
Introduction Example Cache Vectorization Parallelization

Hardware-aware Performance Tuning in C/C++

Jǐŕı Filipovič

Sep. 2021

1 / 39

Introduction Example Cache Vectorization Parallelization

Focus of the Lecture

We will learn how to optimize C/C++ code to get more
performance from contemporary processors

maximizing benefit from cache architecture

writing code taking advantage of compiler auto-vectorization

using multiple cores efficiently

We will not cover all interesting topics...

only basic optimizations from each category

no language-specific optimizations (inlining, proper usage of
virtual functions etc.)

no hardcore, assembly-level optimizations

2 / 39

Introduction Example Cache Vectorization Parallelization

Demonstration Example

We will demonstrate optimization methods using concrete example

I have tried to find as simple as possible computational
problem, which still expose a lot of opportunity for various
optimization techniques

The code is not very abstract or generic

in productivity-optimized programming, we want to hide how
are algorithms performed, how are data stored etc.

however, when optimizing code, we have to focus on
implementation details, thus, code looks more ”old school”

in practice, usually very small fraction of source code is
performance-critical, so different programming style for
optimized code is not a problem

3 / 39

Introduction Example Cache Vectorization Parallelization

Electrostatic Potential Map

Important problem from computational chemistry

we have a molecule defined by position and charges of its
atoms

the goal is to compute charges at a 3D spatial grid around the
molecule

In a given point of the grid, we have

Vi =
∑
j

wj

4πε0rij

Where wj is charge of the j-th atom, rij is Euclidean distance
between atom j and the grid point i and ε0 is vacuum permittivity.

4 / 39

Introduction Example Cache Vectorization Parallelization

Electrostatic Potential Map

Initial implementation

suppose we know nothing about HW, just know C++

algorithm needs to process 3D grid such that it sums potential
of all atoms for each grid point

we will iterate over atoms in outer loop, as it allows to
precompute positions of grid points and minimizes number of
accesses into input/output array

5 / 39

Introduction Example Cache Vectorization Parallelization

Electrostatic Potential Map

void coulomb (const sAtom∗ atoms , const int nAtoms ,
const float gs , const int gSize , float ∗grid) {

for (int a = 0 ; a < nAtoms ; a++) {
sAtom myAtom = atoms [a] ;
for (int x = 0 ; x < gSize ; x++) {

float dx2 = powf ((float) x ∗ gs − myAtom . x , 2 . 0 f) ;
for (int y = 0 ; y < gSize ; y++) {

float dy2 = powf ((float) y ∗ gs − myAtom . y , 2 . 0 f) ;
for (int z = 0 ; z < gSize ; z++) {

float dz = (float) z ∗ gs − myAtom . z ;
float e = myAtom . w / sqrtf (dx2 + dy2 + dz∗dz) ;
grid [z∗gSize∗gSize + y∗gSize + x] += e ;

}
}

}
}

}

6 / 39

Introduction Example Cache Vectorization Parallelization

Benchmarking

We will benchmark codes on pretty average desktop system

4 cores

AVX2 (256-bit vectors), no FMA

Guess speedup of original code :-).

7 / 39

Introduction Example Cache Vectorization Parallelization

Cache Memories

Why we have cache memories in modern processors?

main memory is too slow (both latency and bandwidth)
comparing to compute cores

we can build much faster, but also more expensive memory

cache is fast memory, which temporary keeps parts of larger
and slower memories

8 / 39

Introduction Example Cache Vectorization Parallelization

Cache Implementation

How is it working?

multiple levels (usually L1 and L2 private for core, L3 shared)

accessed by cache lines (64 bytes on Intel architectures)

when data are accessed, they are stored in cache and kept
until cache line is needed for another data

limited associativity (each cache line may cache only defined
parts of main memory)

parallel access into memory – cache lines must be somehow
synchronized (broadcast, invalidation)

