
PA164 Natural Language Learning
Lecture 07: Deep neural networks for NLP

V́ıt Nováček

Faculty of Informatics, Masaryk University

Autumn, 2022

(V́ıt Nováček) PA164 Autumn, 2022 1 / 32

Outline

1 Neural networks primer

2 The classic deep learning architectures

3 Architectures used in NLP

4 Useful References

(V́ıt Nováček) PA164 Autumn, 2022 2 / 32

History of neural networks

Key motivating factors
I The drawbacks of logics-based attempts at AI

F Reliance on formal knowledge bases and rigid rules
F Lots of manual work necessary
F Some relevant problems can hardly ever be formalised

I Drawing inspiration from nature
F Machines acquiring their own knowledge
F Extracting patterns from raw data
F Learning not only patterns but the very features describing the data
F Making use of neural architectures inspired by the human brain

Selection of historical milestones
I Single neural computation units: 1940s-1950s
I Stochastic gradient descent for linear models: 1960s
I Back-propagation: 1980s
I Sequence modelling: 1990s
I Deep learning boom: from 2010s on

(V́ıt Nováček) PA164 Autumn, 2022 3 / 32

The gist of DL: stacked representation learning

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.” MIT press, 2016. (Chap. 1)

(V́ıt Nováček) PA164 Autumn, 2022 4 / 32

Basic notions: perceptron

Perceptron as a linear binary classifier:
I yj = f (aj) = f (w · x) = 1 if w · x > 0
I otherwise yj = 0

Learning process:
I Init the w vector to random values
I In each learning “epoch”, randomly select one training example x

F If the example x is positive and w · x < 0, then w← w + x
F If the example x is negative and w · x > 0, then w← w − x

I Repeat until (approximate) convergence

2 Coop, Robert Austin. ”Mitigation of Catastrophic Interference in Neural Networks and Ensembles using a Fixed Expansion

Layer.” (2013).

(V́ıt Nováček) PA164 Autumn, 2022 5 / 32

Basic notions: activation functions

Alternatives of the f function from the perceptron example

3 Hughes, Dana, and Nikolaus Correll. ”Distributed machine learning in materials that couple sensing, actuation, computation

and communication.” arXiv preprint arXiv:1606.03508 (2016).

(V́ıt Nováček) PA164 Autumn, 2022 6 / 32

Basic notions: multi-layer perceptron

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.” MIT press, 2016. (Chap. 6)

(V́ıt Nováček) PA164 Autumn, 2022 7 / 32

Basic notions: why are activation functions essential (the
XOR example)

First layer weights (W), bias (c),
output weights (w), input batch (X):

XW, XW with the bias c added
row-wise, ReLU application and
multiplication of the result by w:

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.” MIT press, 2016. (Sec. 6.1)

(V́ıt Nováček) PA164 Autumn, 2022 8 / 32

Basic notions: output units

Quite like activation functions of the hidden units

They have a special purpose, though:
I First, they produce a model output ŷ (usually a vector or a scalar,

depending on the problem and the objective/loss function of choice)
I The ŷ value is then compared with the corresponding desired output y

(i.e., label of the training example x) via the loss function
I The resulting error is back-propagated to update the model parameters

Examples of often-used output units
I Linear (simple final transformation): ŷ = W>h + b
I Sigmoid (binary classification): First, use a linear layer to compute

z = w>h + b, then convert z to a probability as ŷ = 1
1−e−z

I Softmax (multiclass problems): First, a linear layer predicts
unnormalised log probabilities z = W>h + b, where
zi = log P̃(y = i |x), which is then normalised to obtain the desired ŷ
probabilities as softmax(z)i = ezi∑

j e
zj

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.” MIT press, 2016. (Sec. 6.2)

(V́ıt Nováček) PA164 Autumn, 2022 9 / 32

Basic notions: loss/objective functions

Examples of loss functions:

In deep learning, the cross-entropy loss is often used

Compares whole produced and desired distributions

4 Xu, Guibiao, Bao-Gang Hu, and Jose C. Principe. ”An asymmetric stagewise least square loss function for imbalanced

classification.” 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, 2014.

(V́ıt Nováček) PA164 Autumn, 2022 10 / 32

Basic notions: gradient-based learning
The goal: minimise an objective (i.e., loss) function f with multiple
inputs (i.e., find such vector x that f (x) is the lowest possible number)
The solution:

I Pick a random x value
I Find the direction from x in which f decreases the fastest
I In other words, move to a new point x′ = x− ε∇xf (x), where:

F ε is the learning rate,
F ∇xf (x) is the vector of all partial derivatives δ

δxi
f (x) (i.e., the gradient)

A simple example for a function of one variable (1
2x

2):

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.” MIT press, 2016. (Sec. 4.3)

(V́ıt Nováček) PA164 Autumn, 2022 11 / 32

Basic notions: the gist of back-propagation

An efficient method for computing the gradient in practice

A differentiable loss function computes the error, i.e., the difference
between the actual and the desired output y of the network based on
the input vector x

