IA010: Principles of Programming Languages

Introduction

Achim Blumensath

blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz

Warm-up: A Quiz
What does this program do?

bttt [Dttt A >SS D > H
B o e G S >+ >.

Warm-up: A Quiz
What does this program do?

bttt [Dttt A >SS D > H
B o e G S >+ >.

Prints “Hello World!”

Warm-up: A Quiz
What does this program do?

bttt [Dttt A >SS D > H
B o e G S >+ >.

Prints “Hello World!”

Brainfuck (1993)
» Turing-complete programming language
> tape containing numbers (inc/dec), a data pointer (I/r),
input/output, conditional jump

» compiler of size 100 bytes known to exist

Before high-level programming languages ...

.

'APPLE COMPUTER Co. W
17 i8 ADD cLC Clear carry.
aAg| Al £2 LDx =5d2 Index for 3-hyte add
3rs3 B5 &7 ADDI LDARIMI, X (g%
£ 75 @5 ADCIIM2, X(ws) Add a byte of Mant, to Mank.
g7 5 £ STAE M, X ()
389 CA bEX Advasce index to nest morc J-j'ﬂf by
ZeA 2 F7 - EPL ADDVC-g9) Loep wnhil dore,
2zc o : RTS Return. :
.2&D ge 23 MDI | ASLIFISIGN (#3) Clear LSB of STIGN.
SET 22 12 @3 JSR ABSWAPRI(AI2) Abz val of Mant,, then zwap with Me
3iz 24 £3 ABSWAP BITWIM (1) Mart, neg!
3i9 12 £5 APL ABSWAR)(-pSs) Me, zwap with Maat; and .-,m..‘
sl 23 By ©3 ISR FCOMPL(354) Yrs, complemeat it
519 E6 £ INC@ISTON(#2) Incr, SLOMN, complementing LSH.
38 3 ABSWAPI SEC Sed carry For relurn fo MUL/OIV
2C AZ E4 SWAP LDX M@y Indea for 4-syte swap.
- 11+ 94 8 SWAP| STY(DE-1, X (ra)
22 BE 7 LDAEIX =1, % (7)) Swap a byfe of Exp/Mant; wwith
322 . B4 @3 LDY@e2-1,8 (3) Exp/Mantz and lsave o copy of
=224 49§77 STY(I M I=1, A (47D Mant, 1n € (3 bytes). E+3 ured.
i€ 5 23 b STAD X2=1, K (&3}
328 cA DEX Advance index to reat byte.
azn bg #3 ¢ BNE SWAPI(-£D) Locp wntil done. .
32B GE . RY5 Feiurn .
a2 cé 8 NORMI DECEIX) (pr%) Decremarnt Exp)- N
2E o6 g8 ASL{#IM1+ 2 (&#B2 :
>3 26 A ROL@ ML= | (#A) Shitt Manl, (3 bytes) left.

219 me G RO W1 e T)

Now ...

C++
Java
C#

Ada

Python
PHP
JavaScript
VisualBasic
Perl

Haskell
OCaml
F#

Scheme

Scala
Rust

Swift

Now ...

C
C++
Java
C#
Ada

Python
PHP
JavaScript
VisualBasic
Perl

Haskell
OCaml
F#

Scheme

A zoo of programming languages

Scala
Rust

Swift

Now ...

C
C++
Java
C#
Ada

Python
PHP
JavaScript
VisualBasic
Perl

Haskell
OCaml
F#

Scheme

A zoo of programming languages

Can we somehow categorise them?

How do we choose one?

Scala
Rust

Swift

Language popularity

TIOBE index, January 2017, www. tiobe.com

Jan 2017 Jan 2016 Change Programming Language Ratings Change
1 1 Java 17.278% -4.19%
2 2 c 9.349% 6.69%
3 3 C++ 6301% -0.61%
4 4 c# 4039% -0.67%
5 5 Python 3.465% 0.39%
6 7 A Visual Basic .NET 2.960% +0.38%
7 8 A JavaScript 2.850% +0.29%
8 11 IS Perl 2.750% +0.91%
9 9 Assembly language 2.701% +0.61%
10 6 ¥ PHP 2.564% -0.14%
11 12 A Delphi/Object Pascal 2.561% +0.78%
12 10 v Ruby 2.546% +0.50%
13 54 A Go 2,325% +2.16%

