

AlphaFold2 ML Revolution in Structural Biology Marian Novotný, Karel Berka

9th September 2021

PŘÍRODOVĚDECKÁ FAKULTA Univerzita Karlova

KATEDRA FYZIKÁLNÍ CHEMIE Univerzita Palackého v Olomouci

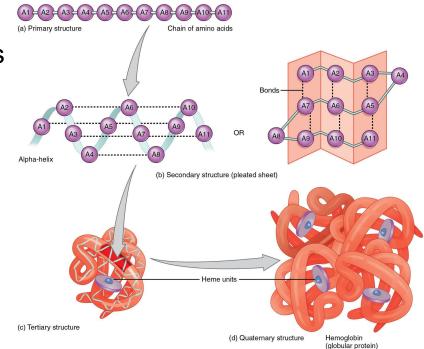
Outline

- Protein structure prediction
- CASP14
- AlphaFold2 under the hood
- Uses of AF₂
- AF₂ DB
- AF2 in MetaCentrum
- Other software (RosettaFold, ML)
- AF2 publically available servers power of Jupyter notebooks
- Limitations and Future challenges

Průlom v biologii. Umělá inteligence "vyřešila" šmodrchání proteinů na 92 %

NEWS · 30 NOVEMBER 2020

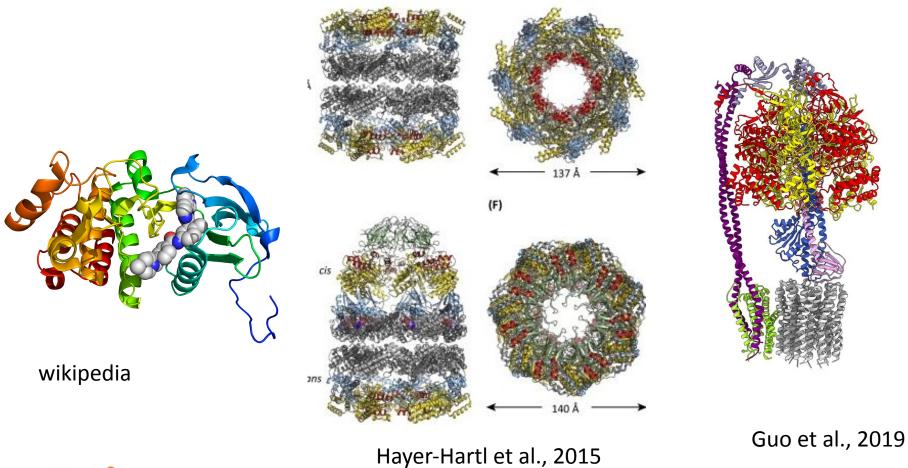
'It will change everything': DeepMind's AI makes gigantic leap in solving protein structures

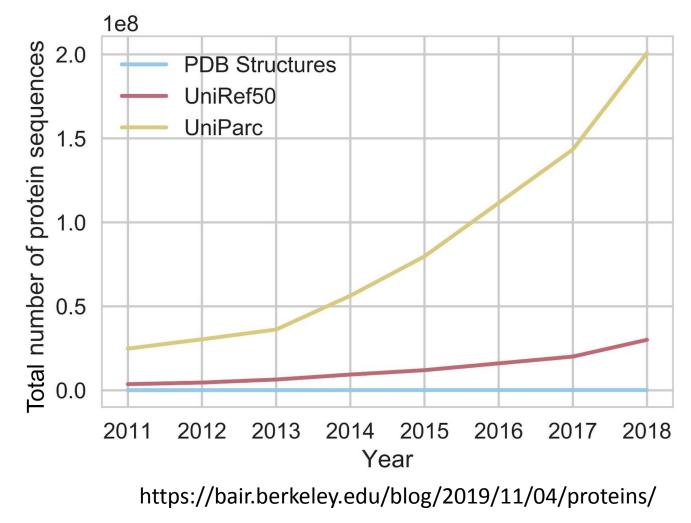

> Umělá inteligence AlphaFold dosáhla vědeckého průlomu. Dovede stanovit tvar molekul proteinů

'The game has changed.' Al triumphs at solving protein structures

So what is a protein?

- elements of cells that actually do things
- responsible for almost everything
- composed of amino acids
- produced from RNA by ribosomes
- folding leads to a 3D structure
- human has around 20 000 different proteins



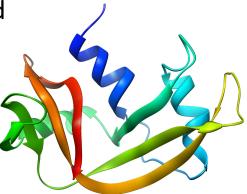

Knowing structure helps to understand the function

1-1

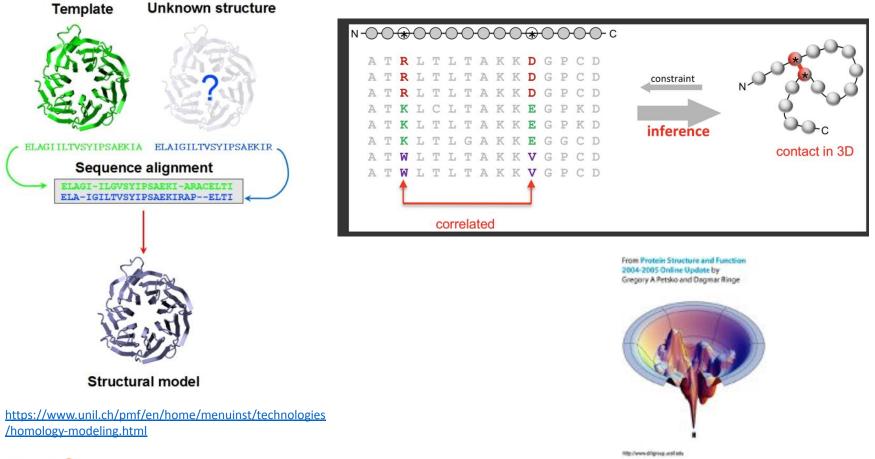
Solving 3D structures is expensive...

