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Motivation

* TJo reveal how phenotypes emerge from molecular interactions
* To cope with incomplete information on molecular interactions
* To provide a robust modelling framework

 Maximise information gain from models

 Make models capable of guiding experimental design

e Use models to design control/reprogramming strategies

THEORETICAL

TECHNICAL
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Regulatory Networks
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Protein interactions and gene expression regulation compute the systems response...



Modelling Regulatory Networks

Reengineer Mechanisms Controlling Systems Response
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Identify key input and regulatory nodes affecting particular phenotypes.




Example: MAPK signalling

Phenotype Regulation in Cancer Cells [Grieco et al., Plos Comp. Bio. 2013]
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Modelled Mechanisms

Some Basic Examples of Regulatory Interactions

* (Gene expression

 Protein activation/deactivation

° CataIySiS Regulatory Network

Lacl —iLac

Lactose--» Lac

Lactose — Lacl

RNAP — Lac



Modelled Mechanisms

Dynamics Driven by Regulatory Interactions

* (Gene expression

 Protein activation/deactivation

Regulatory Network

» Catalysis

Rules driving the systems
dynamics in time

Lac(t+1) = 'Lacl(t) AND RNAP(t)

Lactose--» Lac

Lactose — Lacl

RNAP — Lac
Lacl— Lac



Dynamics of Regulatory Networks

Boolean Networks

[Thomas et al., Bull. of. Math. Biol. (1995)]
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regulatory network + update logics => system dynamics



Boolean Models of RNs

Boolean Networks

* representing regulatory dynamics abstractly:

qualitative states: 0/1 -- gene OFF/ON
(not expressed/expressed)

Boolean semantics of system variables (Boolean logics)

discrete (Boolean) dynamics in discrete time-steps (instead of
real time we assume time-steps of unspecified duration)

parallel update of variables (expression of individual genes
occurs simultaneously in time => various update schemes)



Boolean Models of RNs

Boolean Networks
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regulatory network + update logics
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asynchronous update

every event represents an instantaneous change of a single variable
parallelism modelled via non-determinism

update function: F' = (F,, Fg, F)



Boolean Models of RNs

Boolean Networks

Fy, =A \/ —B \/ —C other update schemes:

* synchronous semantics

all vars updated simultaneously
[Kaufman S., Nature (1969)]

* general asynchronous semantics
synchronous + asynchronous

[Aracena et al., Biosystems (2009)]

\———?V * most-permissive semantics
update is not assumed to be
FB = —C FC — B an instantaneous event in time

[Paulevé et al., bioRxiv 2020]

regulatory network + update logics



Boolean Models of RNs

Attractors
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terminal SCCs in systems dynamics: steady states, oscillations, disordered behaviour
multiple attractors can coexist (and can be alternatively reachable -- decision points)



Example: MAPK signalling

Simulation in Cell Collective [Helikar et al., BMC Sys. Bio. 2012]

INPUTS (assumed fixed)

TGFBR_stimulus) ...but can be set arbitrary
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https://research.cellcollective.org/?dashboard=true#module/7984:1/mapk-cancer-cell-fate-network/1

Example: MAPK signalling

Attractor Analysis in AEON

thanks to fully
symbolic
Bifurcation Function algorithms

Elapsed: 7.461s
Total number of classes: 3

Behavior Witness

class count
® 8 Witness Attractor
= 6 Witness Attractor
©@® 2 Witness Attractor

>> Explore Bifurcation Function <<

* disorder | v oscillation | ® stability

attractors (their number and shape) can change with different settings of input conditions
in the MAPK model: 4 inputs => 274 different situations

https://biodivine.fi.muni.cz/aeon/



https://biodivine.fi.muni.cz/aeon/

Example: MAPK signalling

Attractor Analysis in AEON [Benes et al., BMC Bioinformatics (2022)]

an example of a single-attractor situation obtained from the model by AEON:
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AKT ATM 'BCL2 'EGFR
'ERK !FGFR3 ; 1FOS 'FRS2
'IMDM2 !MEK1_2 'PKC !'PLCG
'RSK ISPRY 'TAOK
'
1p70

in case of no permanent DNA damage, no EGF/EGF stimuli, the cell decides for apoptosis
TGFBR stimulus appears to be the cause in this long-term scenario



Example: MAPK signalling

Information processing in the attractor

_ INPUTS (assumed fixed)
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OUTPUTS (expected to become stabilised in long-term)




Example: MAPK signalling

Using ML to reveal how inputs affect attractors (in general)

TGFBR_stimulus

l

FGFR3_stimulus
EGFR_stimulus

—

TGFBR stimulus has a direct impact to stabilise system in a single attractor
inferred automatically using Decision Trees




Example: MAPK signalling

Stability analysis:

AKT: always [false]

AP1: always [true]

ATF2: always [true]

ATM: TGFBR_stimulus
- [truel: & |
- [false]: 4 o— | |
Apoptosis: always [ ] o :

BCL2: always [false] .mi__
CREB: always [true]

DNA_damage. FGFR3_stimulus
- [ ]: 4

- [ ]: 4

DUSP1: always [true] |
EGFR: always [ ] l
EGFR_stimulus:

- [ ]: 4
- [ 1: &4 EGFR_stimulus =
ELK1: always [true]

ERK: always [false] |
FGFR3: always [ ]
FGFR3_stimulus: l

- [ ]: &4
- [ 1: 4 ®® =
FOS: always [false]

FOX03: always [true]
FRS2: always [false]
GAB1: always [true]

GADD45: always [true] stability analysis reveals details of the particular long-
GRB2: always [true] term behaviour
Growth_Arrest: always [ ]

ANV . T iuamiees M+ - 1
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Example: MAPK signalling

How to incorporate perturbations (e.g., cancer deregulations)?