The error is then back-propagated through the network by means of
the chain rule of calculus, as in the following simple example:

δz
δw =

= δz
δy

δy
δx

δx
δw =

= f ′(y)f ′(x)f ′(w) =

= f ′(f (f (w)))f ′(f (w))f ′(w)

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.” MIT press, 2016. (Sec. 6.5)

(V́ıt Nováček) PA164 Autumn, 2022 12 / 32

Outline

1 Neural networks primer

2 The classic deep learning architectures

3 Architectures used in NLP

4 Useful References

(V́ıt Nováček) PA164 Autumn, 2022 13 / 32

Feedforward neural networks: synonym for MLPs

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.” MIT press, 2016. (Chap. 6)

(V́ıt Nováček) PA164 Autumn, 2022 14 / 32

Feedforward neural networks: practical considerations

Universal approximation
I A feedforward network with a

linear output layer and at
least one hidden layer with
any “squashing” activation
(such as logistic sigmoid). . .

I . . . can approximate virtually
any practical function with
any desired non-zero amount
of error. . .

I . . . given enough hidden units.

That doesn’t necessarily mean the
network can also efficiently learn
the function, though

In practice, depth often wins over
breadth

Depth vs. number of parameters

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.” MIT press, 2016. (Sec 6.4)

(V́ıt Nováček) PA164 Autumn, 2022 15 / 32

Convolutional neural networks

Great for grid-like input (e.g., image tensors)
Replacing (some) expensive matrix multiplications by convolutions

I Affine linear transformation of the input via a much smaller kernel

Non-linear “detection” stage on top of the linear convolution
Pooling (e.g., maximum value within a rectangular region) then makes
the representation approximately invariant to translations in the input

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.” MIT press, 2016. (Sec. 9.3)

(V́ıt Nováček) PA164 Autumn, 2022 16 / 32

Convolution examples

Sample kernel and its
application

Subtraction of neighbouring
pixels for edge detection

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.” MIT press, 2016. (Sec. 9.2)

(V́ıt Nováček) PA164 Autumn, 2022 17 / 32

Outline

1 Neural networks primer

2 The classic deep learning architectures

3 Architectures used in NLP

4 Useful References

(V́ıt Nováček) PA164 Autumn, 2022 18 / 32

Recurrent neural networks
Motivated by the need for sequence modelling (e.g., in NLP)

Generalising the computational graphs for NN representation
I Loops to represent influence of node values on their future values
I Unfolding of the computational graph into a sequence of steps

(corresponding to minibatches in which RNNs typically process inputs)
I The information flow in such networks allows to learn patterns of

relationships between sequence elements (very useful in NLP)

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.” MIT press, 2016. (Sec. 10.2)

(V́ıt Nováček) PA164 Autumn, 2022 19 / 32

Bidirectional RNNs

Generalisation of recurrent neural networks that lets the information
flow in both directions

Allows for learning more complex relationships (both past and future
influences between sequence elements)

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.” MIT press, 2016. (Sec. 10.3)

(V́ıt Nováček) PA164 Autumn, 2022 20 / 32

Encoder-decoder models
Sequence-to-sequence mapping, for instance in machine translation

I One model (usually a RNN, sometimes also a CNN) converts the input
sequence to an intermediate semantic representation (a context
summary)

I Another model (typically another RNN) then converts the semantic
representation to an output sequence

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.” MIT press, 2016. (Sec. 10.4)

(V́ıt Nováček) PA164 Autumn, 2022 21 / 32

The challenge of long-term dependencies

Major practical limitation of RNNs

Gradients propagated over long sequences tend to vanish (or, less
often, explode):

I Consider recurrence relation modelled as h(t) = W>h(t−1)

I This can be simplified to h(t) = (Wt)>h(0)

I If W can be eigen-decomposed to QΛQ>, then the recurrence can be
further simplified to h(t) = Q>ΛtQh(0)

In the scalar case of weight w , this is analogous to
vanishing/exploding w t , depending on whether w < 1 or w > 1,
respectively

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.” MIT press, 2016. (Sec. 10.7)

(V́ıt Nováček) PA164 Autumn, 2022 22 / 32

Coping with the long-term dependencies

Multiple time-scale models
I Adding skip connections across multiple time steps to allow for more

coarse-grained flow of information
I Adding linear self-connections to nodes on critical paths and keeping

the corresponding weights close to one (so called leaky units)
I Removing fine-grained time connections

Gated RNN architectures
I Similar to the leaky units idea
I Creating paths through time where gradients don’t vanish/explode
I Two key innovations, though:

F The “safe” weights are not manually set but learned like any other
parameter

F Information is not only accumulated, but also forgotten (i.e., set to
zero) when not needed anymore

I Achieved by self-loops producing long gradient flow paths
I The self-loops conditioned based on context – gating (weight

controlled by another hidden unit)

