Statistical Natural Language Processing

P. Rychlý

NLP Centre, FI MU, Brno

September 23, 2022

Statistical Natural Language Processing

- statistics provides a summary (of a text)
- **•** highlights important or interesting facts
- **e** can be used to model data
- foundation of estimating probabilities
- fundamental statistics: size $(+)$ domain, range)

Statistical Natural Language Processing

- statistics provides a summary (of a text)
- **•** highlights important or interesting facts
- **e** can be used to model data
- foundation of estimating probabilities
- fundamental statistics: size $(+)$ domain, range)

Word list

- list of all words from a text
- **·** list of most frequent words
- words, lemmas, senses, tags, domains, years ...

Word list

- list of all words from a text
- **·** list of most frequent words
- words, lemmas, senses, tags, domains, years ...

Word list

- list of all words from a text
- **·** list of most frequent words
- words, lemmas, senses, tags, domains, years ...

Frequency

- number of occurrences (raw frequency)
- relative frequency (hits per million)
- document frequency (number of documents with a hit)
- reduced frequency (ARF, ALDf) $1 <$ reduced $<$ raw
- **•** normalization for comparison
- hapax legomena $(= 1 \text{ hit})$

Zipf's Law

- rank-frequency plot
- rank \times frequency $=$ constant

Zipf's Law

Rank (log scale)

Keywords

- select only *important* words from a word list
- compare to reference text (norm)
- simple math score:

$$
score = \frac{freq_{focus} + N}{freq_{reference} + N}
$$

Collocations

- **•** meaning of words is defined by the context
- **e** collocations a salient words in the context
- usually not the most frequent
- **•** filtering by part of speech, grammatical relation
- \bullet compare to *reference* $=$ context for other words
- many statistics (usually single use only) based on frequencies
- MI-score, t-score, χ^2 , ...
- $logDice scalable$

$$
logDice = 14 + log \frac{f_{AB}}{f_A + f_B}
$$

Collocations of Prince

Collocations of Prince

Thesaurus

- **•** comparing collocation distributions
- counting same context

Multi-word units

- meaning of some words is completely different in the context of specific co-occurring word
- *black hole*, is not black and is not a hole
- **o** strong collocations
- uses same statistics with different threshold
- better to compare context distribution instead of only numbers
- \bullet terminology compare to a reference corpus

Language models—what are they good for?

- assigning scores to sequences of words
- **•** predicting words
- **o** generating text

⇒

- **o** statistical machine translation
- automatic speech recognition
- o optical character recognition

$OCR + MT$

Language models – probability of a sentence

- LM is a probability distribution over all possible word sequences.
- What is the probability of utterance of s?

Probability of sentence

 p_{LM} (Catalonia President urges protests) p_{LM} (President Catalonia urges protests) p_{LM} (urges Catalonia protests President)

Ideally, the probability should strongly correlate with fluency and intelligibility of a word sequence.

...

N-gram models

- an approximation of long sequences using short n-grams
- a straightforward implementation
- **•** an intuitive approach
- good local fluency

Randomly generated text

"Jsi nebylo vidět vteřin přestal po schodech se dal do deníku a položili se táhl ji viděl na konci místnosti 101," řekl důstojník.

Hungarian

A társaság kötelezettségeiért kapta a középkori temploma az volt, hogy a felhasználók az adottságai, a felhasználó azonosítása az egyesület alapszabályát.

N-gram models, naïve approach

$$
W = w_1, w_2, \cdots, w_n
$$

$$
p(W) = \prod_i p(w_i|w_1 \cdots w_{i-1})
$$

Markov's assumption

$$
p(W) = \prod_i p(w_i|w_{i-2}, w_{i-1})
$$

 $p(this is a sentence) = p(this) \times p(is|this) \times p(a|this, is) \times p(sentence|is, a)$

$$
p(a|this, is) = \frac{|this \text{ is } a|}{|this \text{ is } |}
$$

Sparse data problem.

Probabilities, practical issue

- **•** probabilities of words are very small
- multiplying small numbers goes quickly to zero
- \bullet limits of floating point numbers: 10^{-38} , 10^{-388}
- using log space:
	- \blacktriangleright avoid underflow
	- \blacktriangleright adding is faster

 $\log(p_1 \times p_2 \times p_3 \times p_4) = \log p_1 + \log p_2 + \log p_3 + \log p_4$

Computing, LM probabilities estimation

Trigram model uses 2 preceding words for probability learning. Using maximum-likelihood estimation:

$$
p(w_3|w_1, w_2) = \frac{count(w_1, w_2, w_3)}{\sum_{w} count(w_1, w_2, w)}
$$

Large LM – n-gram counts

How many unique n-grams in a corpus?

Corpus: Europarl, 30 M tokens.

Language models smoothing

The problem: an n-gram is missing in the data but is in a sentence \rightarrow $p(sentence) = 0.$

We need to assign non-zero p for *unseen data*. This must hold:

 $\forall w : p(w) > 0$

The issue is more pronounced for higher-order models.

Smoothing: an attempt to amend real counts of n-grams to expected counts in any (unseen) data.

Add-one, Add- α , Good–Turing smoothing