14 14 Swift 1.932% +0.57%

www.tiobe.com

Language popularity

TIOBE Programming Community Index
Source: www.tiobe.com

30

= Java
-C
20 C+t
-t
== Python
== Visual Basic NET
JavaScript
= Perl

Ratings (%)
G

== Assembly language
PHP

2002 2004 2006 2008 2010 2012 2014 2016

Desirable language features

simplicity
orthogonality
clear (and defined)

semantics

ease of use

easy to learn

clean and readable syntax
expressive power

support for many paradigms
and coding styles

strong safety guarantees
produces fast code

compilation speed

Desirable language features

» reduced memory usage

» good library and tool chain
support

» standardisation and
documentation

> interoperability with other
languages

» hardware and system
independence

> support for hardware and
system programming

> usability by
non-programmers

Kinds of software

Kinds of software

> business applications

> office software, graphics software

> server software

» video games

» number crunching

» phone apps

» control software for embedded devices

> scripts, utilities

Programming paradigms

Programming paradigms

| 2

procedural: program is structured as a collection of
procedures/functions

imperative: list of commands

functional: expressions that compute a value
declarative: describe what you want to compute, not how
object-oriented: objects communicating via messages
data-oriented: layout of your data in memory

reactive: network of components that react to events

Which language/paradigm/coding style is the
best?

Which language/paradigm/coding style is the
best?

Choose the right tools for the job!

Which language/paradigm/coding style is the
best?

Choose the right tools for the job!

= the more tools available, the better

Which language/paradigm/coding style is the
best?

Choose the right tools for the job!

= the more tools available, the better

= need to be familiar with many styles and paradigms

Which language/paradigm/coding style is the
best?

Choose the right tools for the job!

= the more tools available, the better

= need to be familiar with many styles and paradigms

Multi-paradigm languages

The more paradigms your language support, the more tools you have
in your toolbox.

State of the art

» functional programming, dependent types: Idris

» linear types, borrow checker: Rust

» imperative programming, error handling: Zig

» imperative programming, design by contract: Dafny, Whiley
» module system: SML, Ocaml

» declarative programming: Mercury

> object-oriented programming: Scala

» concurrency: Go, Pony

(list somewhat biased and certainly incomplete)

Why study programming languages and
paradigms?

The study of language features and programming styles helps you to

| 2

| 2

| 2

choose a language most appropriate for a given task
think about problems in new ways

learn new ways to express your ideas and structure your code
(= more tools in your toolbox)

read other peoples code

learn new languages faster (you only need to learn a new syntax)

understand the design/implementation decisions and limitations
of a given language, so you can use it better:
> You can choose between alternative ways of expressing things.
> You understand more obscure features.
> You can simulate features not available in this particular
language.

Aspects of programming languages

Syntax: the structure of programs.

Describes how the various constructs (statements, expressions, ...) can
be combined into well-formed programs.

Semantics: the meaning of programs.

Tells us what behaviour we can expect from a program.

Pragmatics: the use of programming languages.

In which way is the language intended to be used in practice?
What are the various language constructions good for?

Aspects of programming languages

Syntax: the structure of programs.

Describes how the various constructs (statements, expressions, ...) can
be combined into well-formed programs.

PA008 Compiler Construction, PA037 Compiler Project,

IB005/IA006 Formal Languages

Semantics: the meaning of programs.

Tells us what behaviour we can expect from a program.

IA011 Programming Language Semantics, IA014 Advanced Functional Programming

Pragmatics: the use of programming languages.

In which way is the language intended to be used in practice?
What are the various language constructions good for?

this course

Course organisation

Lectures
> Monday, 12:00, A318
» language: English
» slides, lecture notes, and source code can be found in IS

» video recordings will also be made available there

Examination
» final written exam, in English

> kand z completion possible

Prerequisites
> no formal requirements
» knowledge of at least one programming language
» some basic knowledge of HAskELL helpful

» the more languages you know the better

Study materials

Books (only somewhat relevant)

> P.V.Roy, S. Haridi, Concepts, Techniques, and Models of
Computer Programming, 1st ed., MIT Press, 2004.

> R.W. Sebesta, Concepts of Programming Languages, 10th ed.,
Addison-Wesley, 2012.

» Programming language pragmatics, (Ed. M. L. Scott) 3rd ed.
Oxford, Elsevier Science, 2009.

Additional resources

» Crafting Interpreters, www.craftinginterpreters.com

www.craftinginterpreters.com

Topics covered

| 2

| 2

| 2

| 2

a brief history of programming languages
expressions and functions

types, type checking, type inference

state and side-effects

modules

control-flow

declarative programming

object-oriented programming

concurrency