INPUTS (assumed fixed)

TGFBR_stimulus) ...but can be set arbitrary
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Boolean Models of RNs

Partially-Specified Boolean Networks

[Benes et al., ICFEM 2019]
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update logics with unknown information K => system dynamics with "coloured” events



Boolean Models of RNs
Partially-Specified Boolean Networks (psBNs)

[Benes et al., CAV 2020]

» = K(A,B,C)
@f’f‘ﬂ”‘\ * implemented in AEON
~__/ uninterpreted functions

 fully symbolic psBN representation
utilising Binary Decision Diagrams

e partially-specified information:
fixed inputs

logic operators in update functions
incl. arity (essentiality) and regulation types




Example: MAPK signalling

How to incorporate perturbations (e.g., cancer deregulations)?

INPUTS (assumed fixed)
...but can be set arbitrary

p53
e REGULATORS
p38 -> observable
ATM -> observable
MDM2 - | observable Inhibition

® UPDATE FUNCTION
<:E (((ATM & p38) | (ATM & 'MDM2)) | (p38 & !MDM2))

Possible instantiations: 1

P53 loss-of-
function

=

® REGULATORS

p38 -> observable
ATM -> observable
MDM2 - | observable

o UPDATE FUNCTION
f(p38,ATM,MDM2)

Possible instantiations: 9

OUTPUTS (expected to become stabilised in long-term)



Example: MAPK signalling

How to incorporate perturbations (e.g., cancer deregulations)?

INPUTS (assumed fixed)
...but can be set arbitrary

p53
e REGULATORS
p38 -> observable
ATM -> observable
MDM2 - | observable

® UPDATE FUNCTION
<:E (((ATM & p38) | (ATM & 'MDM2)) | (p38 & !MDM2))

Possible instantiations: 1

P53 loss-of-
function

Ce>
53

® REGULATORS

p38 -> observable
ATM -> observable now we get a psBN that represents
MDM2 - | observable inhibiti 224 + 9) = 2213 BNs

® UPDATE FUNCTION

f(p38,ATM,MDM2)

Possible instantiations: 9

OUTPUTS (expected to become stabilised in long-term)



Example: MAPK signalling

Attractor Analysis of psBNs in AEON

still fine due to

symbolic
algorithms

Elapsed: 18.538s
Total number of classes: 4

Behavior Witness

class count
® 72 Witness Attractor
= 54 Witness Attractor
©® 16 Witness Attractor
=® 2 Witness Attractor

>> Explore Bifurcation Function <<

* disorder | ¢ oscillation | ® stability

by assuming the quite general cause of p53 malfunction we have obtained a new class of attractors
we can even enhance the perturbations by affecting the update functions of vars regulated by p53

https://biodivine.fi.muni.cz/aeon/



https://biodivine.fi.muni.cz/aeon/

Performance

Some advances on attractor analysis in AEON.py
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we have developed interleaved transition guided reduction (ITGR) [Benes et al. CAV 2021]
this is based on pruning the non-attractor states during computation of attractors

check our most recent paper in Bioinformatics



https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btac624/6697883

Some Links

For those interested

* First algorithm for attractors in psBNs [ICFEM 2019]

 AEON first release [CAV 2020]

« AEON 2021 (with decision trees) [CMSB 2021]

 Symbolic SCC decomposition of coloured graphs [TACAS 2021]

* Transition guided reduction [CAV 2021]

* Control (reprogramming) of psBNs [Mathematics 2021]

 AEON in examples [BMC Bioinformatics 2022]

 AEON.py (API, optimisation, control) [Bioinformatics 2022]



https://link.springer.com/chapter/10.1007/978-3-030-32409-4_22
https://link.springer.com/chapter/10.1007/978-3-030-53288-8_28
https://link.springer.com/chapter/10.1007/978-3-030-85633-5_14
http://www.apple.com/uk
https://link.springer.com/chapter/10.1007/978-3-030-81685-8_24
https://www.mdpi.com/1023382
https://link.springer.com/article/10.1186/s12859-022-04708-9
https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btac624/6697883

Work In Progress

How to obtain the right BN model?

Transform reaction network to BN (the case of MAPK example)
* Inference methods from (steady-state) expression data
* Optimisation via ML-based methods (genetic programming)
* Works with synchronous update scheme (simulation)

e Tuned for synthetic data (DREAM)

Reality: lack of data, data are noisy, there is some prior knowledge in
literature, databases, ...

* QOur approach: compute all attractor-matching candidates with AEON
and employ model checking to further prune w.r.t. prior knowledge



Thank you for your attention!



