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Introduction

Program development workflow

Programmer’s questions
» which algorithm to use?
» how to implement the algorithm efficiently?

» how to set-up a compiler?



Introduction

Program development workflow

Compiler's questions
> how to map variables to registers?
» which unrolling factor to use for a loop?
» which functions should be inlined?

» and many others...
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Program development workflow

User's questions
» how many computing nodes and threads assign to the
program?
» should accelerators be used?
» how to mix MPIl and OpenMP threads?
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Program development workflow

User's questions
» how many computing nodes and threads assign to the
program?
» should accelerators be used?
» how to mix MPIl and OpenMP threads?

A compiler works with heuristics, people usually too.



Introduction

Tuning of the program

We can empirically tune these possibilities
use different algorithm

change source code optimizations
use different compiler flags

execute in a different number of threads

vVvvyYyyvyy

etc.



Introduction

Tuning of the program

A tuning allows us to outperform heuristics — we just test what
works better.
» however, we have to invest more time into development
» there are non-linear (vertical) dependencies, so we cannot
perform tuning steps in isolation
» the optimum usually depends on hardware and input
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Autotuning

The tuning can be automated
> then we talk about autotuning
Autotuning

» in design time, we define the space of tuning parameters,
which can be changed

» each tuning parameter defines some property of the tuned
application

P a search method is used to traverse the space of tuning
parameters efficiently

» performed according to some objective, usually performance
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Taxonomy of Autotuning

Tuning scope
» what properties of the application are changed by autotuner

» e.g. compiler flags, number of threads, source code
optimizations parameters

Tuning time
» off-line autotuning (performed once, e.g. after SW
installation)
» dynamic autotuning (performed at runtime)
Developer involvement
» transparent, or requiring only minor assist from developer
(e.g., compiler flags tuning)
> low-level, requiring an expert programmer to identify tuning
opportunities (e.g. optimizations parameters tuning)



Our focus

Our focus

Our focus
P source code optimizations parameters
> heterogeneous computing

We target several research questions:

» building framework for dynamic autotuning, which can be
integrated into real-world applications

> efficient searching in autotuning spaces
» scheduling of autotuning, integration into task-based systems

P autotuning in higher-order languages



Our focus

Autotuning framework

Kernel Tuning Toolkit (KTT)

» the source code in CUDA or OpenCL is changed during a
tuning process

» the programmer defines how tuning parameters influence the
code

» very powerful (source code may control nearly everything)

» implementation is difficult

P requires recompilation

» runtime checks of correctness/precision

P non-trivial expression of tuning parameters

» we have no implicit assumptions about tuning space

» offline and dynamic autotuning

KTT is a core framework used in other autotuning research.



Our focus

Performance of our benchmarks library

Benchmark 2080Ti | 1070 750 K20 Vegab6
BiCG 88.3% 84.7% | 81.7% | 50.4% | 75.6%
Coulomb 3D 91.8% 91.4% | 84.3% | 43.2% | 65.3%
GEMM 79.8% 80.6% | 91.1% | 51.3% | 96.3%
GEMM batched | 86.8% 81.4% | 90.0% | 49.6% | 86.0%
Transpose 87.1% | 80.2% | 86.3% | 64.2% | 86.1%
N-body 89.7% 86.6% | 87.7% | 40.6% | 82.2%
Reduction 68.7% | 87.5% | 89.4% | 64.1% | 71.6%

Table: Performance of benchmarks autotuned for various hardware
devices. The performance relative to the theoretical peak of devices.



Our focus

Performance portability

GPU—GPU
Benchmark avgtstdev worst  failed
BiCG 89.0%+12.3% 57% 1
Convolution 79.4%+149% 55% 3
Coulomb 3D 95.8%+6.5% 67% 0
GEMM 83.6%+16.4% 31% 0
GEMM batched | 85.4%+17% 37% 0
Hotspot 80.3%+17.5% 46% 3
Transpose 85.0%+21.9% 8% 3
N-body 78.8%424.2% 2% 3
Reduction 88.4%+24% 12% 3
Fourier 74.5%+30% 31% 0

Table: Relative performance of benchmarks ported across GPU
architectures without re-tuning.
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Dynamic autotuning of Batched GEMM
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Figure: Batched GEMM on GeForce GTX 1070.



Our focus

Tuning space searching

Tuning spaces are difficult to search
» non-linear dependencies, many dimensions, discrete space
» random search often superior to mathematical optimization or
ML-based methods
Performance-counter based searcher

» ML method learns how tuning parameters influence
performance counters

P during tuning space search, expert system navigates search
towards softening observed bottlenecks (changes tuning
parameter values in order to modify performance counters)

P can be used to navigate tuning search of known application at
unseen hardware, unseen input and arbitrary optimizations

We have implemented the first version of profile-based searcher.



Our focus

Searching speed

T
Ty

g

UNH\INHINIHI\I\NI\”mmm vm\lm\lwuumluu!\!uummguunguguu

I
==

50 100 150 200 250
tuning time (s)

Figure: GEMM, 2048 x 2048 x 2048, GTX 2080, model from GTX 1070



Our focus

Searching speed

profile
3x10° random —— |

2.8x10°
2.6x108 |
T 2.4x10° [
z
£ 220001
z
£ 2a08f
1.8x10° |

1.6x10° [

1.4x106 [

L L L L L
0 50 100 150 200 250 300

tuning time (s)

Figure: Matrix transposition, 8192 x 8192, GTX 2080, model from GTX
1070



Our focus

Searching speed
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Figure: Convolution, 4096 x 4096, GTX 2080, model from GTX 1070



Our focus

Autotuning in task-based system

When and where to run auto-tuning
P tuning space search has overhead, so it does not always
improve speed

P depends on how many times we execute tuned code
» depends on how much performance we can get, and how long
time we need to invest into tuning
» analysis of performance counters and historical data

P becomes increasingly complicated when we have more
processors and accelerators
Autotuning in task-based systems
P task-based system distribute data-dependent computing tasks
in hererogeneous node(s)
P those tasks can be inherently auto-tuned
> challenging in scheduling and SW engineering
We have prototype of KTT integrated into StarPU.



Our focus

Autotuning in higher-order languages

Autotuning with KTT requires expert-programmers
» CUDA/OpenCL programming is difficult
» identification of relevant tuning parameters requires intimate
knowledge of hardware
Higher-order languages ease programming
> often at the cost of code efficiency
» but higher-order functions can be tuned according to HW,
input and lower-order function, such tuning is transparent for
the programmer
» for fine-tuning, we can also expose tuning parameters for
lower-order functions
We are currently experimenting with integration of KT T into
Thrust (skeletal programming).
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