
IA010: Principles of Programming Languages

Optimisation

Achim Blumensath
blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz

Optimisation

• generally a good idea
• slow, currently the largest contribution to a compiler’s runtime
(together with type checking)

• trade-off: speed vs. code size
•makes debugging harder (stepping through code)
• reduces predictability (hard to predict what code is produced,
optimisations can be very fragile)

• required for abstraction-heavy programming styles

Low-Level Optimisation: preserves the source code and tries to
improve the translation to assembler
High-Level Optimisation: transforms the source code to make it
more efficient

Optimisation

• generally a good idea
• slow, currently the largest contribution to a compiler’s runtime
(together with type checking)

• trade-off: speed vs. code size
•makes debugging harder (stepping through code)
• reduces predictability (hard to predict what code is produced,
optimisations can be very fragile)

• required for abstraction-heavy programming styles

Low-Level Optimisation: preserves the source code and tries to
improve the translation to assembler
High-Level Optimisation: transforms the source code to make it
more efficient

Optimisation: Inlining

Inlining: insert the function body at the function call

• avoids the overhead of a function call
• enables further optimisations
• increases code size
• hard to predict whether a function call will be inlined

Optimisation: Inlining

Inlining: insert the function body at the function call

• avoids the overhead of a function call
• enables further optimisations
• increases code size
• hard to predict whether a function call will be inlined

Optimisation: Constant Folding and
Propagation

Constant Propagation: replace variables with known values by
constants

Constant Folding: evaluate operations with constant arguments

let x = 1; let x = 1; let x = 1; let x = 1;

let y = 2; let y = 2; let y = 2; let y = 2;

let z = x + y; let z = 1 + 2; let z = 3; let z = 3;

f(z) f(z) f(z) f(3)

Optimisation: Common Subexpression
Elimination

Common Subexpression Elimination: compute common
expressions only once

f(x + 1, x + 1) let z = x + 1;

f(z, z)

Optimisation: Function Specialisation

Function Specialisation: generate special instances of functions with
known arguments

let f(x, y) { ... x ... y ... } let f(x, y) { ... x ... y ...}

let f1(x) { ... x ... 1 ...}

f(u, 1) f1(u)

Optimisation: Dead Code Elimination

Dead Code Elimination: remove unreachable code

let x = 1; let x = 1;

if x == 2 then g(x)

f()

else

g(x)

end

Optimisation: Dead Store Elimination

Dead Store Elimination: remove assignments to variables that are
not used anymore

let x = 1; let x = 1;

f(x); f(x);

x := 2; g();

g();

Optimisation: Code Motion
Moving Code out of Branches or Loops

if x > 0 then if x > 0 then

f(x); f(x);

g(x); else

else h(x);

h(x); end;

g(x); g(x);

end;

Moving Code into Branches

if x > 0 then if x > 0 then

f(x); f(x);

else if x > 0 then h(x) else k(x) end;

g(x); else

end; g(x);

if x > 0 then if x > 0 then h(x) else k(x) end;

h(x); end

else

k(x);

end;

Optimisation: Loop Unrolling

Loop Unrolling: duplicate the body of loops

for i = 0 to n-1 { for i = 0 to n/4 - 1 {

a[i] = f(i); a[4*i] = f(4*i);

} a[4*i+1] = f(4*i+1);

a[4*i+2] = f(4*i+2);

a[4*i+3] = f(4*i+3);

}

Dataflow Analysis
General Idea:
• compute information about each identifier
• this information is ordered (less knowledge < more knowledge)
• compute a least fixed-point by iteration:
− start with the empty information
− go over the whole program and add any information we can

deduce
− repeat until nothing can be added anymore

This gets more complicated, if one wants to support first-class
functions (⇒ k-CFA algorithm).

Alias Analysis

Problem: For many optimisations we need to know which memory
locations can be accessed by other pointers.
This is particularly important when deciding which variables can be
kept in registers.

Solution: Use dataflow analysis to determine which values get their
address taken.

let x = 1;

f(x); // x = 1

let p = &x;

g(p);

h(x); // x can have any value here.

Register Allocation
Idea: minimise the number of local variables on the stack by keeping
n of them in registers.

Algorithm: reduction to the graph colouring problem
With each variable associate the interval where it is used.

vertices: variables
edges: intersecting intervals

Any n-colouring of this graph gives a valid register assignment.

let w = f(u);

let x = w+1;

let y = x*w;

let z = g(x,y);

let s = y+z;

let t = s-1;

let v = h(w,t);

wx y z s t

x y

w z

s t

w x y z
s t

ABCD

Register Allocation
Idea: minimise the number of local variables on the stack by keeping
n of them in registers.

Algorithm: reduction to the graph colouring problem
With each variable associate the interval where it is used.

vertices: variables
edges: intersecting intervals

Any n-colouring of this graph gives a valid register assignment.

Complications
• If no assignment exists, we have to split intervals.
• Assembler instructions may require arguments in specific registers.

