

PA211 Advanced Topics of Cyber Security

September 13, 2022

Pavel Čeleda, Jan Vykopal et al.

1 PA211 Advanced Topics of Cyber Security – Cybersecurity Laboratory – cybersec.fi.muni.cz

Course organization

2 PA211 Advanced Topics of Cyber Security – Cybersecurity Laboratory – cybersec.fi.muni.cz

MUNI FI

The course is toughed by CYBERSEC lab – cybersec.fi.muni.cz
 Pavel, Honza (Jan), Lukáš, Daniela and others

Goal of this course

- The objective of the course is to cover specific knowledge and skills required for the work as:
 - Cyber defense infrastructure support specialist (PR-INF-001),
 - Systems security analyst (OM-ANA-001),
 - Vulnerability assessment analyst (PR-VAM-001),
 - and many other non-formally defined DevOps positions.

– Defined by the **NICE** cybersecurity workforce **framework**

<u>https://niccs.cisa.gov/workforce-development/cyber-security-workforce-framework/</u>

- Advanced hands-on cybersecurity course for master students

What you will learn

On successfully **completing the course** you will be able to:

- conduct vulnerability scans and recognize vulnerabilities,
- conduct **penetration testing** on enterprise network and applications,
- apply selected countermeasures to harden (secure) networks, operating systems, and applications.

Topics not covered in this course

- Introduction course:
 - PV210 Cybersecurity in an Organization
- Advanced and specialized courses:
 - **PV276** Seminar on Simulation of Cyber Attacks
 - PV279 Digital Forensics
 - PV280 Network Forensics

Course format

- Informal class make friends and share knowledge!
- 3 hours **block** we start at **10:00** A219
 - 1 hour **lecture** topic introduction
 - 2 hours seminar hands-on labs / tutorials to practice the lecture topic
- Individual involvement / work
- –4 x homework
- Anonymous exit ticket at the end of each lecture to get feedback and improve running course.

Assignments during the semester (60 %)

– Four homeworks $-4 \times 15 = 60$ points

Final exam (40 %)

- Hands-on exam - 40 points

To pass the course, you must submit the homeworks and attend the hands-on exam. The exam will be based on labs sessions content and homeworks.

Course schedule

10 PA211 Advanced Topics of Cyber Security – Cybersecurity Laboratory – cybersec.fi.muni.cz

MUNI Fi

Week	Date	Class Topic
1	13.09.2022	Course organization and motivation
2	20.09.2022	Asset management
3	27.09.2022	Vulnerability management
4	04.10.2022	Threat management
5	11.10.2022	Penetration testing – introduction
6	18.10.2022	Penetration testing – process
7	25.10.2022	Penetration testing – report
8	01.11.2022	Penetration testing – exemplary report and presentations
9	08.11.2022	Introduction to web application hardening
10	15.11.2022	OS-level, virtualization and containerization
11	22.11.2022	Access control mechanisms
12	29.11.2022	Web server and application hardening
13	06.12.2022	Course feedback session

Part I – Security operations management

- Syllabus: Asset, vulnerability, and threat management

- Objectives:

- Introduce **selected parts** of security operations management
- Focus mainly on practical skills and only on necessary theory

– Learning outcomes:

- Hands-on experience with cybersecurity tools (e.g., asset inventory, and ELK stack)
- Knowledge of selected security operations processes
- Knowledge of enumerations, knowledge bases, and data sources

- Assessment: 1 homework

Part II – Penetration testing practice

- Syllabus: Process, report, and presentation

- Objectives:

- Understand the process of authorized penetration testing
- Focus on the process, not individual tools

– Learning outcomes:

- Hands-on experience with penetration testing of a realistic application
- Knowledge of a structure of a testing report
- Exercising skills for preparing report and presentation

– Assessment: 1 homework – report and presentation

Part III – Hardening of OS and applications

- Syllabus: Web application stack hardening

- Objectives:

- Introduce basic principles and best practice of system hardening
- Selected use case: web application service

– Learning outcomes:

- Hands-on experience with tools for monitoring, system configuration (e.g., Pakiti, Ansible)
- Knowledge and practical usage of selected access control mechanisms
- Knowledge of web-based attacks countermeasures, hardening of web app and servers

– Assessment: 2 homework(s)

Conclusion

15 PA211 Advanced Topics of Cyber Security – Cybersecurity Laboratory – cybersec.fi.muni.cz

MUNI FI

PA211 course has just been born again

- This is the very first run of highly innovated PA211 course
- It will bring us a lot of **fun**
- Warning: **something may go wrong**, but we will find a way out
- We will be learning and improving as well
- We would highly appreciate your feedback!