The gap between numbers of experimental structures and sequences is increasing over time

Can we use sequence to predict 3D structure?

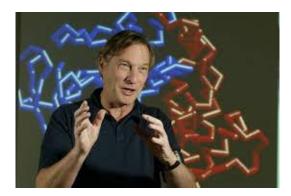

 C.B. Anfinsen received Nobel prize in Chemistry (1972) for describing the relationship between sequence and structure

"The native conformation is determined by the totality of interatomic interactions and hence by the amino acid sequence, in a given environment."

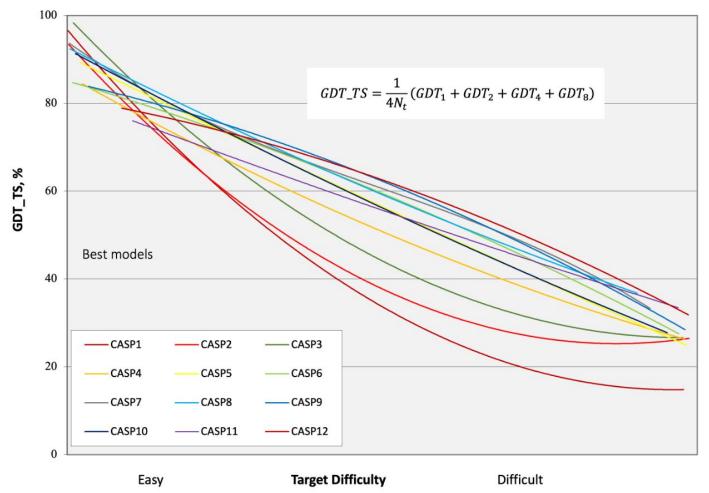

 it shall be possible to give to predict structure from sequence

Principles of prediction from sequence

Structure prediction = simulation of protein folding

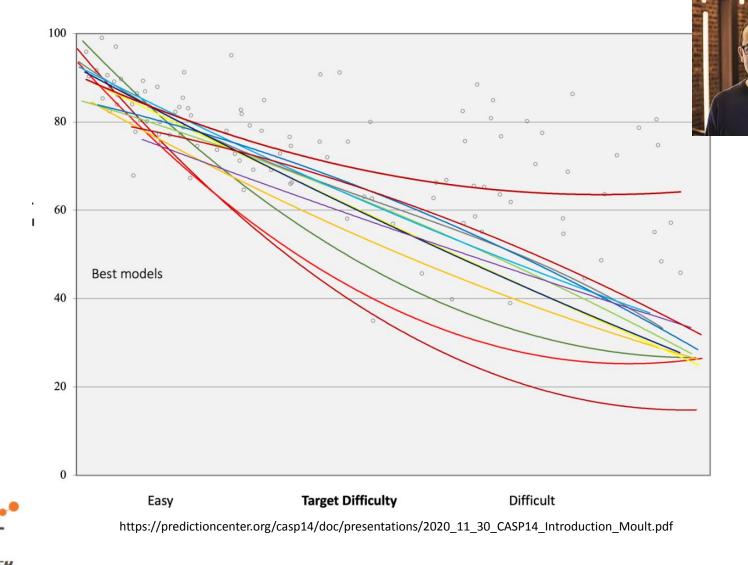

Levinthal's paradox - protein of 100 aa has 10^{70} available conformations -> it would take 10^{52} years at the speed of 10^{-11} s to sample one conformation to assume it native shape

How to move the prediction field forward?

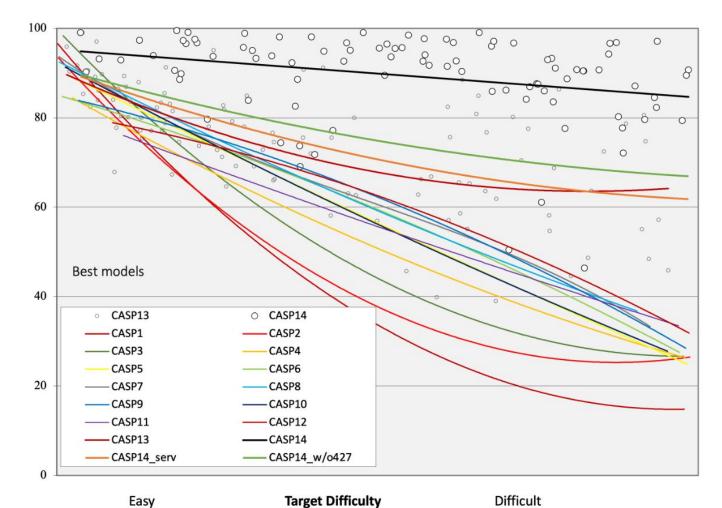

- transparent competition
- provide an "environment" for communication and exchange of experience
- develop metrics for careful examination of predicted structures
- CASP critical assessment of protein structure prediction
- once in two years since1994
- compare with experimentally solved structures

CASP

How to compare structures?



