Reengineering Biological Systems via Boolean Networks

IV105 Bionformatics Seminar

Faculty of Informatics

sybila systems biology laboratory

David Šafránek, 12.10.2022

THEORETICAL

Motivation

- To reveal how phenotypes emerge from molecular interactions
- To cope with incomplete information on molecular interactions
- To provide a robust modelling framework
 - Maximise information gain from models
 - Make models capable of guiding experimental design
 - Use models to design control/reprogramming strategies

Systems View of a Living Cell

Chemical Interactions Regulate Information Flow

slide credits: David Gilbert (Brunel Univ.)

Regulatory Networks

Protein interactions and gene expression regulation compute the systems response...

Modelling Regulatory Networks

Reengineer Mechanisms Controlling Systems Response

Identify key input and regulatory nodes affecting particular phenotypes.

Phenotype Regulation in Cancer Cells [Grieco et al., Plos Comp. Bio. 2013]

Modelled Mechanisms

Some Basic Examples of Regulatory Interactions

- Gene expression
- Protein activation/deactivation
- Catalysis

Modelled Mechanisms

Dynamics Driven by Regulatory Interactions

- Gene expression
- Protein activation/deactivation
- Catalysis

Dynamics of Regulatory Networks

Boolean Networks

[Thomas et al., Bull. of. Math. Biol. (1995)]

system dynamics

regulatory network + update logics

=>

Boolean Models of RNs Boolean Networks

- representing regulatory dynamics abstractly:
 - qualitative states: 0/1 -- gene OFF/ON (not expressed/expressed)
 - **Boolean semantics** of system variables (Boolean logics)
 - discrete (Boolean) dynamics in discrete time-steps (instead of real time we assume time-steps of unspecified duration)
 - parallel update of variables (expression of individual genes occurs simultaneously in time => various update schemes)

Boolean Networks

asynchronous update

every event represents an instantaneous change of a single variable parallelism modelled via non-determinism

regulatory network + update logics

update function: $F = \langle F_{\rm A}, F_{\rm B}, F_{\rm C} \rangle$

Boolean Networks

regulatory network + update logics

other update schemes:

- synchronous semantics all vars updated simultaneously [Kaufman S., Nature (1969)]
- general asynchronous semantics synchronous + asynchronous [Aracena et al., Biosystems (2009)]
- most-permissive semantics update is not assumed to be an instantaneous event in time [Paulevé et al., bioRxiv 2020]

Attractors

terminal SCCs in systems dynamics: *steady states, oscillations, disordered behaviour* **multiple attractors can coexist** (and can be alternatively reachable -- decision points)

Simulation in Cell Collective [Helikar et al., BMC Sys. Bio. 2012]

Attractor Analysis in AEON [Beneš et al., BMC Bioinformatics (2022)]

attractors (their number and shape) can change with different settings of input conditions in the MAPK model: 4 inputs => 2^4 different situations

https://biodivine.fi.muni.cz/aeon/

Attractor Analysis in AEON [Beneš et al., BMC Bioinformatics (2022)]

an example of a single-attractor situation obtained from the model by AEON:

!AKT AP1 ATF2 !ATM Apoptosis !BCL2 CREB !DNA_damage DUSP1 !EGFR !EGFR_stimulus ELK1 !ERK !FGFR3 !FGFR3_stimulus !FOS FOXO3 !FRS2 GAB1 GADD45 GRB2 Growth_Arrest JNK JUN MAP3K1_3 MAX !MDM2 !MEK1_2 MSK MTK1 MYC PDK1 PI3K !PKC !PLCG PPP2CA PTEN !Proliferation RAF RAS !RSK SMAD SOS !SPRY TAK1 !TAOK TGFBR TGFBR_stimulus p14 p21 p38 p53 !p70

in case of no permanent DNA damage, no EGF/EGF stimuli, the cell decides for apoptosis TGFBR stimulus appears to be the cause in this long-term scenario

Information processing in the attractor

Using ML to reveal how inputs affect attractors (in general)

TGFBR stimulus has a direct impact to stabilise system in a single attractor inferred automatically using Decision Trees

Stability analysis:

AKT: always [false] AP1: always [true] ATF2: always [true] ATM: - [true]: 4 - [false]: 4 Apoptosis: always [true] BCL2: always [false] CREB: always [true] DNA_damage: - [true]: 4 - [false]: 4 DUSP1: always [true] EGFR: always [false] EGFR stimulus: - [true]: 4 - [false]: 4 ELK1: always [true] ERK: always [false] FGFR3: always [false] FGFR3_stimulus: - [true]: 4 - [false]: 4 FOS: always [false] FOXO3: always [true] FRS2: always [false] GAB1: always [true] GADD45: always [true] GRB2: always [true] Growth_Arrest: always [true] INK, alwaye [+;

stability analysis reveals details of the particular longterm behaviour

How to incorporate perturbations (e.g., cancer deregulations)?

Partially-Specified Boolean Networks

[Beneš et al., ICFEM 2019]

Partially-Specified Boolean Networks (psBNs)

[Beneš et al., CAV 2020]

- implemented in AEON uninterpreted functions
- fully symbolic psBN representation utilising Binary Decision Diagrams
- partially-specified information: fixed inputs
 logic operators in update functions incl. arity (essentiality) and regulation types

How to incorporate perturbations (e.g., cancer deregulations)?

How to incorporate perturbations (e.g., cancer deregulations)?

Attractor Analysis of psBNs in AEON

by assuming the quite general cause of p53 malfunction we have obtained a new class of attractors we can even enhance the perturbations by affecting the update functions of vars regulated by p53

https://biodivine.fi.muni.cz/aeon/

Performance

Some advances on attractor analysis in AEON.py

we have developed interleaved transition guided reduction (ITGR) [Beneš et al. CAV 2021] this is based on pruning the non-attractor states during computation of attractors

check our most recent paper in Bioinformatics

Some Links

For those interested

- First algorithm for attractors in psBNs [ICFEM 2019]
- AEON first release [CAV 2020]
- AEON 2021 (with decision trees) [CMSB 2021]
- Symbolic SCC decomposition of coloured graphs [TACAS 2021]
- Transition guided reduction [CAV 2021]
- Control (reprogramming) of psBNs [Mathematics 2021]
- AEON in examples [BMC Bioinformatics 2022]
- AEON.py (API, optimisation, control) [Bioinformatics 2022]

Work in Progress

How to obtain the right BN model?

- Transform reaction network to BN (the case of MAPK example)
- Inference methods from (steady-state) expression data
 - Optimisation via ML-based methods (genetic programming)
 - Works with synchronous update scheme (simulation)
 - Tuned for synthetic data (DREAM)
- Reality: lack of data, data are noisy, there is some prior knowledge in literature, databases, ...
- *Our approach:* compute all attractor-matching candidates with AEON and employ model checking to further prune w.r.t. prior knowledge

Thank you for your attention!