Collaboration with us beyond the course

- 1) Write your **thesis** bachelor, master, or Ph.D.
 - New: an opportunity of Ph.D. trial during your master's degree

2) Get a paid job

- Join our research and **development projects**

3) Engage in cybersecurity community activities

– Create technical challenges

For more details see – https://muni.cz/go/cybersec

Lab session

18 PA211 Advanced Topics of Cyber Security – Cybersecurity Laboratory – cybersec.fi.muni.cz

MUNI FI

Lab session organization

- 1. Familiarization with Vagrant and a sandbox at computers in A219
- 2. Installation of Vagrant and VirtualBox at own hardware

Optional today, but recommended for further labs and homeworks. Feel free to leave if you are familiar with these tools!

PCs at school vs. own devices

Do you prefer using your own hardware?

20 PA211 Advanced Topics of Cyber Security – Cybersecurity Laboratory – cybersec.fi.muni.cz

Learning objectives

At the end of this lab session, you will be able to

- set up a virtual network environment (sandbox) at your computer,
- access the sandbox and its hosts via SSH from both host and guest machines,
- troubleshoot the sandbox and services,
- use the sandbox at your own machine.

Familiarization with Vagrant and a sandbox at computers in A219

22 PA211 Advanced Topics of Cyber Security – Cybersecurity Laboratory – cybersec.fi.muni.cz

Building blocks of our lab session

- VirtualBox
- -Vagrant
- Vagrant boxes (such as Kali Linux)

VirtualBox

Sandbox – virtual network environment

- Each of you will use a local sandbox with virtual machines
- VirtualBox hosts virtual machines (VMs) accessible from your host
- Vagrant controls VirtualBox and configures VMs using Vagrantfile
- Vagrant provides SSH access to VMs with this command:

vagrant ssh <name of the VM>

- Vagrant accesses each VM using its first network interface with IP
 10.0.2.15; this interface is also used for communication of the VM with the Internet
- VMs can also be accessed directly using console in VirtualBox GUI

Let's start in A219 – preparation

- VirtualBox and Vagrant are already installed at PCs in A219.
- Log in and open Terminal.
- Run this script:

pa211_setup

It optimizes handling of Vagrant boxes, large files with images of operating systems. This script is not needed at your own PC.

— Clone a repository with the sandbox (virtual environment) you will use next week: git clone https://gitlab.fi.muni.cz/cybersec/pa211/management.git

Start the sandbox

– Once you cloned the repository, change directory to dist directory:

cd management/dist

- There is a file named Vagrantfile, which defines the sandbox:

ls Vagrantfile

- Start the sandbox by this command:

vagrant up

Be sure, you're in the dist directory and not in the root of the management repository.

Sandbox is starting, please wait...

Bringing machine 'server' up with 'virtualbox' provider... Bringing machine 'elk' up with 'virtualbox' provider... Bringing machine 'student' up with 'virtualbox' provider... => server: Importing base box 'munikypo/server'... ==> server: Matching MAC address for NAT networking... => server: Checking if box 'munikypo/server' version '0.1.0' is up to date... => server: Setting the name of the VM: dist_server_1662992167245_99443 ==> server: Clearing any previously set network interfaces... ==> server: Preparing network interfaces based on configuration... server: Adapter 1: nat server: Adapter 2: intnet ==> server: Forwarding ports... server: 22 (quest) \Rightarrow 2222 (host) (adapter 1) => server: Booting VM... ==> server: Waiting for machine to boot. This may take a few minutes... server: SSH address: 127.0.0.1:2222 server: SSH username: vagrant server: SSH auth method: private key

Sandbox is starting, please wait... II

- This sandbox consists of three machines in the same local network.
- Booting and configuring takes about 15 minutes.
- If everything is OK, you will not see any red error messages at the output.
- Sometimes it may fail for various reasons, see the troubleshooting part.