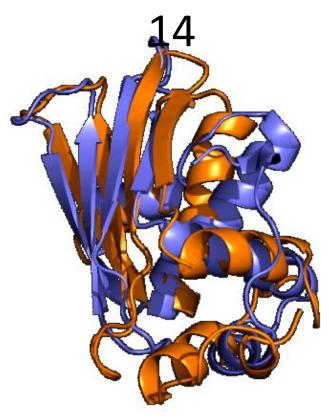
https://predictioncenter.org/casp14/doc/presentations/2020_11_30_CASP14_Introduction_Moult.pdf


GDT_TS = Global distance test - total score (max 100%) The conventional GDT_TS total score in CASP is the average result of cutoffs at 1, 2, 4, and 8 Å falling within experimental position

2018: AlphaFold enters...

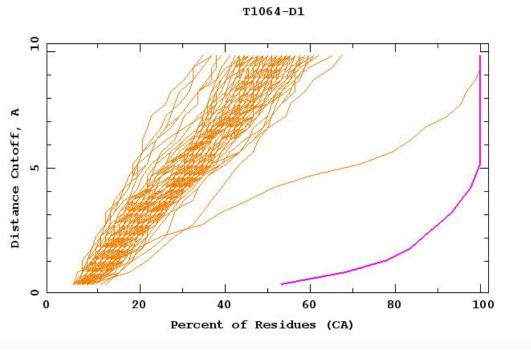
REPUBLIC

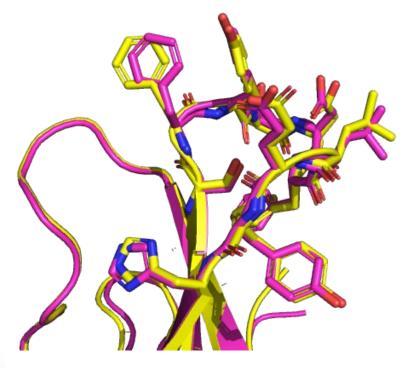
2020: Alphafold2 wins



https://predictioncenter.org/casp14/doc/presentations/2020 11 30 CASP14 Introduction Moult.pdf

How does good prediction look like? GDT_TS = 96.5


The worst prediction of Alphafold 2 in CASP



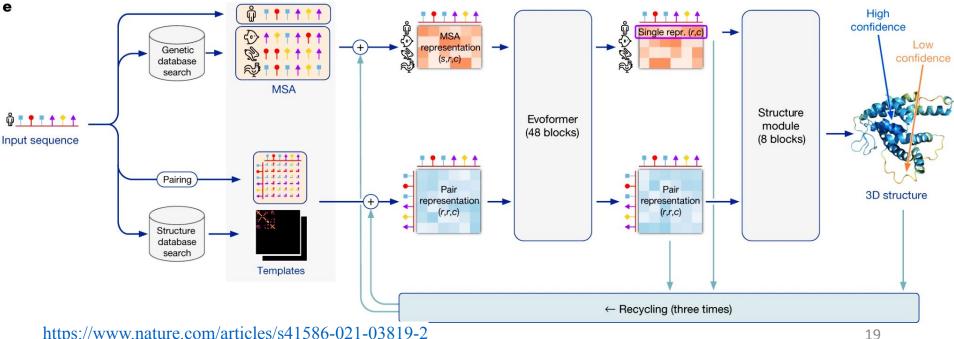
 $GDT_TS = 44.6$

Side chain predictions-orf8 covid19

GDT_TS= 87

so how it works?

AlphaFold2 - under the hood


AlphaFold2

Input: sequence

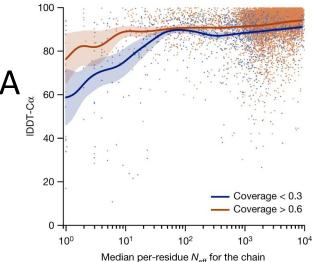
extended by MSA + structural templates

Evoformer and Structure model (w MD simulation)

pIDDT - predicted local confidence prediction

https://www.nature.com/articles/s41586-021-03819-2

MSA -



multiple sequence alignment

using standard tools - jackhmmer, HHBlits

- sequence DBs:
 - UniRef90
 - UniClust30 = for sequence self-distilation
- metagenomicsDBs to fully cover classes underepresented in UniRef90
 - Big Fantastic database (BFD) = 66M protein families from 2.2G protein sequences
 - clustered MGnify

needed at least 30 sequences per MSA otherwise quality deteriorated>

Training

PDB database + PDB70 clusters training db:

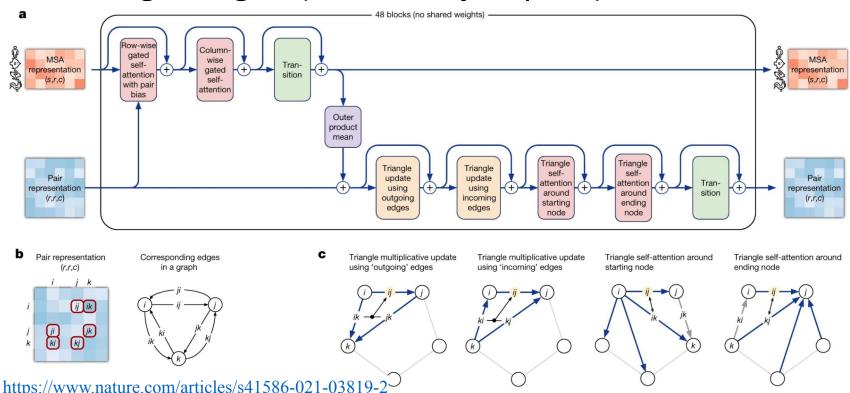
40% identity clusters, crop to 258 residues, batches by 128 per Tensor processing unit (TPU)

enhance accuracy by noisy student self-distillation

predict 350000 structures from UniRef30 using trained network

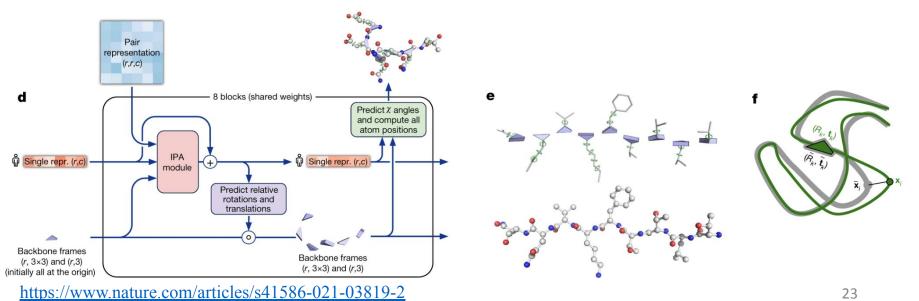
filter to high confidence subset

then train again from scratch with mixture of PDB and UniRef30


=> effective use of unlabelled sequence data

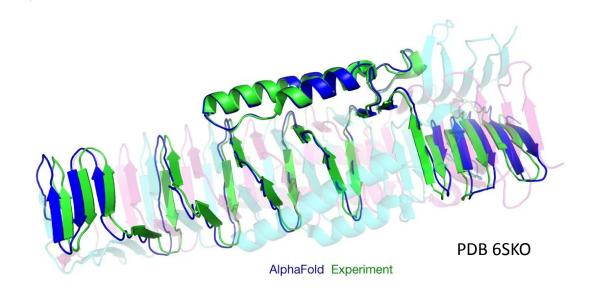
randomly mask or mutate individual residues from MSA using BERT (bidirectional encoder representations from Transformers => to predict masked elements within MSA

EvoFormer


- mixing MSA and pairs via updates
- graph inference problem in 3D space
 - edges = residues in proximity
 - updates per each block (48 blocks) separately (AF1 updated all network at once)
- using triangles (instead of just pairs)

Structure model

- prioritize backbone positions+orientations
 - residue gas free floating rigid body rotations and translation
 - updates
 - IPA (invariant point attention) neural activations only in rigid 3D
 - equivariant update using updated activations
- later fix backbone geometry
 - avoid loop closure problem)
- sidechain final refinement:
 - OpenMM with Amber 99sb forcefield



Effect of cross-chain contacts.

prediction is worse for heterotropic contacts (large complexes where 3D structure is dictated by other chains in complex)

homotropics yields high-accuracy even when chains are intertwinned

Timings

one GPU minute per model with 384 residues
=> allows proteome-scale studies

1500 residues trimer (SARS-CoV2 S protein) - about a day on ELIXIR CZ Metacentrum pipeline

AlphaFoldDB

AlphaFold Protein Structure Database

Developed by DeepMind and EMBL-EBI

Search for protein, gene, UniProt accession or organism						Search	
Examples:	Free fatty acid receptor 2	At1g58602	Q5VSL9	E. coli	Help:	AlphaFold DB search help	

AlphaFold DB provides open access to protein structure predictions for the human proteome and 20 other key organisms to accelerate scientific research.