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.” MIT press, 2016. (Sec. 10.10)

(V́ıt Nováček) PA164 Autumn, 2022 23 / 32

The long short-term memory (LSTM) gated model schema

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.” MIT press, 2016. (Sec. 10.10)

(V́ıt Nováček) PA164 Autumn, 2022 24 / 32

Attention mechanism
Originally proposed to improve performance of encoder-decoder architectures in
machine translation (2015-2017)

Became a basis of virtually every neural model for NLP since then, though

The gist of the approach:

The α weights produce a weighted average of the hidden feature vectors, forming
the context representation of the input c

The attention weights are usually computed as a softmax of relevance scores
produced by a different portion of the model

The mechanism can dynamically highlight portions of the sequence relevant for
producing desired output

This can often work better than arbitrarily complex RNN or CNN architecture

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.” MIT press, 2016. (Sec. 12.4.5.1)

(V́ıt Nováček) PA164 Autumn, 2022 25 / 32

Transformers
The state-of-the-art neural NLP models of today

Encoder-decoder overall design (decoder-only possible as well)

Example of a transformer architecture schema:

5 Original image (DOI:10.1088/1742-6596/1314/1/012186) created by Yuening Jia, available under the CC BY-SA 3.0 license.

(V́ıt Nováček) PA164 Autumn, 2022 26 / 32

Modern language models: the gist

6 Jay Alammar. ”The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning).”

http://jalammar.github.io/ blog (2018-2021).

(V́ıt Nováček) PA164 Autumn, 2022 27 / 32

http://jalammar.github.io/

Selected language models

BERT
I A Google model based on the original attention-enabled

encoder-decoder paper
I Widely used and “forked” (many bespoke variants of pretrained BERT)

GPT*
I A series of large OpenAI models

BLOOM
I A large and free model initiated by a co-founder of Hugging Face

OPT
I A large, open language model released by Meta AI to the scientific

community

DALL-E and CLIP
I Multimodal OpenAI models for creating images from prompts, and vice

versa

Hugging Face – a company and a portal making many SoA language
models available to the public

(V́ıt Nováček) PA164 Autumn, 2022 28 / 32

Outline

1 Neural networks primer

2 The classic deep learning architectures

3 Architectures used in NLP

4 Useful References

(V́ıt Nováček) PA164 Autumn, 2022 29 / 32

Further readings on deep learning in general

Deep learning overview
I Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. ”Deep learning.”

MIT press, 2016.
I LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. ”Deep learning.”

nature 521.7553 (2015): 436-444.

Selected historical works
I Rosenblatt, Frank. ”The perceptron: a probabilistic model for

information storage and organization in the brain.” Psychological
review 65.6 (1958): 386.

I Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams.
”Learning representations by back-propagating errors.” nature
323.6088 (1986): 533-536.

(V́ıt Nováček) PA164 Autumn, 2022 30 / 32

Further readings on specific architectures
The classical architectures

I LeCun, Yann, et al. ”Backpropagation applied to handwritten zip code
recognition.” Neural computation 1.4 (1989): 541-551.

I Glorot, Xavier, and Yoshua Bengio. ”Understanding the difficulty of
training deep feedforward neural networks.” Proceedings of the
thirteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, 2010.

I Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. ”Imagenet
classification with deep convolutional neural networks.”
Communications of the ACM 60.6 (2017): 84-90.

The modern architectures
I Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. ”Neural

machine translation by jointly learning to align and translate.” arXiv
preprint arXiv:1409.0473 (2014).

I Vaswani, Ashish, et al. ”Attention is all you need.” Advances in neural
information processing systems 30 (2017).

I Devlin, Jacob, et al. ”Bert: Pre-training of deep bidirectional
transformers for language understanding.” arXiv preprint
arXiv:1810.04805 (2018).

(V́ıt Nováček) PA164 Autumn, 2022 31 / 32

Further readings on language models
Textual models

I Devlin, Jacob, et al. ”Bert: Pre-training of deep bidirectional
transformers for language understanding.” arXiv preprint
arXiv:1810.04805 (2018).

I Peters, Matthew E., et al. ”Deep contextualized word representations.”
arXiv preprint arXiv:1802.05365 (2018).

I Brown, Tom, et al. ”Language models are few-shot learners.” Advances
in neural information processing systems 33 (2020): 1877-1901.

I Petroni, Fabio, et al. ”Language Models as Knowledge Bases?.”
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). 2019.

Multimodal models
I Kiros, Ryan, Ruslan Salakhutdinov, and Rich Zemel. ”Multimodal

neural language models.” International conference on machine learning.
PMLR, 2014.

I Kiros, Ryan, Ruslan Salakhutdinov, and Richard S. Zemel. ”Unifying
visual-semantic embeddings with multimodal neural language models.”
arXiv preprint arXiv:1411.2539 (2014).

(V́ıt Nováček) PA164 Autumn, 2022 32 / 32