9 / 39

Introduction Example Cache Vectorization Parallelization

Optimization for Cache

Optimization for spatial locality

access consequent elements

align data to a multiple of cache line size

otherwise only part of transfered data is used

Optimization for temporal locality

when data element needs to be accessed multiple times,
perform accesses in a short time

otherwise it may be removed from cache due to its limited
capacity or associativity

Omit inefficient usage

conflict misses

false sharing

10 / 39

Introduction Example Cache Vectorization Parallelization

Electrostatic Potential Map

void coulomb (const sAtom∗ atoms , const int nAtoms ,
const float gs , const int gSize , float ∗grid) {

for (int a = 0 ; a < nAtoms ; a++) {
sAtom myAtom = atoms [a] ;
for (int x = 0 ; x < gSize ; x++) {

float dx2 = powf ((float) x ∗ gs − myAtom . x , 2 . 0 f) ;
for (int y = 0 ; y < gSize ; y++) {

float dy2 = powf ((float) y ∗ gs − myAtom . y , 2 . 0 f) ;
for (int z = 0 ; z < gSize ; z++) {

float dz = (float) z ∗ gs − myAtom . z ;
float e = myAtom . w / sqrtf (dx2 + dy2 + dz∗dz) ;
grid [z∗gSize∗gSize + y∗gSize + x] += e ;

}
}

}
}

}

11 / 39

Introduction Example Cache Vectorization Parallelization

Evaluation

We have compiled the code above with vectorization switched off
(as we are interested in effects of memory access only)

31.6 millions of atoms evaluated per second (MEvals/s) using
256 × 256 × 256 grid and 4096 atoms

164.7 Mevals/s by changing grid size to 257 × 257 × 257

Interpretation

strong dependence on input size indicates problems with
cache associativity

even 164.7 Mevals/s is not very good result, considering 8
floating point operations are performed in innermost loop

12 / 39

Introduction Example Cache Vectorization Parallelization

Spatial Locality

We are interested in the innermost loop

it defines memory access pattern (i.e., which elements are
accessed consequently)

the innermost loop runs over z, which creates large memory
strides in accessing grid

when grid size is power of two, columns hits the same
associativity region

Optimization

we need to rearrange loops: the innermost loop should iterate
through x

13 / 39

Introduction Example Cache Vectorization Parallelization

Spatial Locality

void coulomb (const sAtom∗ atoms , const int nAtoms ,
const float gs , const int gSize , float ∗grid) {

for (int a = 0 ; a < nAtoms ; a++) {
sAtom myAtom = atoms [a] ;
for (int z = 0 ; z < gSize ; z++) {

float dz2 = powf ((float) z ∗ gs − myAtom . z , 2 . 0 f) ;
for (int y = 0 ; y < gSize ; y++) {

float dy2 = powf ((float) y ∗ gs − myAtom . y , 2 . 0 f) ;
for (int x = 0 ; x < gSize ; x++) {

float dx = (float) x ∗ gs − myAtom . x ;
float e = myAtom . w / sqrtf (dx∗dx + dy2 + dz2) ;
grid [z∗gSize∗gSize + y∗gSize + x] += e ;

}
}

}
}

}

14 / 39

Introduction Example Cache Vectorization Parallelization

Evaluation

Performance measurement

371.8 Mevals/s using 256 × 256 × 256 grid and 4096 atoms
(from 31.6 and 164.7 MEvals/s)

no sensitivity to changing grid size (no cache associativity
problem)

much better spatial locality

Analysis of cache pattern

each atom is applied to the whole grid

poor temporal locality (grid is too large structure)

15 / 39

Introduction Example Cache Vectorization Parallelization

Temporal Locality

Atoms array is much smaller than grid

we can rearrange loops to iterate over atoms in the innermost
loop: z-y-x-a

alternatively, we may apply atom forces per rows of a grid,
creating iteration order z-y-a-x

or tiling may be used

Memory tiling

we break some loop into nested loops, such that outer loop
iterates with step s > 1 and those steps are performed in
some inner loop

multiple loops may be tiled

code is more complex, not shown in this tutorial

16 / 39

Introduction Example Cache Vectorization Parallelization

Evaluation

Note that autovectorization is switched off for all implementations.

