# Continuous Space Representation (PA153)

Pavel Rychlý

### Problems with statistical NLP

- many distinct words (items) (from Zipf)
- zero counts
  - MLE gives zero probability

$$p(w_3|w_1, w_2) = \frac{count(w_1, w_2, w_3)}{count(w_1, w_2)}$$

- not handling similarities
  - some words share some (important) features
  - driver, teacher, butcher
  - ► small, little, tiny

# Many distinct words

#### How to solve:

- use only most frequent ones (ignore outliers)
- use smaller units (subwords)
  - prefixes, suffixes
  - -er, -less, pre-

#### But:

- we want to add more words
- black hole is not black or hole
- even less frequent words are important
  - deagrofertizace from "The deagrofertization of the state must come."
  - humans process them easily

#### Zero counts

#### How to solve:

- complicated smoothing strategies
  - ► Good-Turing, Kneser–Ney, back-off, . . .
- bigger corpora
- more data = better estimation

#### But:

- sometimes there is no more data
  - ► Shakespeare, new research field
- ▶ any size is not big enough

#### Noun test

- British National Corpus
- 15789 hits, rank 918
- word sketches from the Sketch Engine
- object-of: pass, undergo, satisfy, fail, devise, conduct, administer, perform, apply, boycott
- ▶ modifier: blood, driving, fitness, beta, nuclear, pregnancy
- can we freely combine any two from that lists?

#### Collocations of noun test

- blood test in BNC
  - object-of: order (3), take (12)
- blood test in enClueWeb16 (16 billion tokens)
  - object-of: order (708), perform (959), undergo (174), administer (123), conduct (229), require (676), repeat (80), run (347), request (105), take (1215)

Phrase *pregnancy test* in 16 billion corpus



Figure 1: pregnancy test word sketch

Phrase black hole in 16 billion corpus

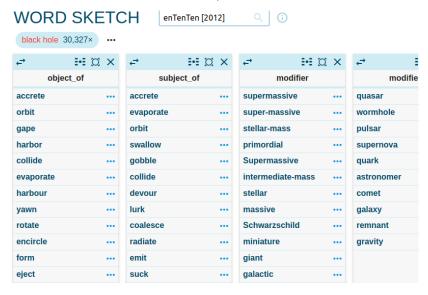


Figure 2: black hole word sketch

### Similarities of words

#### Distinct words?:

- ▶ supermassive, super-massive, Supermassive
- small, little, tiny
- black hole, star
- apple, banana, orange
- red, green, orange
- auburn, burgundy, mahogony, ruby

## Continuous space representation

- words are not distinct
- represented by a vector of numbers
- similar words are closer each other
- ▶ more dimensions = more features
  - ▶ tens to hundreds, up to 1000

### Words as vectors

### continue = [0.286, 0.792, -0.177, -0.107, 0.109, -0.542, 0.349]



being

### How to create a vector representation

#### From co-occurrence counts:

- Singular value decomposition (SVD)
  - each word one dimension
  - select/combine important dimenstions
  - factorization of co-occurrence matrix
- Principal component analysis (PCA)
- Latent Dirichlet Allocation (LDA)
  - learning probabilities of hidden variables
- Neural Networks

### **Neural Networks**

- training from examples = supervised training
- sometimes negative examples
- generating examples from texts
- from very simple (one layer) to deep ones (many layers)

## NN training method

- one training example = (input, expected output) = (x, y)
- random initialization of parameters
- for each example:
  - get output for input: y' = NN(x)
  - compute loss = difference between expected output and real output: loss = y y'
  - update paremeters to decrease loss

### Are vectors better than IDs

- even one hit could provide useful information
- ▶ Little Prince corpus (21,000 tokens)
- modifiers of "planet"
  - seventh, stately, sixth, wrong, tine, fifth, ordinary, next, little, whole
  - each with 1 hit
  - many are close together, share a feature

## Simple vector learning

- each word has two vectors
  - ▶ node vector (node<sub>w</sub>)
  - ▶ context vector (ctx<sub>w</sub>)
- generate (node, context) pairs from text
  - ▶ for example from bigrams: w1, w2
  - ▶ w1 is context, w2 is node
- move closer ctx<sub>w1</sub> and node<sub>w2</sub>

# Simple vector learning

```
node_vec = np.random.rand(len(vocab), dim) * 2 -1
ctx vec = np.zeros((len(vocab), dim))
def train_pair(nodeid, ctxid, alpha):
  global node vec, ctx vec
  Nd = node vec[nodeid]
  Ct = ctx vec[ctxid]
  corr = (1 - expit(np.dot(Nd, Ct)))* alpha
  Nd += corr * (Ct - Nd)
  Ct += corr * (Nd - Ct)
```

## Simple vector learning

```
for e in range(epochs):
   last = tokIDs[0]
   for wid in tokIDs[1:]:
      train_pair(wid, last, alpha)
      last = wid
      # update alpha
```

## Embeddings advantages

- no problem in number of parameters
- similarity in many different directions
- good estimations of scores
- generalization
  - learnig for some words generalize to similar words

# Embeddings of other items

- ▶ lemmata
- part of speech
- topics
- ▶ any list of items with some structure