https://www.alphafold.ebi.ac.uk/

Complete structures of 20 model organisms

Species	Common Name	Reference Proteome	Predicted Structures	Download
Arabidopsis thaliana	Arabidopsis	UP000006548 🗹	27,434	Download (3642 MB)
Caenorhabditis elegans	Nematode worm	UP000001940 🖻	19,694	Download (2601 MB)
Candida albicans	C. albicans	UP00000559 🖻	5,974	Download (965 MB)
Danio rerio	Zebrafish	UP00000437 🖻	24,664	Download (4141 MB)
Dictyostelium discoideum	Dictyostelium	UP000002195 🖻	12,622	Download (2150 MB)
Drosophila melanogaster	Fruit fly	UP00000803 🗹	13,458	Download (2174 MB)
Escherichia coli	E. coli	UP00000625 🖻	4,363	Download (448 MB)
Glycine max	Soybean	UP00008827 🖻	55,799	Download (7142 MB)
Homo sapiens	Human	UP000005640 🗹	23,391	Download (4784 MB)
Leishmania infantum	L. infantum	UP00008153 🖻	7,924	Download (1481 MB)
Methanocaldococcus jannaschii	M. jannaschii	UP00000805 🖻	1,773	Download (171 MB)
Mus musculus	Mouse	UP00000589 🗹	21,615	Download (3547 MB)
Mycobacterium tuberculosis	M. tuberculosis	UP000001584 🗹	3,988	Download (421 MB)
Oryza sativa	Asian rice	UP000059680 🗹	43,649	Download (4416 MB)
Plasmodium falciparum	P. falciparum	UP000001450 🗹	5,187	Download (1132 MB)
Rattus norvegicus	Rat	UP000002494 🗹	21,272	Download (3404 MB)
Saccharomyces cerevisiae	Budding yeast	UP000002311 🖻	6,040	Download (960 MB)
Schizosaccharomyces pombe	Fission yeast	UP000002485 🖻	5,128	Download (776 MB)
Staphylococcus aureus	S. aureus	UP000008816 🖻	2,888	Download (268 MB)
Trypanosoma cruzi	T. cruzi	UP000002296 🖻	19,036	Download (2905 MB)

SNW domain-containing protein 1

~

0

¢

۲

13

AlphaFold structure prediction

PDB file

Download

mmCIF file Pred

Predicted aligned error

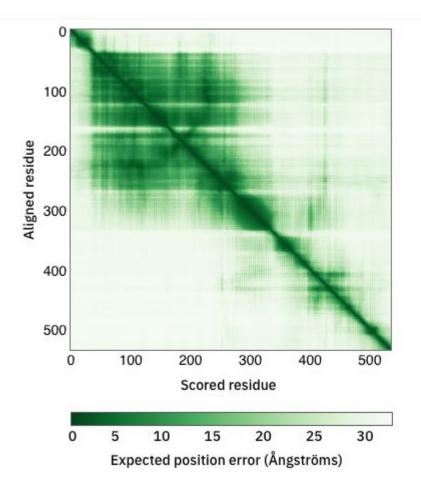
Information

Protein	SNW domain-containing protein 1
Gene	SNW1
Source organism	Homo sapiens go to search 🖻
UniProt	Q13573 go to UniProt &
Experimental structures	17 structures in PDB for Q13573 go to PDBe-KB &
Biological function	(Microbial infection) Proposed to be involved in transcriptional activation by EBV EBNA2 of CBF-1/RBPJ-repressed promoters. go to UniProt 🖻

3D viewer 💿

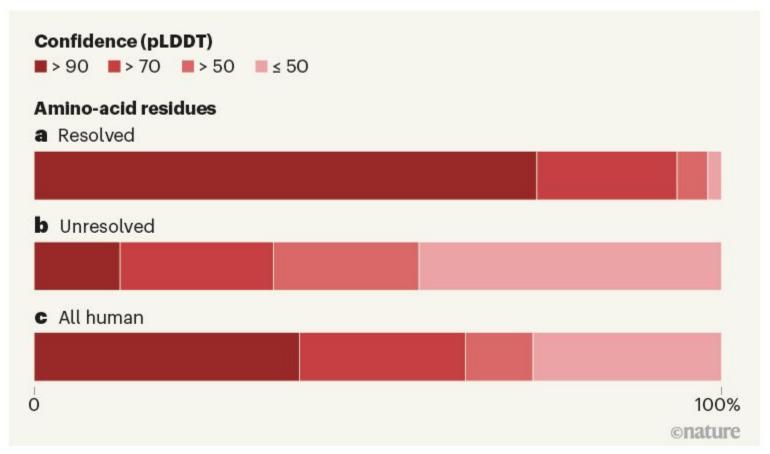
Model Confidence:

- Very high (pLDDT > 90)
- Confident (90 > pLDDT > 70)
- Low (70 > pLDDT > 50)
- Very low (pLDDT < 50)


AlphaFold produces a per-residue confidence score (pLDDT) between 0 and 100. Some regions below 50 pLDDT may be unstructured in isolation.

Sequence of AF-Q13573-... \$ 1: SNW do... \$ A \$

MAMAAN



Alphafold tells you where is it right!

How good are the predictions of human proteins?

pLDDT - per-residue estimate of its confidence on a scale from 0 - 100 model's predicted score on the IDDT-C α metric (local superposition-free score for comparing protein structures and models using distance difference tests).

Usages

AlphaFold in Google Colab

Github enabled JupyterNotebooks running in Google Colab environment

limitation in size

US DE	sie Colab	CZEU REP
Repoz	itář: 🔼	Větev: 🗹
sokry	pton/ColabFold 🗸	main 🗸
	Cesta	
0	AlphaFold2.ipynb	
0	AlphaFold2_complexes.ipy	nb
0	RoseTTAFold.ipynb	
0	batch/AlphaFold2_batch.ip	ynb

Mirdita M, Ovchinnikov S, Steinegger M. ColabFold - Making protein folding accessible to all. bioRxiv, 2021

https://colab.research.google.com/github/sokrypton/ColabFold/

BLIC

Alphafold on ELIXIR CZ

- Alphafold needs GPU to run -> not many people have it on their PC
- Alphafold has been installed on Elixir CZ hardware
- Elixir is accessible through Metacentrum
- speed is dependent on size of predicted protein but can be in order of tens of minutes

use Alphafold ideas for development of their own 3D structure predictions -

of their own 3D structure predictions -RoseTTAfold

Alphafold is just a start...