Check the status of the sandbox

 Open a new terminal window in the same working directory management/dist

- Check the status of the machines:

vagrant status

Current machine s	tates:
server	running (virtualbox)
elk	not created (virtualbox)
student	not created (virtualbox)
This environment above with their VM, run `vagrant	represents multiple VMs. The VMs are all listed current state. For more information about a specific status NAME`.

Connect to the student machine

When you sandbox is up and running, connect to the student machine.

There are two options:

- 1. command-line access using SSH
- 2. access to graphical interface using VirtualBox console

Connect to the student machine via SSH

1. Run in the directory with a sandbox:

vagrant ssh student

You are logged in as user vagrant.

2. Change user to kali using su kali and type kali as password.

Connect to the student machine via console

- 1. Switch to a new window with login screen (a VirtualBox console).
- 2. Enter kali as username and kali as password
- 3. For unknown reason, you may need to log in twice for the very first time.

Check networking

- 1. Switch back to a terminal in CLI or open Terminal in GUI.
- 2. Check whether you can reach other machines from the student machine:
 ping elk

ping server

All machines must be reachable.

Check network services

- Elk machine provides ELK Stack.
- Student machine hosts Netbox tool.
- Both tools will be used next week.
- You will interact with a web interface of both services.

Check ELK is running

- 1. Open Firefox at student
- 2. Visit http://elk:5601/ using Firefox.
- 3. You should see Kibana web interface.

If not, check whether the ELK is up in the troubleshooting part.

Check Netbox is running

- 1. Open Firefox at student
- 2. Visit http://localhost:8000/ using Firefox.
- 3. You should see Netbox web interface.

If not, check whether Netbox is up in the troubleshooting part.

Leaving your sandbox

- If you would like to stop the sandbox, you can power it off or destroy it.
- To power off your sandbox, run vagrant halt in the directory with the sandbox files.
- To completely delete your sandbox and start from scratch the next time, run vagrant destroy.
- In any case, start your sandbox with vagrant up next time.
- If you use computers in A219, run vagrant destroy.

Troubleshooting

MUNI

FΙ

Generic approach

- Repeat some steps several times before giving up
- Check machine status
- Check and re-configure networking
- Check and re-configure service locally at particular machine
- Prerequisites:

Linux networking and sysadmin skills, basic Docker commands

Troubleshooting Vagrant

– Vagrant may fail booting up a machine:

==> elk: Successfully added box 'munikypo/elk' (v0.1.0) for 'virtualbox'! ==> elk: Importing base box 'munikypo/elk'... ==> elk: Matching MAC address for NAT networking... ==> elk: Checking if box 'munikypo/elk' version '0.1.0' is up to date... ==> elk: Setting the name of the VM: dist_elk_1662983141048_31956 ==> elk: Fixed port collision for 22 => 2222. Now on port 2200. ==> elk: Clearing any previously set network interfaces... ==> elk: Preparing network interfaces based on configuration... elk: Adapter 1: nat elk: Adapter 2: intnet ==> elk: Forwarding ports... elk: 22 (guest) => 2200 (host) (adapter 1) ==> elk: Booting VM... ==> elk: Waiting for machine to boot. This may take a few minutes... elk: SSH address: 127.0.0.1:2200 elk: SSH username: vagrant elk: SSH auth method: private key

Troubleshooting Vagrant – destroy

- If machine booting or initial configuration by Vagrant fails, run: vagrant destroy <name_of_the_machine>
- After that, give it another try:
 - vagrant up <name_of_the_mahcine>

Troubleshooting Vagrant – provision

If you see "failed" in red after the initial configuration, try re-provision the software and configuration first: vagrant provision <name_of_the_machine>
If it does not help, run vagrant destroy and up again.

