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Program development workflow

Programmer’s questions

I which algorithm to use?

I how to implement the algorithm efficiently?

I how to set-up a compiler?
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Program development workflow

Compiler’s questions

I how to map variables to registers?

I which unrolling factor to use for a loop?

I which functions should be inlined?

I and many others...
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I how many computing nodes and threads assign to the
program?

I should accelerators be used?

I how to mix MPI and OpenMP threads?

A compiler works with heuristics, people usually too.
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Tuning of the program

We can empirically tune these possibilities

I use different algorithm

I change source code optimizations

I use different compiler flags

I execute in a different number of threads

I etc.
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Tuning of the program

A tuning allows us to outperform heuristics – we just test what
works better.

I however, we have to invest more time into development

I there are non-linear (vertical) dependencies, so we cannot
perform tuning steps in isolation

I the optimum usually depends on hardware and input
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Autotuning

The tuning can be automated

I then we talk about autotuning

Autotuning

I in design time, we define the space of tuning parameters,
which can be changed

I each tuning parameter defines some property of the tuned
application

I a search method is used to traverse the space of tuning
parameters efficiently

I performed according to some objective, usually performance
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Taxonomy of Autotuning

Tuning scope

I what properties of the application are changed by autotuner

I e.g. compiler flags, number of threads, source code
optimizations parameters

Tuning time

I off-line autotuning (performed once, e.g. after SW
installation)

I dynamic autotuning (performed at runtime)

Developer involvement

I transparent, or requiring only minor assist from developer
(e.g., compiler flags tuning)

I low-level, requiring an expert programmer to identify tuning
opportunities (e.g. optimizations parameters tuning)
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Our focus

Our focus

I source code optimizations parameters

I heterogeneous computing

We target several research questions:

I building framework for dynamic autotuning, which can be
integrated into real-world applications

I efficient searching in autotuning spaces

I scheduling of autotuning, integration into task-based systems

I autotuning in higher-order languages
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Autotuning framework

Kernel Tuning Toolkit (KTT)

I the source code in CUDA or OpenCL is changed during a
tuning process

I the programmer defines how tuning parameters influence the
code

I very powerful (source code may control nearly everything)
I implementation is difficult

I requires recompilation
I runtime checks of correctness/precision
I non-trivial expression of tuning parameters
I we have no implicit assumptions about tuning space

I offline and dynamic autotuning

KTT is a core framework used in other autotuning research.
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Performance of our benchmarks library

Benchmark 2080Ti 1070 750 K20 Vega56
BiCG 88.3% 84.7% 81.7% 50.4% 75.6%
Coulomb 3D 91.8% 91.4% 84.3% 43.2% 65.3%
GEMM 79.8% 80.6% 91.1% 51.3% 96.3%
GEMM batched 86.8% 81.4% 90.0% 49.6% 86.0%
Transpose 87.1% 80.2% 86.3% 64.2% 86.1%
N-body 89.7% 86.6% 87.7% 40.6% 82.2%
Reduction 68.7% 87.5% 89.4% 64.1% 71.6%

Table: Performance of benchmarks autotuned for various hardware
devices. The performance relative to the theoretical peak of devices.
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Performance portability

GPU→GPU
Benchmark avg±stdev worst failed
BiCG 89.0%±12.3% 57% 1
Convolution 79.4%±14.9% 55% 3
Coulomb 3D 95.8%±6.5% 67% 0
GEMM 83.6%±16.4% 31% 0
GEMM batched 85.4%±17% 37% 0
Hotspot 80.3%±17.5% 46% 3
Transpose 85.0%±21.9% 8% 3
N-body 78.8%±24.2% 2% 3
Reduction 88.4%±24% 12% 3
Fourier 74.5%±30% 31% 0

Table: Relative performance of benchmarks ported across GPU
architectures without re-tuning.
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Dynamic autotuning of Batched GEMM
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Figure: Batched GEMM on GeForce GTX 1070.
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Tuning space searching

Tuning spaces are difficult to search

I non-linear dependencies, many dimensions, discrete space

I random search often superior to mathematical optimization or
ML-based methods

Performance-counter based searcher

I ML method learns how tuning parameters influence
performance counters

I during tuning space search, expert system navigates search
towards softening observed bottlenecks (changes tuning
parameter values in order to modify performance counters)

I can be used to navigate tuning search of known application at
unseen hardware, unseen input and arbitrary optimizations

We have implemented the first version of profile-based searcher.
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Searching speed
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Figure: GEMM, 2048× 2048× 2048, GTX 2080, model from GTX 1070
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Searching speed
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Figure: Matrix transposition, 8192× 8192, GTX 2080, model from GTX
1070
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Searching speed
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Figure: Convolution, 4096× 4096, GTX 2080, model from GTX 1070
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Autotuning in task-based system

When and where to run auto-tuning
I tuning space search has overhead, so it does not always

improve speed
I depends on how many times we execute tuned code
I depends on how much performance we can get, and how long

time we need to invest into tuning
I analysis of performance counters and historical data

I becomes increasingly complicated when we have more
processors and accelerators

Autotuning in task-based systems
I task-based system distribute data-dependent computing tasks

in hererogeneous node(s)
I those tasks can be inherently auto-tuned
I challenging in scheduling and SW engineering

We have prototype of KTT integrated into StarPU.
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Autotuning in higher-order languages

Autotuning with KTT requires expert-programmers

I CUDA/OpenCL programming is difficult

I identification of relevant tuning parameters requires intimate
knowledge of hardware

Higher-order languages ease programming

I often at the cost of code efficiency

I but higher-order functions can be tuned according to HW,
input and lower-order function, such tuning is transparent for
the programmer

I for fine-tuning, we can also expose tuning parameters for
lower-order functions

We are currently experimenting with integration of KTT into
Thrust (skeletal programming).

19 / 19


	Introduction
	Our focus