- prediction of designed proteins
- prediction of RNA structures
- prediction of orphan proteins
- molecular replacement
- interpretation of cryoEM
- pLDDT can act as IDP predictor

- - -

Search worldwide, life-sciences

alphafold <u>Coronavirus articles and preprints</u> Seare <u>Recent history</u> Saved searches

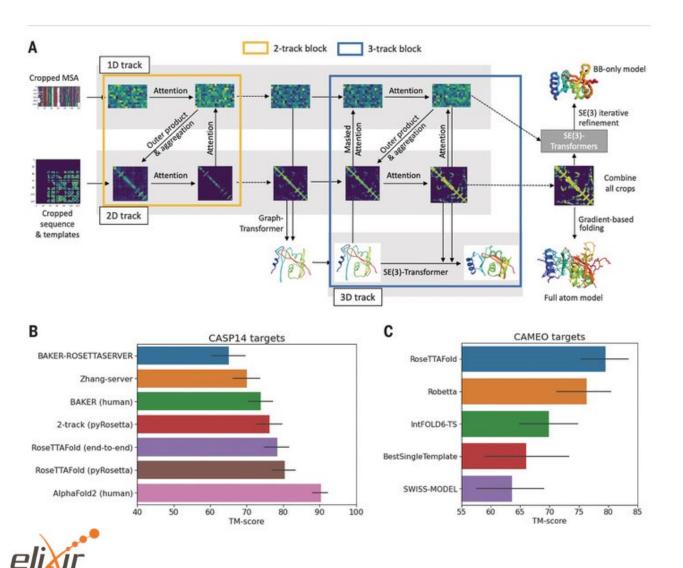
Search only

Туре 😨

Research articles (111)

Reviews (88)

Preprints (38)


Free full text 💿

□ Free to read (201)

Free to read & use (183)

as of 9.9.2021

Accurate prediction of protein structures and interactions using a three-track neural network

CZECH REPUBLIC <text>

https://www.science.org/doi/full/10.1126/science.abj8754

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.24.457549; this version posted August 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

USING ALPHAFOLD FOR RAPID AND ACCURATE FIXED BACKBONE PROTEIN DESIGN

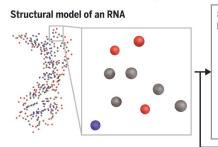
Lewis Moffat

Department of Computer Science University College London Gower St, London WC1E 6BT lewis.moffat@cs.ucl.ac.uk Joe G. Greener Department of Computer Science University College London Gower St, London WC1E 6BT j.greener@ucl.ac.uk David T. Jones* Department of Computer Science

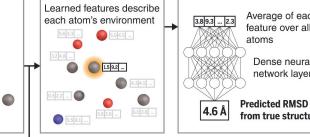
University College London Gower St, London WC1E 6BT d.t.jones@ucl.ac.uk

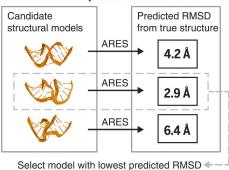
ABSTRACT

The prediction of protein structure and the design of novel protein sequences and structures have long been intertwined. The recently released AlphaFold has heralded a new generation of accurate protein structure prediction, but the extent to which this affects protein design stands yet unexplored. Here we develop a rapid and effective approach for fixed backbone computational protein design, leveraging the predictive power of AlphaFold. For several designs we demonstrate that not only are the AlphaFold predicted structures in agreement with the desired backbones, but they are also supported by the structure predictions of other supervised methods as well as *ab initio* folding. These results suggest that AlphaFold, and methods like it, are able to facilitate the development of a new range of novel and accurate protein design methodologies.



REPUBLIC *To whom correspondence should be addressed

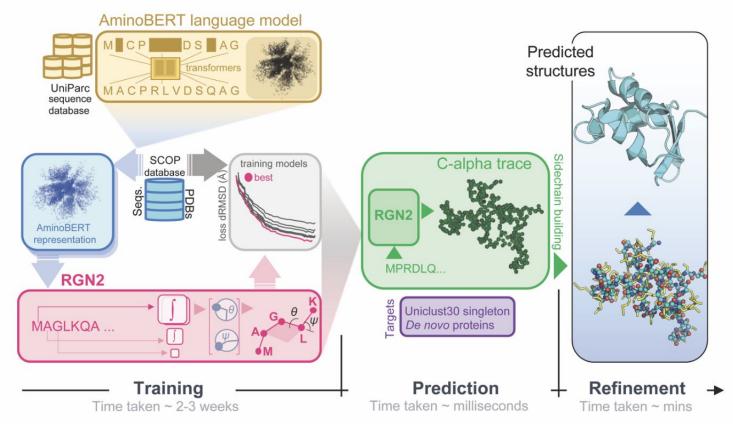

Geometric deep learning of RNA structure


A ARES predicts the accuracy of a structural model, given only atomic coordinates and element types

Share information locally (repeated)