Troubleshooting ELK

If the ELK is not reachable from student, connect to elk machine and check the ELK status:

- 1. vagrant ssh elk
- 2. curl localhost:5601 You should see empty response (but no error).
- 3. sudo docker ps There should be two containers, both in the up status.

vagrant@elk:~\$ sudo docker ps								
CONTAINER ID	IMAGE	COMMAND	CREATED	STATUS	PORTS	NAMES		
d334acf3cd1e	kibana:7.12.1	"/bin/tini /usr/l…"	19 hours ago	Up About an hour	0.0.0.0:5601->5601/tcp	kibana		
621574fea3af	elasticsearch:7.12.1	"/bin/tini /usr/l…"	19 hours ago	Up About an hour	0.0.0.0:9200->9200/tcp, 9300/tcp	elasticsearch		

4. If any container is not up, take a closer look at its logs.

Grab its ID (such as d334acf3cd1e for kibana) and print out logs:

sudo docker logs d334acf3cd1e

Troubleshooting Netbox

If Netbox is not reachable from student, check its Docker containers.

Open Terminal at student, switch to kali user, and run:

sudo docker ps

There should be six containers, all in the up status.

_\$ <u>sudo</u> docker ps								
CONTAINER ID	IMAGE	COMMAND	CREATED	STATUS	PORTS			
8f541477a07f	netboxcommunity/netbox:v3.3-2.2.0	"/usr/bin/tini /o…"	About an hour ago	Up About an hour	0.0.0.0:8000->8080/tcp, :::8000->8080/tcp			
8ea2e2716370	netboxcommunity/netbox:v3.3-2.2.0	"/usr/bin/tini /o…"	About an hour ago	Up About an hour				
r_1								
9e4d8f654d83	netboxcommunity/netbox:v3.3-2.2.0	"/usr/bin/tini /o…"	About an hour ago	Up About an hour				
keeping_1								
26aeffa45443	redis:7-alpine	"docker-entrypoint.s"	20 hours ago	Up About an hour	6379/tcp			
2986253d6f1e	postgres:14-alpine	"docker-entrypoint.s"	20 hours ago	Up About an hour	5432/tcp			
393cfc7455ab	redis:7-alpine	"docker-entrypoint.s"	20 hours ago	Up About an hour	6379/tcp			

2. If any container is not up, take a closer look at its logs. Grab its ID (such as 8f541477a07f) and print out logs:

sudo docker logs 8f541477a07f

44 PA211 Advanced Topics of Cyber Security – Cybersecurity Laboratory – cybersec.fi.muni.cz

Troubleshooting – other known issues

– If you experience other issues, go to wiki at Known issues.

Note on preinstalled SW at FI

- Hosts nymfe{03,05,06,08,10} in PC hall are configured same as PCs in A219.
- You only need to run pa211_setup script to set path for Vagrant.

Installation of Vagrant and VirtualBox at own hardware

MUNI

FΙ

47 PA211 Advanced Topics of Cyber Security – Cybersecurity Laboratory – cybersec.fi.muni.cz

Recommended HW configuration

– 16 GB of RAM

- SSD drive with tens of GB free space

Linux and macOS users

- 1. Enable virtualization in BIOS.
- 2. Install VirtualBox.
 - VirtualBox on Linux is sensitive to kernel versions. First, update the system (including the kernel), and only then install the latest Virtualbox. IMPORTANT: Don't install the distro-repository version of VirtualBox. Really do install the latest version from <u>https://www.virtualbox.org/wiki/Downloads</u>.
 - 2. VirtualBox may requires x86 CPU architecture, so it may **not** work on ARM Mac.

3. Install Vagrant.

The official website should be preferred as a source. Repositories of Linux distributions could have outdated versions.

MS Windows users

- 1. Enable virtualization in BIOS.
- 2. Install VirtualBox.
- 3. Install Vagrant.
- Ensure Hyper-V is disabled (Programs and Features > Turn Windows features on or off > Hyper-V)
 - 1. Sometimes it is not enough to disable Hyper-V in Settings; you may need to use the command bcdedit /set hypervisorlaunchtype off and restart the computer.
 - 2. Windows Update can turn Hyper-V on again, be sure to check it again after installing updates.

 We are here to help you with the process and hopefully solve issues we have already seen.

FΙ

How was it today?

Please fill in an **anonymous** exit ticket:

https://muni.cz/go/pa211-22-01

F 1

MUNI FI

53 PA211 Advanced Topics of Cyber Security – Cybersecurity Laboratory – cybersec.fi.muni.cz