Implementation Performance speedup

Naive (grid 257) 164.7 n/a

Spatial loc. 371.8 2.26×
ZYXA 359.7 2.18×
ZYAX 382.2 2.32×

Temporal locality brings only minor improvement, but it may
change when instructions are optimized/code is parallelized.

17 / 39

Introduction Example Cache Vectorization Parallelization

Vector Instructions

Modern processors have complex logic preparing instructions

arithmetical units are relatively cheep

when instruction is to be executed, it may process multiple
data elements in parallel

Data-parallel programming

the same instruction is applied onto multiple data (SIMD
model)

explicit usage: we need to generate vector instructions

18 / 39

Introduction Example Cache Vectorization Parallelization

Vector Instructions

Vector instructions

the same operation is applied to a short vector

mainly arithmetic operations, may be masked, may contain
support for reduction, binning etc.

vector length depends on data type and instruction set, e.g.
AVX2 works with vector of size 256 bytes, so 8 32-bit
numbers or 4 64-bit numbers are processed in parallel

Vectorization in C/C++

explicit: inline assembly or intrinsics

implicit: compiler generates vector instructions automatically

19 / 39

Introduction Example Cache Vectorization Parallelization

Automatic Vectorization

Better portability

the code can be compiled for any vector instruction set

Supported in modern compilers

however, it is difficult task, so allowing compiler to vectorize
code needs programmer assist

Intel C++ compiler is strong in auto-vectorization

20 / 39

Introduction Example Cache Vectorization Parallelization

Automatic Vectorization

Current limitations

only innermost for loops are vectorized

number of iterations must be known when loop is entered, or
(preferably) at compilation time

memory access must be regular, ideally with unit stride (i.e.
consequent elements are accessed in vector instructions)

vector dependence usually disallows vectorization

21 / 39

Introduction Example Cache Vectorization Parallelization

Vector Dependence

Vector dependence

the for loop cannot be vectorized, if there is flow dependence
between iterations

however, compiler may wrongly assume vector dependence (it
must by conservative to generate correct code)

#pragma ivdep (Intel) or #pragma GCC ivdep (gcc)
instruct compiler to ignore assumed vector dependences (with
true dependence, compiler still do not vectorize)

22 / 39

Introduction Example Cache Vectorization Parallelization

Contiguous Memory Access

struct vec{
float x , y ;

} ;
vec v [n] ;
for (int i = 0 ; i < n ; i++)

v [i] . x ∗= 2.0 f ;

The loop is vectorized, however, access into v is strided. Typical
optimization is transferring array of structures (AoS) to structure
of arrays (SoA).

struct vec{
float ∗x ;
float ∗y ;

} ;
vec v ;
// a l l o c a t i o n . . .
for (int i = 0 ; i < n ; i++)

v . x [i] ∗= 2.0 f ;

23 / 39

Introduction Example Cache Vectorization Parallelization

Electrostatic Potential Map

Naive implementation has assumed dependence (compiler is not
clever enough), which needs to be manually fixed.

for (int a = 0 ; a < nAtoms ; a++) {
sAtom myAtom = atoms [a] ;
for (int x = 0 ; x < gSize ; x++) {

float dx2 = powf ((float) x ∗ gs − myAtom . x , 2 . 0 f) ;
for (int y = 0 ; y < gSize ; y++) {

float dy2 = powf ((float) y ∗ gs − myAtom . y , 2 . 0 f) ;
for (int z = 0 ; z < gSize ; z++) {

float dz = (float) z ∗ gs − myAtom . z ;
float e = myAtom . w / sqrtf (dx2 + dy2 + dz∗dz) ;
#pragma ivdep

grid [z∗gSize∗gSize + y∗gSize + x] += e ;
}

}
}

}

24 / 39

Introduction Example Cache Vectorization Parallelization

Electrostatic Potential Map

AZYX and ZYAX Innermost Loop

for (int x = 0 ; x < gSize ; x++) {
float dx = (float) x ∗ gs − myAtom . x ;
float e = myAtom . w / sqrtf (dx∗dx + dy2 + dz2) ;
grid [z∗gSize∗gSize + y∗gSize + x] += e ;

}

The loop is automatically vectorized without problems.