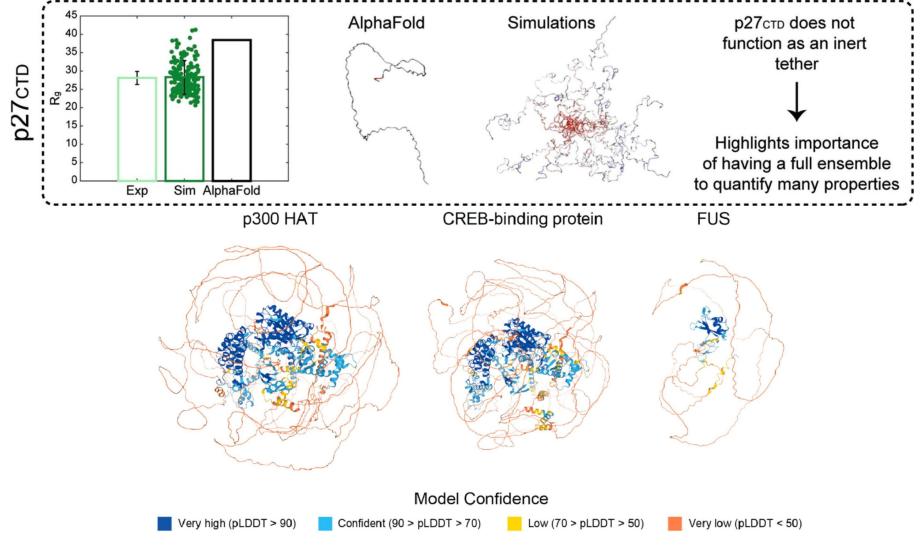
B RNA structure prediction with ARES

C Training set: 18 older, smaller RNA structures


D Benchmark sets: newer, larger RNA structures

https://www.science.org/doi/10.1126/science.abe5650

Single-sequence protein structure prediction using language models from deep learning


Figure 1. Organization and application of RGN2. RGN2 combines a Transformer-based protein language model (AminoBERT) with a recurrent geometric network that utilizes Frenet-Serret frames to generate the backbone structure of a protein. Placement of side chain atoms and refinement of hydrogen- ded networks are subsequently performed using the Rosetta energy function.

https://www.youtube.com/watch?v=eobc7cMMpeY&feature=youtu.be

REPUBLIC

AlphaFold and Implications for Intrinsically Disordered Proteins

Ruff KM, Pappu RV ,AlphaFold and Implications for Intrinsically Disordered Proteins, J Mol Biol. 2021, https://doi.org/10.1016/j.jmb.2021.167208.

MrParse: Finding homologues in the PDB and the EBI AlphaFold database for Molecular Replacement and more

MrParse Analysis

Version: 0.2.1

MrParse: a program to find and analyse search models for crystallographic Molecular Replacement. The program is being developed by Dan Rigden's group at the University of Liverpool.

MrParse is currently under development and we are keen to make it as useful to the community as possible. If you have any suggestions for it's development, or ideas on how we could improve it, please get in touch

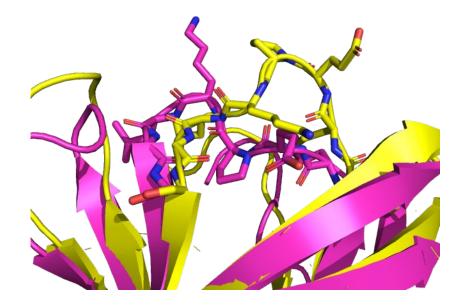
IKL Info

Name	Resolution		Space Group	Has NCS?		Has Twinning?		Has Anisotropy?		
7dry-sf	1.44		P41212	false		false				
xperimen	ntal stru	ctures from	n the PDB							
Name	PDB	Resolution	Region	Range	Length	eLLG	Mol. Wt.	RMSD	Seq. Ident.	Visualisation of Regions
2cvi_B_1	2cvi	1.50	1	158-230	71	43.5	8676	1.085	0.31	22vy#51
										Sequence Based Predictions
										- Marten and a marten and a second and a marten and a marten and a second and a s
tructure	predicti	ions from th	e EBI AlphaF	old databa	se					
Nam	ne	model	Date M	ade Regio	n Range	Length	Avg. pLDDT	H-score	Seq. Ident.	Visualisation of Regions
Q1236	52_1	Q1236	2 01-JUL	-21 1	2-180	177	90.15	85	0.41	
P8724	11	P8724	1 01-JUL	21 1	4-176	171	91.55	85	0.38	

Adam J. Simpkin, Jens M. H. Thomas, Ronan M. Keegan, Daniel J. Rigden

doi: https://doi.org/10.1101/2021.09.02.458604

Limitations



Are structural biologists and disconsistent bioinformaticians on the job market?

- Alphafold can not do multiprotein complexes interactions
- Alphafold can not do **point mutations** design of functions
- Alphafold can not do conformational changes or dynamics
- Alphafold can not do effects of post-translational protein modifications
- Alphafold can not do ligand effects
- Alphafold is not good with orphan sequences
- Alphafold does not tell much about folding process

Are the models good enough for drug design?

