(x, 9)) + data['assignments']

+ data['reviews']

assert isinstance(x, pd.Series)

return x

def add_total(data: pd.DataFrame) -> pd.DataFrame:

return data.assign(total = get_total)

def compute_total(data: pd.DataFrame) -> pd.DataFrame:

tot = add_total(data)

return tot[['student', 'total']]

def compute_averages(data: pd.DataFrame) -> Dict[str, float]:

return dict(add_total(data).mean())

S.12.r.5 [regress]

import numpy as np

from typing import List, Tuple

Data = List[Tuple[float, float]]

def drop_outliers(data: Data, cutoff: float) -> Data:

x_ = [x for x,_ in data]

y_ = [y for _,y in data]

p = np.polyfit(x_, y_, 1)

idx_max = 0

max_dist = 0

sum_dist = 0

for i in range(len(y_)):

dist = (y_[i] - (p[0] * x_[i] + p[1])) ** 2

if dist > max_dist:

idx_max = i

max_dist = dist

sum_dist += dist

if max_dist > (sum_dist * cutoff):

x_.pop(idx_max)

y_.pop(idx_max)

return drop_outliers(list(zip(x_, y_)), cutoff)

return list(zip(x_, y_))

def regress(data: Data, cutoff: float) -> Tuple[float, float]:

data = drop_outliers(data, cutoff)

x_ = [x for x,_ in data]

y_ = [y for _,y in data]

p = np.polyfit(x_, y_, 1)

return (p[0], p[1])