25 / 39

Introduction Example Cache Vectorization Parallelization

Electrostatic Potential Map

ZYXA implementation

for (int z = 0 ; z < gSize ; z++) {
for (int y = 0 ; y < gSize ; y++) {

for (int x = 0 ; x < gSize ; x++) {
float e = 0.0 f ;
for (int a = 0 ; a < nAtoms ; a++) {

sAtom myAtom = atoms [a] ;
float dx = (float) x ∗ gs − myAtom . x ;
float dy = (float) y ∗ gs − myAtom . y ;
float dz = (float) z ∗ gs − myAtom . z ;
e += myAtom . w / sqrtf (dx∗dx + dy∗dy + dz∗dz) ;

}
grid [z∗gSize∗gSize + y∗gSize + x] += e ;

}
}

}

26 / 39

Introduction Example Cache Vectorization Parallelization

ZYXA

The innermost loop is difficult to vectorize

strided memory access into atoms elements

reduction

Two possible solutions

AoS to SoA optimization

vectorization of outer loop running over x

27 / 39

Introduction Example Cache Vectorization Parallelization

SoA

for (int z = 0 ; z < gSize ; z++) {
for (int y = 0 ; y < gSize ; y++) {

for (int x = 0 ; x < gSize ; x++) {
float e = 0.0 f ;
for (int a = 0 ; a < nAtoms ; a++) {

float dx = (float) x ∗ gs − atoms . x [a] ;
float dy = (float) y ∗ gs − atoms . y [a] ;
float dz = (float) z ∗ gs − atoms . z [a] ;
e += atoms . w [a] / sqrtf (dx∗dx + dy∗dy + dz∗dz) ;

}
grid [z∗gSize∗gSize + y∗gSize + x] += e ;

}
}

}

28 / 39

Introduction Example Cache Vectorization Parallelization

Outer-loop Vectorization

for (int z = 0 ; z < gSize ; z++) {
for (int y = 0 ; y < gSize ; y++) {

#pragma simd

for (int x = 0 ; x < gSize ; x++) {
float e = 0.0 f ;
for (int a = 0 ; a < nAtoms ; a++) {

sAtom myAtom = atoms [a] ;
float dx = (float) x ∗ gs − myAtom . x ;
float dy = (float) y ∗ gs − myAtom . y ;
float dz = (float) z ∗ gs − myAtom . z ;
e += myAtom . w / sqrtf (dx∗dx + dy∗dy + dz∗dz) ;

}
grid [z∗gSize∗gSize + y∗gSize + x] += e ;

}
}

}

29 / 39

Introduction Example Cache Vectorization Parallelization

All implementations

We will use restrict quantifier

otherwise, compiler may expect aliasing even between atoms

and grid and give up vectorization

30 / 39

Introduction Example Cache Vectorization Parallelization

Evaluation

Implementation Performance speedup (vect. speedup)

Naive (grid 257) 164.7 n/a n/a

Naive vec. (grid 257) 330.6 2.01× 2.01×
Spatial loc. 1838 11.2× 4.94×
ZYXA outer 2189 13.3× 6.09×
ZYXA SoA 2203 13.4× 6.12×
ZYAX 2197 13.3× 5.75×

31 / 39

Introduction Example Cache Vectorization Parallelization

Parallelization in C/C++

Thread-level parallelism in C/C++

many possible ways to parallelize a code: pthreads, Boost
threads, TBB etc.

we will use OpenMP in our examples, as it broadly-supported
standard and it requires only small changes in our code

however, optimization principles are general and can be used
with any parallelization interface