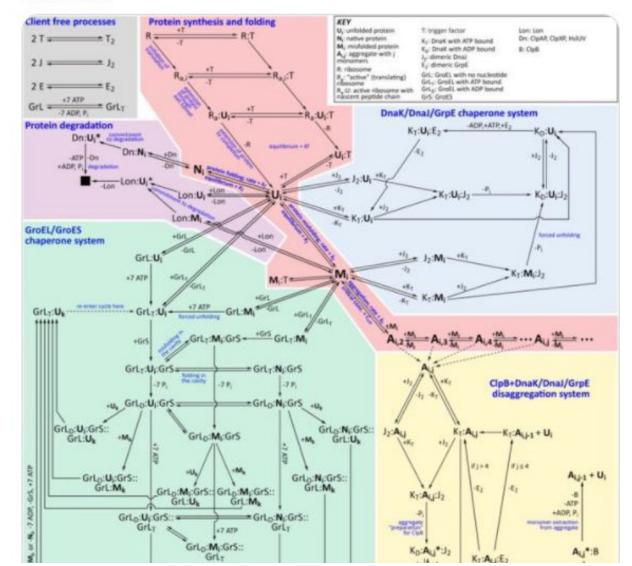
- we do not know yet
- average RMSD for Alphafold2 models is 1.3 Å
- average RMSD of X-Ray structures is 0.3 - 0.5 Å
- best Alphafold prediction has RMSD 0.6 Å
- locally AlphaFold2 might be there

T1064

Summary

- Alphafold2 made a huge leap in prediction accuracy
- Role of open science and publicly available data can not be overstated
- CASP competition was a driver of the change
- Alphafold is publicly available and can be run from many places including ELIXIR CZ
- Alphafold has inspired many tools already
- Alphafold limits are yet to be fully described

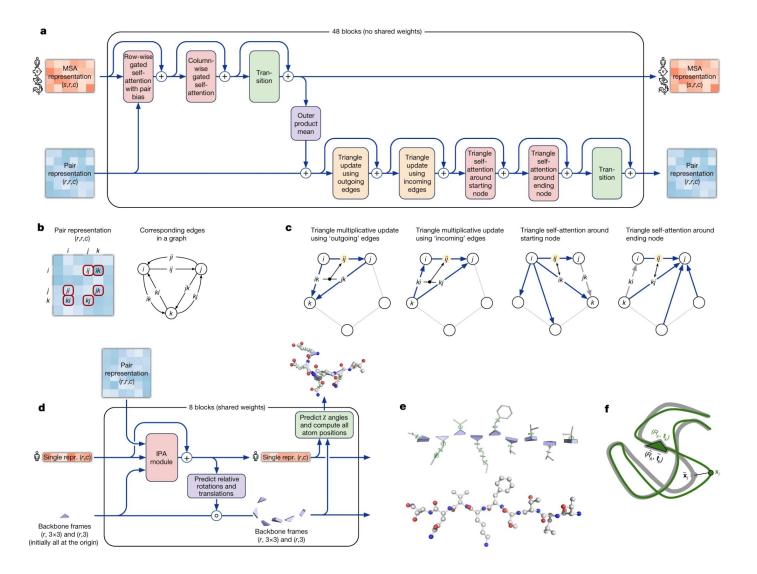
Thank you for your attention.



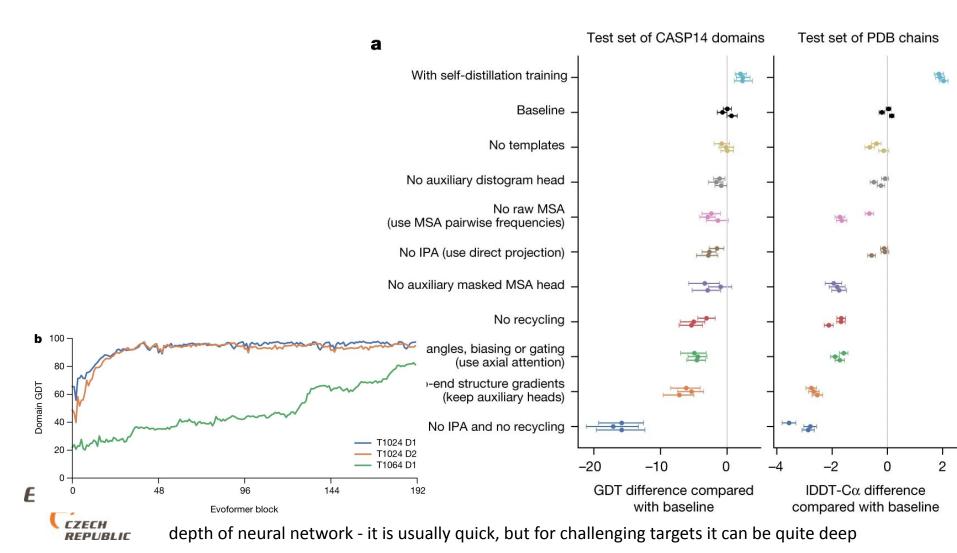
Kresten Lindorff-Larsen @LindorffLarsen

Tell me again how the folding problem has been solved doi.org/10.1016/j.jmb.... doi.org/10.1016/j.celr...

Přeložit Tweet



47


...

Extra slides

Architectural details.

Interpreting the neural network

https://www.nature.com/articles/s41586-021-03819-2