32 / 39

Introduction Example Cache Vectorization Parallelization

OpenMP

OpenMP standard

for shared-memory parallelism

uses pragmas to declare, which parts of the code runs in
parallel

very easy to use, but writing efficient code may be challenging
(much like in other interfaces)

implements fork-join model

standard, implemented in all major C/C++ compilers

33 / 39

Introduction Example Cache Vectorization Parallelization

OpenMP

The parallel region of the code is declared by #pragma omp
parallel

// s e r i a l code
const int n = 100 ;
#pragma omp p a r a l l e l
{

// p a r a l l e l code
printf (” He l l o from th r ead %d\n” , omp_get_thread_num ()) ;
// p a r a l l e l loop , i t e r a t i o n s o r d e r i s unde f i n ed
#pragma omp for

for (int i = 0 ; i < n ; i++) {
// i t e r a t i o n space i s d i s t r i b u t e d a c r o s s a l l t h r e a d s
printf (”%d ” , i) ;

}
}
// s e r i a l code

34 / 39

Introduction Example Cache Vectorization Parallelization

OpenMP

We can define private and shared variables

#pragma omp parallel for private(a) shared(b)

variables declared before parallel block are shared by default

private statement creates private copy for each thread

Thread synchronization

we can define critical section by #pragma omp critical

or use lightweight atomic operations, which are restricted to
simple scalar operations, such as + - * /

35 / 39

Introduction Example Cache Vectorization Parallelization

Electrostatic Potential Map

Which loop can be parallelized?

AZYX: loop running over atoms would need synchronization,
so we prefer to parallelize loop running over Z, Y or X

ZYXA: we can parallelize up to three outermost loops

ZYAX: we can parallelize up to two outermost loops

Which loop to parallelize?

enter and exit of the loop is synchronized

we want to minimize number of synchronizations, so we will
parallelize loops performing more work

to scale better, we may collapse n perfectly-nested loops using
#pragma omp for collapse(n)

36 / 39

Introduction Example Cache Vectorization Parallelization

ZYXA Example

#pragma omp p a r a l l e l for

for (int z = 0 ; z < gSize ; z++) {
for (int y = 0 ; y < gSize ; y++) {

#pragma simd

for (int x = 0 ; x < gSize ; x++) {
float e = 0.0 f ;
for (int a = 0 ; a < nAtoms ; a++) {

sAtom myAtom = atoms [a] ;
float dx = (float) x ∗ gs − myAtom . x ;
float dy = (float) y ∗ gs − myAtom . y ;
float dz = (float) z ∗ gs − myAtom . z ;
e += myAtom . w / sqrtf (dx∗dx + dy∗dy + dz∗dz) ;

}
grid [z∗gSize∗gSize + y∗gSize + x] += e ;

}
}

}

37 / 39

Introduction Example Cache Vectorization Parallelization

ZYXA Example

#pragma omp p a r a l l e l for c o l l a p s e (2)
for (int z = 0 ; z < gSize ; z++) {

for (int y = 0 ; y < gSize ; y++) {
#pragma simd

for (int x = 0 ; x < gSize ; x++) {
float e = 0.0 f ;
for (int a = 0 ; a < nAtoms ; a++) {

sAtom myAtom = atoms [a] ;
float dx = (float) x ∗ gs − myAtom . x ;
float dy = (float) y ∗ gs − myAtom . y ;
float dz = (float) z ∗ gs − myAtom . z ;
e += myAtom . w / sqrtf (dx∗dx + dy∗dy + dz∗dz) ;

}
grid [z∗gSize∗gSize + y∗gSize + x] += e ;

}
}

}

38 / 39

Introduction Example Cache Vectorization Parallelization

Evaluation

Implementation Performance speedup (par. speedup)

Naive (grid 257) 164.7 n/a n/a

Spatial loc. 2272 13.8× 1.24×
ZYXA outer 7984 48.5× 3.62×
ZYAX 8092 49.1× 3.68×

39 / 39

	Introduction
	Introduction

	Example
	Introduction
	Electrostatic Potential Map

	Cache
	Cache

	Vectorization
	Vectorization

	Parallelization
	Parallelization

